
Fast, Robust DC and Transient Fault Simulation for Nonlinear Analogue
Circuits

Z.R. Yang and M. Zwolinski
Department of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ

mz@ecs.soton.ac.uk

Abstract

The evaluation of analogue and mixed-signal test
strategies and design for test techniques requires the fault
simulation of analogue circuits. The need to reduce fault
simulation time for has resulted in the research into
concurrent analogue fault simulation, analogous to
digital fault simulation. Concurrent simulation can
reduce the simulation time by avoiding repeated
construction of the circuit matrix. Fault collapsing and
dropping is also desirable. A robust, fast algorithm for
concurrent analogue fault simulation is presented in this
paper. Three techniques for the automatic dropping of
faults have been addressed: a robust closeness
measurement technique; a late start rule and an early
stop rule. The algorithm has been successfully applied to
both DC and transient analyses. A significant increase in
the speed of analogue fault simulation has been obtained.

1. Introduction

Fault simulation of analogue integrated circuits has
been of considerable interest in recent years. Fault
modelling and simulation with SPICE has been necessary
for the evaluation of design for test strategies. Normally,
all possible faults have to be simulated, which is very
time-consuming, particularly when parametric variations
are taken into account. Hence efforts have been made to
reduce the size of the fault lists and to use macro
modelling. Some recent work has concentrated on
speeding up the simulation algorithms themselves, and it
is with this topic that this paper is concerned.

In [1] it was proposed that analogue fault simulation
could be speeded up using techniques analogous to those
used in concurrent digital fault simulation. The fault-free
and faulty simulations would be performed concurrently
in a single simulation run. Suppose that all or part of a
faulty version of a circuit were to perform in the same
way as the fault-free version. By checking the terminal
voltages of semiconductor devices in both the faulty and

fault-free versions of the circuit at each Newton-Raphson
iteration at each time point in a transient analysis,
redundant evaluations of device equations could be
avoided. The evaluation of semiconductor device
equations may take 60% of the simulation time, hence
significant speed improvements could, in principle, be
gained.

The work reported in [3] partitioned the circuit matrix
into two parts, a constant part and a variable part. The
variable part is normally much smaller than the constant.
The simulation time can therefore be reduced if the
simulation time spent in circuit matrix construction could
be significantly reduced.

In [5] the faults were ordered at each simulation
iteration so that the initial guess for the fault simulation
could be well defined and the total fault simulation
iterations could be reduced significantly.

The work reported in [4] aimed to reduce fault
simulation time by fault collapsing and resulted in a large
reduction of fault simulation time.

Concurrent fault simulation for analogue circuits has
been considered in [1], [6]. However where and when to
automatically drop faults from the fault list is also of
interest. The key to fault collapsing for analogue circuit
simulation is to measure the closeness between the fault-
free circuit and the faulty circuits. As will be discussed in
this paper, a single-point closeness measurement [5] is not
reliable. A robust fault collapsing technique is therefore
proposed in this paper based on a multi-point closeness
measurement. In general, the earlier the fault collapsing,
the better the algorithm. However, there is always an
unstable stage in simulating analogue circuits, in
particular, in DC analysis, because of the iterative method
employed. At a very early stage of the simulation, a
circuit’s state can be misleading. Hence, the selection and
determination of a suitable starting point for making the
closeness measurement is very important. We call this a
late start rule. We also know that different fault
simulations converge at different rates in DC analysis.
Applying the same stop rule to all the fault simulations
will inevitably waste resources. It is, therefore, necessary

to apply an early stop rule to fault simulations.
Based on these principles, a robust and fast concurrent

fault simulator has been implemented. This paper is
organised as follows. The next section has a discussion of
the closeness measurement. The third section gives the
algorithm for concurrent fault simulation. The fourth
section has some examples.

2. Closeness measurement

2.1 Single-point measurement

In order to reduce the computational effort needed for
fault simulations, similarities between simulations of
faulty circuits and of the fault-free circuit have to be
identified. To do this, a measure of closeness is needed.
For two vectors of real numbers, the closeness can be
measured by an absolute distance measurement [2], such
as the Euclidean distance, the Hamming distance or the
Manhattan distance.

The Euclidean distance is the most common method
for measuring the distance and was the approach adopted
in [6], with very limited success. The Hamming distance
is useful for measuring the distance between vectors that
only contain binary numbers. The Manhattan distance is
measured between two pattern swarms.

2.2 Multi-point measurement

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

Iteration steps

V
ol

ts

faulty

fault-free

Figure 1. An illustration of non-constant distance
between a faulty circuit and the fault-free circuit.

All these distance calculation methods use two single
points (Euclidean and Hamming distance) or pattern
swarms (Manhattan distance). It is doubtful that they can
accurately detect the closeness between faulty circuit
responsess and that of the fault-free circuit because the
distance will not always be the same during a simulation.
Figure 1 illustrates this. The vertical axis indicates the
response (volts) and the horizontal axis denotes the
iteration steps. The solid line shows the response of a
faulty circuit and the dotted line that of the fault-free
circuit. It can be seen that the distance between the faulty
circuit and the fault-free circuit is not the same between

the 1st and the 40th iterations. Moreover, the faulty circuit
and the fault-free circuit behave identically for a few
iterations. Therefore we replace the single-point closeness
measurement by a multi-point closeness measurement,
which is conducted during M iterations:

∑
=

−=
M

m

m
f

mE
f

M
d

1
0

1ˆ xx ,

where m
0x and m

fx are the responses at the mth Newton-

Raphson iteration for the fault-free circuit and the fth

faulty circuit respectively. M is the number of continuous

steps for the closeness measurement and E
fd̂ is the

closeness measurement.

2.3 The late start rule

In order to obtain convergence, particularly in DC
analysis, the Newton-Raphson algorithm is commonly
damped. This damping may be linear or non-linear. For

example, if mx is the value of a node voltage at the mth

Newton-Raphson iteration, mx∆ is the calculated
increment and α is the largest change voltage allowed,

e.g. 1 volt, the new value of the node voltage, 1+mx , is

incremented by the smaller of α,mx∆ .

Using damped values for the closeness measurement is
misleading. Figure 2 shows a typical response curve. It
can be seen that after 13 iterations, the response starts to
change more gradually. We define this point (13th

iteration) as a stable point because the response at the
node will not subsequently dramatically change.

-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00
4.00
5.00
6.00

1 5 9 13 17 21 25 29 33 37 41 45 49

Figure 2. Illustration of a stable point. At the early stages
of simulation, the change of node voltage has been
damped to 1 volt.

Unfortunately, not all the node responses of a circuit
will simultaneously arrive at their stable points. Because
the change before a stable point is not a real change, using
these damped results will result in misleading
measurements. We therefore start the closeness
measurement after most nodes in a circuit arrive at their
stable points. This is the late start rule.

3. Concurrent fault simulation using the
robust fault collapsing method

3.1 The early stop rule

During concurrent analogue fault simulation, and in
particular, during DC analysis, the fault simulations do
not all converge at the same iteration. Employing the
same stop rule for all the fault simulations during
concurrent simulation will hide the advantages of
concurrent fault simulation. The early stop rule proposed
here is very simple in that whenever one fault simulation
converges, that fault simulation stops while other fault
simulations carry on. Convergence of one fault simulation
is measured in the usual way [7] by

ηα
ε

+⋅

−
= +

+

),max(
~

1

1

mm

mm

xx

xx

where, α and η are two user-defined coefficients, mx is

a solution of a nonlinear equation at the mth iteration and
1+mx is a solution of a nonlinear equation at the (m+1)th

iteration. When 1~ <ε , the simulation has converged.

3.2 Concurrent fault simulation algorithm

From the above, we have built a robust fault collapsing
method for fast and efficient concurrent analogue fault
simulation. Let fG represent the circuit description for

the fth fault, and mΩ , the fault list at the mth iteration. A

fault, m
f Ω∈G , can be dropped from the fault list

f
mm G−Ω=Ω +1

if fG behaves “similarly” to the fault-free circuit,

T
M

d
m

Mmp

p
f

pE
f <−= ∑

−−= 1
0

1ˆ xx ,

where T is the threshold for the minimum distance.
The algorithm for concurrent analogue fault simulation

has been embedded into our own analogue circuit
simulator. The sequence of actions for DC analysis or at
one time point in transient analysis is as follows:

Step 1. Constitute the original fault list,

{ }NGGG ,,, 210 ⋅⋅⋅=Ω , by inserting all possible (N) faults

into copies of the circuit. We define),0[,0 ∞∈mmx as the
response vector for the fault-free circuit and

),0[, ∞∈mm
fx as the response vector of the fth faulty

circuit at the mth iteration during the fault simulation.

Step 2. Pre-simulate for M Newton-Raphson iterations
until most nodes arrive at their stable points.

Step 3. Conduct the mth iteration of the fault simulation

for all the faulty circuits, 1−Ω∈ mm
fG , as well as for the

fault-free circuit (m>M). After the simulation, m
0x and

1−Ω∈ mm
f

m
f Gx are available.

Step 4. Carry out a multi-point closeness measurement
for all the faulty circuits that are still in the fault list,

1−Ωm . A new fault list is generated by
mmm Ω−Ω=Ω − ~1 ,

where

î

<−==Ω ∑
−−=

T
M

d
m

Mmp

p
f

pE
ff

m

1
0

1ˆ~
xxG

is the set of all the “close” faults that have to be dropped
from the fault list.

Step 5. Apply the early stop rule to mm
f Ω∈G . If 1~ <fε ,

the fth fault simulation has converged. Hence
m
f

mm G−Ω=Ω .

Step 6. If one or more of the fault simulations has not
converged, go back to step 3, otherwise, stop.

4. Examples

Three example circuits were simulated with DC and
transient analyses to evaluate:
• whether concurrent fault simulation is faster than

separate fault simulations;
• whether fault collapsing can further save fault

simulation time; and
• whether the algorithm is reliable.

The first two points can be assessed by comparing the
CPU time and the last can be assessed by whether the
early dropping of faults retains the accuracy.

The example circuits used were a two-stage bipolar
amplifier, composed of six bipolar transistors and ten
resistors; a differential amplifier, composed of four
bipolar transistors and five resistors; and a CMOS two-
stage amplifier with nine transistors.

4.1 DC analysis

We inserted 36 faults into the two-stage BJT
amplifier. The DC fault simulations for three faults did
not converge. Of the remaining 33 faults, there were 15
short faults, which are all the possible short-circuits
across the terminals of the six transistors, nine short-
circuits across the resistors and nine parametric faults in
the resistors (reducing the resistance values by 50%). We
conducted separate fault simulations and a concurrent

fault simulation. The times of the separate fault
simulations are listed in Table 1.

It can be seen that the separate fault simulations need
2230 ms in total. In contrast only 1810 ms are required by
the concurrent fault simulation giving a 19% reduction in
the CPU time.

Table 1. The time behaviour of separate fault simulations
for BJT two-stage amplifier
no. type iterations cpu(ms)
0 Fault-free 43 70
1 short 26 30
2 short 44 70
3 short 31 60
4 short 27 40
5 short 26 40
6 short 24 40
7 short 36 40
8 short 31 50
9 short 51 80
10 short 44 70
11 short 41 70
12 short 30 50
13 short - -
14 short 55 90
15 short 23 40
16 short 24 30
17 short 33 50
18 short 32 60
19 short 43 70
20 short 38 40
21 short 116 150
22 short 55 90
23 short - -
24 short 31 60
25 short 49 80
26 short 46 70
27 parameter 47 70
28 parameter 44 70
29 parameter 43 60
30 parameter 34 50
31 parameter 125 170
32 parameter 43 60
33 parameter 50 80
34 parameter 39 60
35 parameter - -
36 parameter 43 70
Total 2230

If the early stop rule is not used, the concurrent
simulation needs 3350 ms (50% increase in CPU time).
This is because a few fault simulations require more than

100 Newton-Raphson iterations, as shown in Table 1.
Most other fault simulations converge in fewer than 50
iterations, but without the early stop rule they have to be
iterated to the limit.

If fault collapsing is applied with the threshold value
for collapsing set to 0.1V and using a 3-point
measurement the CPU time is reduced to to 1590 ms or a
further 12% giving a total of 29% saving in CPU time
compared with separate fault simulation.

Similarly, we inserted 19 faults into the differential
BJT amplifier and 24 faults into the CMOS opamp. One
fault in the CMOS opamp simulations failed to converge.
Again we performed separate fault simulations and a
concurrent fault simulation. The CPU times required are
summarised in Table 2.

Table 2 CPU times in ms for DC fault simulation of
example circuits.
Circuit Separate Concurr-

ent
Early
Stop

Collaps-
ing

Saving

2-stage 2230 3350 1810 1590 29%
Diff BJT 160 160 80 70 56%
CMOS 3270 3830 3200 2750 16%

This shows that concurrent fault simulation is faster
than separate fault simulation. provided that the early stop
rule and fault collapsing are applied.

Table 3. Fault Simulation results for DC analysis of BJT
two-stage amplifier
no. fε collapse

iteration
no. fε collapse

iteration
1 0.377 37 19 0.000 35

2 0.211 35 20 0.829
3 1.217 21 0.490
4 1.322 22 0.000 22
5 1.278 23 -
6 0.028 35 24 1.017
7 0.540 25 1.984
8 0.751 26 2.031
9 0.363 35 27 0.518 43
10 0.007 35 28 0.126 38
11 0.144 22 29 0.000 35
12 0.883 30 0.302 36
13 - 31 0.024 122
14 2.783 32 0.000 22
15 1.008 33 0.664 22
16 0.793 34 0.470
17 1.288 35 -
18 0.744 36 0.411 22

For DC analysis, the accuracy of fault collapsing is
measured by the difference between the fault-free circuit

and faulty circuits on the final results

∑∑
==

−==
N

i

f
i

N

i

f
i

NN 1

0

1

11
xxεε .

where, N is the number of the faults that have been
collapsed. Table 3 lists the results for the BJT two-stage
amplifier. The second column is the difference between
the fault-free circuit and faulty circuits. The final column
gives the iteration at which the fault is collapsed. The
final error is 0.198, which is larger than the threshold
(0.1), but is still small.

4.2 Transient analysis

The same circuits were fault simulated in transient
analyses. Convergence could not be reached for certain
faults. Table 4 summarises the CPU times required for
convergent faults.

Table 4 CPU times in seconds for transient fault
simulation of example circuits.
Circuit Separate Concurr-

ent
Collaps-
ing

Saving No. faults
collapsed

2-stage 571 490 305 46% 15
Diff BJT 185 168 107 42% 8
CMOS 2655 2000 1041 61% 9

Concurrent fault simulation is faster than separate
fault simulations when fault collapsing is used. For
transient analysis, the accuracy of fault collapsing is
compared using the difference between the fault-free
circuit and faulty circuits on the whole range of analysis

∑
=

−=
T

t

f
tt

f

T 1

01
xxε .

Table 5. Fault simulation results for transient analysis of
BJT differential amplifier
no. ε collapse

time
no. ε collapse

time
1 2.404 11 1.311
2 - 12 0.389 1.1340e-07
3 - 13 0.035 5.5000e-10
4 2.200 14 9.430
5 - 15 0.538 1.1535e-08
6 - 16 0.656 4.1250e-08
7 9.430 17 0.199 1.0510e-07
8 0.936 1.0510e-07 18 0.018 5.5000e-10
9 2.078 19 1.707
10 0.075 1.2480e-08

Table 5 lists the results for the differential amplifier
simulated for 100 µs. The second column shows the
greatest instantaneous difference between the faulty and

fault-free circuits over the whole simulation period. The
third column gives the time at which fault collapsing
occurs. It can be seen that in the worst case, the collapsed
faults differ from the fault-free circuit behaviour by less
than a volt.

5. Summary and further work

A robust, fast concurrent analogue fault simulation
algorithm has been proposed and verified in this paper.
For DC analysis, a 56% reduction in CPU time can be
achieved, while 61% of CPU time can be saved in
transient analysis. The algorithm has been realised in C on
a SUN UltraSPARC under Solaris. The implementation of
this algorithm is simple and the whole algorithm has been
embedded in a circuit simulator. The most significant
difference of this algorithm to traditional analogue fault
simulation is that fault collapsing has been realised as an
automatic mechanism embedded into the circuit
simulator.

The example circuits used have been small and have
not contained hierarchy. It is expected that larger,
hierarchical circuits will exhibit more significant savings.

Further work will focus on embedding the clustering
technique to realise comprehensive fault collapsing and
on automatically dropping non-convergent faulty circuits
from the fault list during a concurrent fault simulation.

Acknowledgements

This work has been supported by EPSRC grant
GR/L35829.

References

1. M.Zwolinski, “Relaxation Methods for Analogue Fault
Simulation” , 20th Int. Conf. Microelectronics (MIEL’95), Niš,
Serbia, pp. 467-471, 1995.

2. G. B. Bruce, Pattern Recognition, Ideas in Practice, Plenum
Press, 1978.

3. J. Hou and A. Chatterjee, “CONCERT: a concurrent fault
simulator for analog circuits” , 4th IEEE International Mixed-
Signal Testing Workshop, The Hague, The Netherlands,1998.

4. A. J. Perkins, M. Zwolinski, C. D. Chalk, and B. R. Wilkins,
"Fault modeling and simulation using VHDL-AMS", Analog
Integrated Circuits and Signal Processing, vol. 16, no. 2, pp.
141-156, 1998.

5. C. J. Shi and M. W. Tian, “Efficient DC fault simulation of
nonlinear analog circuits” , Design, Automation and Test in
Europe Conference, Paris, France, Feb. 23-26, 1998.

6. M. Zwolinski, A. D. Brown and C. D. Chalk, "Concurrent
analogue fault simulation", pp. 42-47, 3rd IEEE International
Mixed-Signal Testing Workshop, 1997.

7. J. Vlach and K. Singhal, Computer Methods for Circuit
Analysis and Design, Van Nostrand Reinhold, New York,
1983.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

