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Abstract the HW/SW codesign process.

The Rugby model adds two dimensions for design rep-
We propose a conceptual framework, called the Rugbyyesentation, namelpata and Time to the Y chart. The
Model, in which designs, design processes and design toolehavioural domain of the Y chart is replaced with a more
can be studied. It is an extension of the Y chart and addsrestrictiveComputation domainThe structural and physi-
two dimensions for design representation, namely Data .5| domains of the Y chart are replaced by a more generic
and Time. The behavioural domain of Y chart is replaced communication domairThe importance given to the gen-
by a more restricted domain called Computation. The grg| concept of communication reflects the shift in focus of
structural and physical domains of Y chart are merged into today’s designers from layout and structure to system level
a more general domain called Communication. A fifth communication aspects.
dimension deals with design manipulations and transfor-  Fyrthermore, the model adds an orthogonal dimension
mations at three abstraction levels. to the design modelling plain to represeiesign manipula-
The model shall establish a common understanding oftions at several abstraction levels. While the Y chart
modelling and design process concepts for communicationjmpjicitly mixes design representation with design process

and education in the community. In a case study we illus- gspects, the Rugby model separates these issues.
trate how a design can be characterized with the concepts

of the Rugby model. 2. Existing Models

1. Introduction The Y chart [1] has three domains of design description:

) ) ) ) _ Behavioural, Structural and Physical. Each domain has

To categorise, conceptualise, and visualize problems inpmany jevels of abstraction. The design process is repre-
design automation and solutions to them we neeor&ep-  sented by step-wise refinement in all the three domains
tual framework Since 1983, when the Y chart was pro- fom outer levels towards the centre. It is possible to repre-
posed as the conceptual framework for VLSI design, the gent synthesis, design verification and analysis tools for
complexity in terms of transistor count has increased morey| g design on the Y chart. However, the Y chart does not
than two orders of magnitude, which raises new designaye any explicit representation for time, communication
issues that are not naturally modelled on the Y chart. For 54 gata abstractions. Modelling HW-SW systems and co-
instance, modelling and refining communication and data design problems is also not possible.
eleme_nts into implementation primitives_ in a HW_/_SW X- Chart [3] is an extension of the Y chart, and includes
code5|gp process is more complex than in the traditional oy 4qgitional aspect of Testing but lacks means to model
HW design. Moreover, HW/SW codesign requires Segrega'timing, timing constraints and data abstractions.
tion of the design process at lower levels into separate HWMuIti—LeveI Cybernetic proposed by Ramming [4] can
and SW design flows while integration at higher levels of model the design processes and design strategies, but lacks

abi[rr]acgon.b del ted in thi . features for modelling designs. A design process is mod-
€ Rugby model, presented In tis paper, IS a CoNcep-g) o 55 5 composition of level invariant activities like opti-

:jual_ framework thldl]l' (a)ttreatsie3|gtn IT (:c_ietlllné:]and d mization and design modification, and level variant
€sign process modellings two separate but Interdepend-  yities |ike synthesis. The main emphasis is on the com-

ent ISSUEs, (b) covers and rglates all design phases fm”blete design process and on coarse grained process steps,
requirements to implementation, and (c) allows studying while our main focus is on design representation and on



fine grained design manipulations. each other to achieve the functionality. The evaluation of
Design Cube[2] is a framework to model design activities functions require computation on data. The design also may
in the VHDL environment and unlike other frameworks alsdiave real time requirements on the evaluation of functions. As
has the capability to model time and data at different levels ofe further refine the design towards physical implementation
abstraction. However, it lacks the ability to represent the physaaking decisions like hardware/software implementation of
ical implementations. the function, or implementing functions using a library of
While explicitly representing Time and Data in the Desigriogic blocks, the distinction between these four aspects
Cube represents progress, both the Y-Chart and the Desiggcome wider and clearer. Finally, when the design takes the
Cube mix design modelling with design process. The curreshape of a physical silicon chip with various layers of dopings
models are weak in describing mixed HW/SW designs anahd metallization, the distinction between these domains
HW/SW codesign processes. While the Y chart and thagain disappear. Therefore, we represent the design process as
Design Cube reflect the hardware design issues, our modefasir lines initially diverging from a point (representing idea)
able to represent HW/SW systems and design process by \and later converging to another point (representing the final
tue of having explicit data and communication domain. product). In each domain, the point representing the idea is at
Furthermore, by introducing a new axis of design transfoithe highest level of abstraction, whereas, the point represent-
mations we separate the issues of design modelling and desigg the physical system is at the lowest level of abstraction.
process modelling. We claim that design manipulations and A design process consists of a numbedesign manipu-
transformations can also be investigated at several abstractlations, which refine “the idea” to the final product. In our

levels. model we also recognize various abstraction levels in design
manipulations and represent it as a separate axis which is truly
3. The Rugby Model orthogonal to the modelling axes. At the lowest level we have

design manipulations which deal with specific design
Fig. 1 gives a graphical overview of the proposed modelnstanceslike design entry editors; at the middle level we put
design manipulation algorithms like high level synthedgo-
Design Manipulation rithms or test pattern generation algorithms; at the highest
level of abstraction in the design manipulation abstraction we
havemethodologiesvhich guide the design process from idea
to physical product.

Al 3.1 Design Representations

To model different aspects of mixed HW/SW systems and
analyse their different problems, we choose Computation,

ab¥fiction Low i Communication, Time, and Data as the four domains in our
apstraction mOde'.
- Figure 2 magnifies part of the domain lines of the Rugby
Development time line model and shows the abstraction levels from abstract require-

ments definitions to a concrete mixed HW/SW implementa-

tion. It illustrates that domain lines can split when design

activities specialise. However, for each split there must be a

The development of a new design/product starts with an idegerresponding joining of lines during system integration,

The idea generally represents informal functional and noRyhich is not shown in figure 2.

functional requirements. This idea goes through many refine- pye to lack of space we cannot give a full account of all the

ments before a final physical product comes into existence. 4pstraction levels depicted in the figure, but we only discuss a

our model, the design refinements are carried out in foygw interesting aspects.

domains, namely computation, communication, data and time.

At the start of the design process these four aspects of the

design are not separable. We represent the idea stage of the

design as @ointin our model. . _ 1. It has also been suggested to use the name “Universe model” with
As we go further in the design process, different aspects ¢fe “idea” corresponding to the big bang and the “physical system”

the design (or its model) are more clearly distinguishableo the big crunch. The modelling lines would correspond to different

Design functionality is partitioned into sub-functions/subphysical forces and the “design manipulation” axis to mathematical

components/processes which may need to communicate wiff physical laws.

Figure 1. The Rugby model




the control elements are more primitive and (b) it is processor
specific.

0. At the system function level the system is described from a
% purely external view without considerations of the partition-

- ing and the implementation of the system. The difference
between the “system functions” and the “relation and con-
straints” level is analogous to the difference between a func-
tion and a relation in mathematics. A function maps a given
input to one specific result. A relation maps an input to a set of
results, i.e. a relation allows many more solutions.
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Communication

3.1.2 Communication.Communication is independent from
computation, data, and time. Complex systems are naturally
modelled as communicating concurrent processes. Refining
these abstract communications to intra and inter component
(ASICs, processor cores, memories etc.) communication
primitives is a major part of the design effort and is now being
treated as a research problem [7, 8]. Furthermore, languages
and notations that were not main-stream in the hardware
design community, are being explored to specify communica-
tion dominated functionality [9, 10]

The structural and physical domains of the Y chart are
merged into this domain because movement from a topologi-
cal to a layout model is considered as a refinement operation,
not an inter-domain movement. The layout level is based on
principles of geometry and uses physical units to describe
geometric parameters. This level corresponds to the physical
domain in the Y chart. The topological level is only concerned
with the presence or absence of connections between design
elements. It corresponds to the structural domain in the Y
chart. The inter process communication level is concerned
with mechanisms and protocols of communication between
design elements. At the highest level only the interface and
communication constraints are expressed, to which every
implementation of the interfaces must comply.
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3.1.3 Data.For software there is a long tradition to model
data types explicitly with modelling concepts such as entity-
High Low  system relationship diagrams, and in the hardware community data
_ abstraction _ abstraction structures have evolved from bit vectors to more complex data
Figure 2. Abstraction levels in modelling domains structures like arrays, records, linked lists etc. This is reflected
in a flurry of research activity in this domain, e.g. [11, 12].
3.1.1 Computation.The computation domain is derived from Thus, for the modelling of mixed HW/SW systems it is desir-
Y chart’s behavioural domain but is more restrictive ancble to treat data and data types as an independent aspect.
focuses on the way the results are computed independent from
the exact data types involved and from the exact timing behag:1.4 Time.Time is a crucial design characteristic which
iour of the computation. It is concerned with the relationshipleserves independent analysis. Many electronic systems are
of input and output values, i.e. the behaviour as it is observaxpected to be reactive real-time systems with soft or hard real
ble from the outside. time constraints. Furthermore, numerous publications [5, 6]
The instruction set level is the lowest abstraction for soften how to model time illustrate that it is not bound to a partic-
ware. Though some computational concepts like sequencingar kind of computation, but rather it is independent. In the
branching and sub-routines are similar to algorithmic level bybrmulation of the abstraction levels we follow mostly [2] but
is considered less abstract than algorithmic level because &xtend it to software on one hand and include timing con-

Idea Development time Physical




straints on the other hand.

3.2 Abstractions of Design Manipulations
weak tool support

Metho-

Orthogonal to the modelling domains is the design manip

Methodologies

Method
manipulation Algorithm dOIOgL

Methods and algorithms

Instance manipulation

manipulations

Design

Figure 3. Abstractions of design manipulations

Instance

ulation, which can also be represented at several abstractid
levels. At the lowest level, design entities are directly created )
transformed, and removed using schematic and text editor mentation ~cation ments
At the next higher level, algorithms and methods are Design modelling abstraction levels
employed as in place and route, logic and high level synthesidFigure 4. Automation and abstraction levels
At the highest level, the algorithms and methods from the see-Data type refimement At lower Ievels of the Data domain
ond level are used and combined into methodologies whichthe refinement of data is handled by state encoding and
cover the entire design process. technology mapping techniques. But higher levels models,
All the four design modelling domains are relevant at each which typically use abstract symbols for performance mod-
level of the design manipulation axis. For example, instanceelling, based on queueing theory or petri nets, have usually
manipulation editors can operate on stick diagrams as well asmo direct link to models with more concrete data types to be
graphical system description diagrams in SDL. However, atused in the design and implementation process.
higher levels of the design manipulation axis several designTransformation of system functions into concurrent
models and abstraction levels may simultaneously be used. objects In early design phases a system is best described in
Today’s level of automation and tool sophistication terms of use cases [13], scenarios [14], and system func-
decreases with higher levels. We have sophisticated graphicalions. These functions are independent from each other and
and textual editors for instance manipulations at all abstrac-represent the requirements. The challenge to transform
tion levels for design models, we have synthesis algorithmsthese system functions into interconnected concurrent
addressing some but by no means all important transformatiorobjects is a key to link a problem oriented description to an
problems, but we hardly have any tool support to describe andimplementation oriented model. It has not been systemati-
execute methodologies. The level of tool support is also dif- cally addressed.
ferent for different abstraction levels of the design modelling The task oftransforming requirements definitions into a
domains, with typically higher degree of automation for lower system which fulfills the requirements is notoriously diffi-
levels. This is indicated in figure 4. cult. The Rugby model indicates that we need to address
Today there is no systematic and well understood relationthis problem in all four domains computation, time, data,
between the three levels Instance Manipulation, Synthesisand communication. Computational constraints in terms of
Algorithms, and Methodology. We have no general method to input/output relations and timing constraints have to some
construct a synthesis algorithms from instance manipulationsextent been researched. But we have neither a formalism to
or to deploy synthesis algorithms to compose an executableexpress data type constraints and structural and interface
methodology. We have point solutions but no general under-constraints, nor methods to integrate these constraints into
standing and concept of this task. Figure 4 shows how desigrthe design process.
automation has evolved over the last few decades.

Imple-  Design Specifi- Reune-

Design manipulation abstraction levels

4. Case study
3.3 Unexplored Problems and Issues

The design of a network terminal (NT) [15] unit serves as a

The model can be used to represent many establishé@se study. The NT provides the interface between the public

methods and tools. In addition, many open problems are idefccess network and the private customer premises network
tified. We only sketch a few of them. (CPN). Physically it is a device that is installed at the cus-

tomer’s premises and it allows a user to access the distribution
network with its variety of services. The NT provides an inter-



Table 1. Models in the Network Terminal development
Design modelling domains

Computation Communication Data Time

. functional ; - _ performance
§ Requirements constraints interface constraints ATM cell definitign constraints
Q ] inter-process ;
< System model algorithm/FSM e ey g R symbols causality
'§ SW C model algorithm parameter passing symbols/numbers causality
§ Assembler instruction set | parameter passing processor data typq processor cycle time
<

HW VHDI__ model _
Synthesized Netli

face to the access network and several interfaces to differehtl Requirement definitions
CPNs, e.g. to an ethernet or to a telephone. The ATM Multi-

plexer translates the connection identifier fields in the headers
of the ATM cells in order to deliver the cells to their correct .t activities. They consist of several documents, for

destination. instance ITU documents, books and article on ATM and com-

Several models haV(_—:- been usec_i or (_jeveloped d_urmg tWﬁmication networks and protocols. A significant part of it is
project, _each of which is characterized in the follpwmg S€C0hformal based on existing experience and discussions with
tions using the Rugby model. It has to be emphasized that icsson engineers. From all these sources an understanding

NT has been developed without awareness of the Rugtiy s ;
the NT developed within th hich b
model. With respect to the kind of models developed and too © wvas aeveioped Witain the group which can be

. : ) \fewed as the requirements definition even though there is no
use(_j, twas a very typlcal pro;ect. AI_SO’ the Rugby model w ngle explicit document. These requirements include func-
not influenced by this particular project. _Nevertheless the N onal constraints, interface constraints, data constraints, and
models can be very naturally characterized and analysed ¥rformance constraints.
means of the Rugby model.

Table 1 summarizes several NT models from the require-
ments definitions to implementation models. Figure 5 iIIus4"2 System Model

trates these models in the Rugby diagram, but it does not

The requirements definitions were the input to the develop-

From the initial requirements we developed an executable
model, the abstraction level of which was determined by the
choice of the language, SDL. SDL is based on concurrent
processes which communicate with each other via an asyn-
chronous message passing mechanism.

The most important design decision during development of
the system level model was the partitioning into concurrent
processes. It also gives the frame for the HW/SW partitioning,
which is performed at the process level granularity.

4.3 Software

4.3.1 C Model.The abstraction level in the computation
domain is the algorithmic level. Without a multi-tasking OS
all concurrent processes of the SDL model are flattened out

Development time into sequential C code. Hence, the abstraction level in the
Figure 5. The NT models in the Rugby frame. communication domain would be parameter passing between
functions.

distinguish between SW and HW models for the sake of clar-

ity. 4.3.2 Assembler modelThe compilation of the C code into
assembler is typically a fully automated process which makes
it very predictable. The computational elements are the
instructions of the target processor which also determine the



time abstraction and the data types. The communicati :
abstraction is parameter passing. Requirements

Algorithmic: none
4.4 Hardware <

System model

4.4.1 VHDL Model. The developed VHDL model is synthe-| Algorithmic:
sizable with Synopsys’ design compiler. Thus, it is RTL cod ;:i?nrgputatuon,
with a clocked time and algorithms describing the computg '

tions inside the processes. The algorithms are written in
style that are interpreted by the design compiler as finite sta

Algorithmic: computation

VHDL model

machines. Thus, the description of the processes is very sif A'%%ﬂggmfamm A'ggg',ﬁ]“gﬁ"ﬁgmm_
lar to the SDL models in terms of computation, control floW  gme data: time, data;

and data flow. The principal difference comes from the diffe
ent level of abstraction in the time domain, causality in th
SDL model and clocked time in the VHDL model.

The second important difference concerns the inter-pro
esses communication, which is significantly refined in th
VHDL model. In the VHDL model the topo|ogy is deter- Itwas manual due to many design decisions taken. In the com-
mined, describing precisely which port of one process corutation domain it was a systematic and mechanical transfor-
nects to a port in another process. The asynchronous messBion, although it was not done by a tool. In the time domain

passing mechanism in SDL is refined into handshake or finite Was also a mechanic transformation for the SW model,
FIFO based protocols. whereas it was a manual step with significant design decisions

for the HW part. This is also illustrated in figure 5 with bold

4.4.2 Synthesized NetlisiThe result of synthesizing the lines indicating algorithmic transformation and thin lines indi-
VHDL model with Synopsys’ design compiler is a technologysating manual activities.
mapped netlist. The computation elements are logic blocks, Figure 6 sketches also the development methodology by
the communication abstraction is a topology between tH&10Wing the design models and the kind of transformations
logic blocks as defined by the netlist. Note, that for the VHDLapplied on them. However, as in many other similar projects
model the communication abstraction is also topology charale methodology was derived in a simple way. From a tem-
terizing the connection between processes. In the synthesiZdate based on explicit guidelines and experience a project
netlist this topological model has been extended inside ttf@ecific methodology was formulated intuitively and executed
processes leading to a topological hierarchy. All symbols hal®y the design team. It would be desirable to define general and
found a concrete bitvector representation and the timing h¥grsatile methodologies in a more formal way and be able to
been refined into physical time units based on the delay of t@®Ply them classes of development projects. The execution of
elementary blocks. methodologies could also be formalized and automated to a

In the next Step of p|acement and routing the topo|099igher degree. This would relieve the deSignerS from the task
would be refined into a geometric model with physical unit§f keeping track of numerous files and models created and
for the elementary cells and the wires, and the physical timirigsed by various tools. They could rather focus on the design

Netlist

Figure 6. Design manipulations in the NT development.

model would be extended to the interconnects. models and their more abstract and relevant properties.
Many point solutions address these issues but a common
4.5 Design manipulation formal notion of a methodology and its execution encompass-

ing multiple tools and vendors is still missing.

The Qesign process can b_e charact_erized _in term_s qf thG Discussion
abstraction levels of manipulations applied. In figure 6 is indi-
cated when and in which domain an algorithmic method has
been applied as opposed to a manual instance manipulation.The models in this case study can be characterized very
For the lower levels, from the C and VHDL levels downwardhaturally with the domains and abstraction levels of the
automatic methods and tools were used. The transformatiGygby model. Table 1 gives a concise and comprehensive
from the requirements definition to the system model was \dew of different models and what kind of information is
purely manual activity. But the transformation from the sysPresent. To convey the same amount of information, that is
tem level to the separate HW and SW models was different f@Pparent in the table with the Rugby model as background,
the different domains. In the communication and data domafife would need lengthy explanations. This illustrates how the
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