
Abstract
This paper describes a simulation technique for Real-

Time Hw/Sw systems based on an object executable model.
It allows designers to seamlessly estimate and verify their
solutions from a high-level functional description to a
Hw/Sw partitioned design. The same model, enhanced with
algorithms, can be used to simulate interpreted models in
order to observe the behavior of a whole system and its
environment, as well as uninterpreted models which are
useful for performance estimation and so to help Hw/Sw
partitioning. Our (co-)simulation technique is based on the
translation of a high level model of the application into a
C++ program which uses a library of predefined classes.
While running, the program produces an event trace which
contents can be set by the user. This technique allows to
quickly analyze the influence of application or architecture
parameters on the application behavior.

1: Motivations and Goals
The top-down design of any embedded system needs

solutions to be verified and analyzed during each step and
as soon as possible. Since systems are correctly verified only
when they are embedded in their final environment, an
abstract but realistic model of the system environment has
to be developed early in the design process. This model is
also needful for system specification. Then, the functional
design phase leads to develop a functional and technology-
independent model of the system. The refinement technique
enables designers to start from a high-level functional model
and then gradually replace the behavior of the function by
a more detailed structural description.The detailed Hw/Sw
solution is then the result of a partitioning work based on
estimations extracted from a performance model, and
decisions related to non-functional constraints.

Our objective is to provide a tool to validate solutions
at each step of the design process. The quality and efficiency
of the design and verification process highly depends on
extra work it requires. Thus the design process has to be
seamless and verification must be based on automatic tools.

This work is based on the MCSE methodology which is
a complete design process for real-time systems and also
useful for CoDesign [2].

2: Description model and simulation technique
Different simulation techniques have been developed to

cosimulate Hw/Sw applications. They often require a model
of the application processor which may not be available in
an early stage of the design process [1]. Our solution, based
on the MCSE description model, overcomes this difficulty
by considering applications at a higher abstraction level.

2.1: The MCSE description model for co-simulation

The MCSE model, used to describe Hw/Sw systems,
includes the functional model, the executive model and the
mapping between both models [2][3].

The functional model describes the organization of the
system and its environment as well as the behavior of internal
and external functions. Functions are linked through three
kinds of relationship : event, shared-variable, port. The
behavioral model is a partial-ordered set of operations,
conditions (data input or synchronization) and actions (data
output or signal). At an abstract description level, the model
is uninterpreted : operations or in/out actions are modeled
by an execution time attribute. When algorithmic details are
known, they are added to the description of operations, but
timing simulation is still based on time attributes. The model
then becomes interpreted. Different attributes are used to
define each basic element of the description model
(concurrency, capacity, access time, ...).

The functional model is hierarchical. It means that a
function can be first described by a rough behavioral model
and then gradually refined by a structural model. This allows
incremental validation of the solution.

For co-simulation the model must include functional and
hardware architectures and the partitioning result
(mapping). In MCSE, the executive model represents the
hardware architecture. This model is graphically similar to
the functional one but objects have a different meaning :
processor, signal, shared-memory, communication node.
Each component is also specified by attributes (scheduling
policy, power, concurrency, ...).

2.2: The simulation technique

According to the multi-layer model given in Figure 1, the
upper-level behavior of an application (functions and
relationships) can be analyzed without considering Hw/Sw
partitioning. Then, when considering the hardware target

An Object-Based Executable Model for Simulation of Real-Time Hw/Sw Systems

O. Pasquier, J.P. Calvez
IRESTE, University of Nantes, FRANCE, email : olivier.pasquier@ireste.fr

after partitioning, our global model means that “hardware”
functions can process concurrently, whereas on software
processors, only one function can run at the same time,
according to a Real Time Kernel (RTK) scheduling policy.
This is defined by the attribute concurrency.

 -Figure 1 - Abstract layers of Hw/Sw systems.

Our simulation process is depicted in Figure 2. Systems
with their environment are graphically described, according
to the MCSE model, with graphical description tools. A
software generator then automatically translates this model
into a C++ program. Each object of this program implements
a component (function, processor, relation) of the system
model as an instance of a class which inherits from a
“primary class” defined in the object library. A “primary
class” implements the semantics of a component of the
MCSE model: active components (functions and
processors), relation components. These components
implement parallelism, condition synchronization and
mutual exclusion like in [4].

 -Figure 2 - Our co-simulation technique.

Four primary classes have been defined for the
components of a structural (functional and executive) view :
- Active Element: for functions and processors.
- Event: for function and processor synchronization.
- SharedData: for shared variables and shared memories.
- Port: for message transfer and communication node.

Attributes are used to differentiate elements at functional
and architectural levels. Similarly, classes have been defined
for basic elements of the behavioral description model.

To implement interpreted simulation, we have replaced
the simulation of each CPU instruction (like in Ptolemy or
for CVE) by the direct execution of the algorithm of each
behavior operation and a simulation of their execution time.
Of course, result accuracy is different, but it is fair enough
for partitioning and for first high-level verifications.

The generated C++ program fully respects the hierarchy
of the application model (hierarchy of objects). Designers
can thus easily enhance it by any sort of instructions. The
program run produces a sequence of events. Each event
represents a significant internal state change, for example
wait for processor availability, shared variable access, etc.
Events are processed and graphically displayed to show
performance results (figure 3 for example). If more specific
results are needed, designers can enhance the object code
to produce them.

 -Figure 3 - Example of time line display.

3: Conclusions
In this paper we have described an efficient high level

co-simulation technique for system-level models.
Specifications and properties of solutions for the designers’
point of view are expressed by the MCSE model which
enables to seamlessly describe systems before and after
Hw/Sw partitioning. Then the simulation is realized by a
C++ program automatically generated from design results.

These latter ones are powerful for system and
architecture performance modeling, estimation and
evaluation. The resulting tool is directly integrated as a
support for the system design and CoDesign MCSE
methodology, but can also be used independently of MCSE
by writing models directly in C++.

References
[1] J.T. Buck, S. Ha, E.E. Lee, D.G. Messerschmitt, Ptolemy: a

framework for simulating and prototyping heterogeneous
systems, Int. Journal of Computer Simulation, Vol 4, April
1994, pp. 155-182, 1994, pp187-212

[2] J.P. Calvez, Embedded Real-time Systems. A specification
and Design Methodology, John Wiley, 1993

[3] J.P. Calvez, A System-level performance model and method,
“Current Issues In Electronic Modeling”, Issue #6: Meta-
modeling: Performance, Software and Information Modeling,
Kluwer Academic Publishers, 1996, pp 57-102

[4] B. Kienhuis, E. Deprettere, et al., The Construction of a
Retargetable Simulator for an Architecture Template, Proc. of
the 6th Int. Workshop on Hardware/Software Codesign,
Seattle, Washington, 15-18 March 1998, pp 125-129.

Hardware PartSoftware Part

Functions

Relations

RTK

Assembler

CPU

Hardware

Cells

Abstraction
Level

Functions

Relations

Data and
Synchronisations

Application

Target

Functional
model

Global processor
model

‘Speed
‘Concurrency

Primary object

Program run

Event

Specific

Performance

Other

classes library

analyzer

display tools

Trace

results

Software
Generation

Simulation technique

Functional model
+ Executive model
+ F->E mapping

Retargetable simulator

MCSE model

C++
program

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

