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Abstract

We formalize the problem of analog data com-
pression and analyze the existence of a polynomial
data compression function. Under relaxed condi-
tions we explore the existence of a solution em-
ploying digital signature analysis in the analog do-
main.

1 Introduction

Comparison of responses of a circuit-under-test
to some previously determined reference values,
obtained under the same stimuli, is a common ap-
proach in automatic testing techniques in both dig-
ital and analog domain. A compact measurement
data characterizing the behavior of a circuit is often
referred to as asignature.

Signature analysis proved to be an effective
fault detection and localization technique for dig-
ital circuits, [2]. Conventional signature analy-
sis uses a pseudorandom binary sequence (PRBS)
generator provided with an external input. Feed-
ing data into a PRBS generator has the same effect
as dividing the data by the characteristic polyno-
mial of the PRBS generator. When the process
is stopped, the remaining contents of the PRBS
generator represent the signature of the input data
stream. Successful application of the above tech-
nique in practice is due to the fact that even for
PRBS generators of modest length the probability
of two different input data streams of equal length
having the same signature is close to zero.

Simulation before test techniques in analog cir-
cuit diagnosis also deal with ”signatures“, but they
are rather used for characterization of the effects of
a selected set of faults than for the description of

correct circuit operation. There are no standard or
widely accepted rules for generating analog signa-
tures. Since analog signatures are stored and pro-
cessed by a computer they are discrete. Although
limited data storage imposed significant restriction
to the earlier implementations of fault dictionaries
the reported approaches do not employ data com-
pression techniques to reduce the need of mem-
ory resources. Rather they optimize the number of
stored values by selecting only those correspond-
ing to the selected significant measurements [1].

As technology advances, memory restrictions
are getting less stringent, but the problem of man-
aging large amount of measurement data in prac-
tice still remains. An open question is if it is possi-
ble to define also in the analog domain some com-
mon way of compressing measurement data in a
unique signature. In that case, exhausive tables of
measurement results which are used for plotting a
response of a circuit as a function of input stimuli
could be compressed into a single signature. Such
signature could be a suitable basis for automatic
testing and diagnosing of analog circuits. Further-
more, it would become possible to characterize the
behavior of a mixed signal circuit by amixed signal
signaturecomposed of a sequence of digital and
analog signatures corresponding to given parts of
the circuit during a complex functional test (e.g.
built-in mixed signal circuit test, or digital/analog
core test in MCM applications).

The approaches to the analog signature analysis
proposed so far [3], [5], [6], diverge in methodol-
ogy and application domain. In practice they have
not converged to a widely accepted solution as it is
the case with digital signature analysis technique.
One of possible reasons may be the fact that an ex-
plicit definition of the problem has not been stated.

In this paper we formalize the problem of ana-
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log data compression and analyze the existence of
a polynomial data compression function. Under re-
laxed conditions we explore the existence of a so-
lution employing the conventional digital signature
analysis in the analog domain. Analytical expre-
sions are derived which may serve for further anal-
ysis and assessment of aliasing of this approach.

2 Data compression of analog mea-
surements

2.1 Description of the problem

We analyze the possibility of data compression
of a series ofn real numbers characterizing the
response of a circuit for the defined stimuli. In
particular, we are looking for some data compres-
sion function f that would enable us to determine
for any two given responsesY = y1;y2; : : : ;yn and
Z = z1;z2; : : : ;zn whetherzi � yi holds for all i
merely on the basis of their signaturesf (Y) and
f (Z), as depicted in Figure 2. If such data com-
pression function existed, one could describe re-
gions that characterize the response of a circuit
simply by the signatures of their margins. Further-
more, from the signature of a response of a circuit-
under-test it would be possible to determine if the
response lies in the given region or not.

measured
values

compressed
values

i1 2 n

Y f(Y)

Z f(Z)

zi yicondition: f(Y)    f(Z)

Figure 1. Data compression of analog
measurements

2.2 Problem formalization

Suppose that we want to characterize the be-
havior of a circuit for a given type of fault by the
valuesy1, y2, : : : , yn, denoted asreference values,
measured or obtained by simulation at some cho-
sen test point. We will briefly denote this values
by Y. Clearly,Y 2 IRn. Y will always mean an ar-
bitrary but fixed vector. Furthermore, assume that

the fault is characterized by the reference valuesY
such that any set of measured valuesz1, z2, : : : , zn,
Z for short, for whichzi � yi holds for all i, cor-
responds to the same fault. This will be denoted
Z�Y. Sincen is in general large, we would like to
compressY 2 IRn to someY0 2 IRk, wherek<< n,
by standard arithmetic operations - addition and
multiplication. In fact, these are just the operations
(essentially) available in computers. This compres-
sion means that we computeY0 fromY using stan-
dard arithmetic operations, i.e. we are looking for a
polynomial function (ofn variables)f : IRn ! IRk.
By the above we want such a polynomial that for
anyZ 2 IRn:

Z�Y if and only if f (Z)� f (Y). (1)

Let us call such a functionY-compatible.

2.3 Existence of solution

It is not difficult to find anY-compatible func-
tion. Consider, for example, the following function
g : IRn ! IR:

g(X) =

�
(�1)n+1(x1�y1) � � � (xn�yn);X �Y;
maxfx1�y1; : : : ; xn�yng;otherwise:

It is easy to see thatg is continuous andY-
compatible. However, the definition ofg involves
Y, which is clearly in contradiction with our inten-
tions and furthermore,g is not a polynomial func-
tion. But for such functions we have:

Theorem 2.1 For any Y2 IRn, n� 2, there is no
Y-compatible polynomial function f: IRn ! IRk,
1� k< n.

Proof. We will give only a sketch of the proof,
which can be found in [4]. Form< n let Ym =

(ym;ym+1; : : : ;yn) and letS= fZ2 IRn�1; Z<Y2g.
Suppose on the contrary thatf : IRn ! IRk is Y-
compatible, f = ( f1; f2; : : : ; fk). Then it is not
difficult to show that at least one of the following
holds:

(i) there existj 2 f1; 2; : : : ; kg, Z2S, and a neigh-
bourhoodU � Sof Z in IRn�1 such that

f j (y1;X)� f j(Y) = 0; for everyX 2U:

(ii) there existsX 2 IRn�1, X <Y2, such that for all
i = 1; 2; : : : ; k,

fi(y1;X)� fi(Y)< 0:
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If (ii) would hold then f (y1+δ;X)� f (Y) for δ >
0 small enough, thereforef is notY-compatible.
Therefore (i) holds. But in this case one can deduce
that Y-compatibility of f : IRn ! IRk implies an
existence ofY2 = (y2;y3; : : : ;yn)-compatible func-
tion g : IRn�1! IRk�1. We continue this procedure
and finally end up with aYk = (yk; yk+1; : : : ; yn)-
compatible real mappingh. Again, at least one of
(i) and (ii) holds forh. If (ii) holds then as above
h is notYk-compatible. And ifh(yk;X)�h(Yk) = 0
holds forX 2 IRn�k, it follows that we can easily
chooseX, which violates the compatibility. Q.E.D.

Although a negative result, presented proof of
non-existence ofY- compatible polynomial func-
tion for data compression actually states the limits
one should be aware of when searching for a satis-
factory practical solution.

By analogy with digital signature analysis, a so-
lution may become feasible if we relax condition
(1). For example, there may exist an analog data
compression function which does not 100% sat-
isfy condition (1) but gives still acceptable results
in practice.

3 Possible directions toward practical
solutions

One possible approach, employed in [7], is to
divide the amplitude range of the response into 2m

quantisation bands, denoted by the corresponding
m- bit binary numbers. The response of a circuit-
under-test can be represented by a bit stream com-
posed of a sequence of binary values of the mea-
sured response. For example, responsea in Figure
2 can be represented by 1010 1010 1001 0101 0001
0001. The resulting stream can be compressed into
a signature by a PRBS generator. In this way one
could make use of the advantages of digital signa-
ture analysis in the analog domain.

Yet this approach faces some problems. When
samples are taken close to the edge of the quan-
tisation band outliers, different input streams may
result for two (nearly) equal responses. The second
and more serious problem concerns aliasing error
(i.e., the probability of some faulty response hav-
ing the same signature as the reference fault-free
characteristic). For aw-bit input stream and az-bit
PRBS generator, 2w�z�1 different responses will
result in an equal signature. Since the response of
an analog circuit may in principle result in an arbi-
trary bit stream it is imperative to keep the aliasing

error as low as possible. This can be done either
by increasingz or by applying some additional se-
lectivity criterion for further selection among the
candidate bit streams. For example, some quanti-
tative description of the shape of the reference re-
sponse curve can be used for this purpose. Since
reduced aliasing error is achieved at the expense
of decreased efficiency of data compression, the fi-
nal solution will be a compromise in each specific
case.

In the following we explore the possibility of
reducing the aliasing error by keeping track of the
number of increasing/decreasing samples in the in-
put sequence. We describe the idea on some illus-
trative examples and derive the expressions which
may serve as the basis for further study in this di-
rection.
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Figure 2. Examples of sampled re-
sponses
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Figure 3. Two compatible se-
quences

3.1 Counting compatible sequences

Let INn = f1;2; : : : ;ng be the set corresponding
to the range of a sampled response (n=2m quantisa-
tion bands) and letk be the number of samples of
a response.
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Let b= (b1;b2; : : : ;bk) andd = (d1;d2; : : : ;dk)

be sequences of a series of samples. For our
purposes we will without loss of generality as-
sume that fori = 1;2; : : : ;k� 1 we havebi 6=
bi+1 as well asdi 6= di+1. Indeed, if bi = bi+1

would hold for somei, then the number of samples
which have the same increasing/decreasing pattern
asb can be obtained by considering the sequence
(b1; : : : ;bi�1;bi+1; : : :bn). Let

b= (b1; : : : ;bk1);(bk1+1; : : : ;bk1+k2); : : : ;

(bk1+���+kt�1+1; : : : ;bk1+���+kt )

and
d= (d1; : : : ;ds1);(ds1+1; : : : ;ds1+s2); : : : ;

(ds1+���+sr�1+1; : : : ;ds1+���+sr )

be the partitions of the sequencesb and d into
maximal monotone subsequences which we obtain
from left to right. Clearly,k1 + : : :+ kt = k and
s1+ � � �+sr = k. We say thatb is compatible with
d, b� d, if t = r andki = si for i = 1;2; : : : t. In the
sequel we may without loss of generality assume
thatk1 � 2.

Roughly speaking,b� d if b andd coincide in
their increasing/decreasing intervals. For example,
if n= 16,k= 8 andb= (2;4;15;3;9;16;2;1) then
the corresponding partition ofb is

b= (2;4;15);(3);(9;16);(2;1) :

We havet = 4, k1 = 3, k2 = 1, k3 = 2 andk4 =

2, and, for instance,b is compatible withd =

(4;5;6;1;7;8;7;6) depicted in Figure 3.
Note that (for fixedn andk) the relation� de-

fines an equivalence relation in the set of all se-
quences of lengthk over the alphabetINn. We
are interested in the size of its equivalence classes.
Thus, letN(b) denote the number of elements of
the equivalence class containingb.

Consider first the caset = 1, i.e., the sequence
b = (b1;b2; � � � ;bk) is strictly increasing. In this
case the corresponding increasing sequences bijec-
tively correspond to thek-subsets of the setINn,
hence

N(b) =

�
n
k

�
:

Note also, that there are�
n�1
d�1

�

such sequences which end with the elementd. For
the general case let us write the partition
d= (d1; : : : ;dk1);(dk1+1; : : : ;dk1+k2); : : : ;

(dk1+���+kt�1+1; : : : ;dk1+���+kt )

of a sequenced which is compatible withb briefly
as
d = (d1; : : : ;δ1);(dk1+1; : : : ;δ2); : : : ;

(dk1+���+kt�1+1; : : : ;δt) :

Let Nt�1(δt�1) be the number of sequences of
length p = k1 + � � �+ kt�1 which are compatible
with the first p terms of the sequenceb and end
with a fixed elementδt�1. We now distinguish two
cases.

Case 1:t is even.
In this case the sequenced must be completed af-
ter the elementδt�1 with a decreasing sequence of
lengthkt . There are

�δt�1�1
kt

�
such sequences and

therefore we have:

N(b) =
n

∑
δt�1=kt�1+1

�
δt�1�1

kt

�
�Nt�1(δt�1) :

Case 2:t is odd.
Now the sequenced must be completed afterδt�1

via an increasing sequence of lengthkt . There are�n�δt�1
kt

�
such sequences hence

N(b) =
n�kt�1

∑
δt�1=1

�
n�δt�1

kt

�
�Nt�1(δt�1) :

The above recursion could be solved by induction,
but it would be rather time and space consuming.
Instead, we present the formula for the caset = 4
which essentially reflects the general case. Thus, if
b is a sequence of lengthk overINn andt = 4, then
N(b) is equal to

n

∑
δ3=k3+1

�
δ3�1

k4

�
�

"minfn�k2;

δ3�1g

∑
δ2=1

�
δ3�δ2�1

k3�1

�
�

8>>>>: n

∑
δ1=maxfk1;

δ2+1g

�
δ1�δ2�1

k2�1

��
δ1�1
k1�1

�9>>>>;
#
:

To the last formula we add that the functions max
and min are present to assure that the upper values
of the binomial coefficients are nonnegative.

We use the above formula to compute the num-
ber of compatible sequences N(b) for the examples
in Figure 2. Table 1 gives the computed N(b) for
the responsesr1, r2 andr3 for three different quan-
tisation bands: 16, 32 and 64. Efficiency of the se-
lectivity criterion is best characterized if we divide
N(b) by the total number of possible responses of
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N(b) N(b)=Ntotal
n=16 n=32 n=64 n=16 n=32 n=64

r1 1820 35960 635376 1.08 10�4 3.35 10�5 9.24 10�5

r2 8008 906192 74974368 4.77 10�4 8.43 10�4 1.09 10�2

r3 37688 1428976 49600992 2.24 10�3 1.33 10�3 7.22 10�4

Table 1: Computed N(b) for the responsesr1, r2 andr3

equal signatures aliasing error probability
z=4 z=6 z=8 z=4 z=6 z=8

r1 111 34 9 6.6 10�6 2.0 10�6 5.3 10�7

r2 499 131 33 2.9 10�5 7.8 10�6 1.9 10�6

r3 2353 589 147 1.4 10�4 3.5 10�5 8.7 10�6

Table 2: Generated signatures for sequences compatible withr1, r2 andr3

consisting ofk samples (in our case 6). The results
are given in the right part of Table 1.

Table 2 gives the number of sequences (com-
patible with r1, r2 and r3 ) generating 4, 6 and 8
bit signatures that are equal to the signatures of the
responsesr1, r2 andr3 . Associated aliasing error
probabilities are also given.

4 Conclusion

We have formalized the problem of analog data
compression and presented proof of non-existence
of polynomial data compression function. The
proof actually states the limits one should be aware
of when searching for a satisfactory practical solu-
tion. We have concentrated our discussion on poly-
nomial functions because they can be easily im-
plemented by microprocessor-based measurement
instrumentation. Further work can be directed to-
ward searching for some other function possibly
satisfying condition (1), or toward defining some
practical solution for a relaxed condition (1).

Under relaxed conditions we explored the ex-
istence of a solution employing digital signature
analysis in the analog domain. We analyzed the
possibility of reducing the aliasing error by keep-
ing track of the number of increasing/decreasing
samples in the input sequence. Some illustra-
tive examples are given. Derived expressions may
serve as the basis for further study in this direction.
Assessment of efficiency of the proposed approach
on more complex examples is subject of our cur-
rent research. Further work can also be directed
toward defining other selectivity criteria.
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