
Time Constrained Modulo Scheduling with Global Resource Sharing

Christoph Jäschke1 Friedrich Beckmann2 Rainer Laur1

1Institute for Electromagnetic Theory and Microelectronics, University of Bremen, Germany
2Siemens AG, Munich, Germany

jaeschke, laur @item.uni-bremen.de, friedrich.beckmann@siemens-scg.com

Abstract

Commonly used scheduling algorithms in high-level syn-
thesis only accept one process at a time and are not capa-
ble of sharing resources across process boundaries. This
results in the usage of at least one resource per operation
type and process. A new method is proposed in order to
overcome these restrictions and to share high-cost or lim-
ited resources within a process group. This allows the use of
less than one resource per operation type and process, while
keeping the mutual independence of the involved processes.
The method represents an extension of general scheduling
algorithms and is not tied to a specific algorithm. It is ap-
plied to the time constrained Force-Directed Scheduling al-
gorithm. For this the scope of the scheduling is extended to
the processes of the whole system and a two-part modifica-
tion is applied to the original procedure. A multi-process
example illustrates the resource sharing capabilities of the
extension.

1. Introduction

The most customary model for the specification of an
independent task for implementation into hardware is the
process. For the realization of a complex system, mostly
several processes are needed. When using these systems in
a non deterministic environment, events may occur at un-
predictable times. In this case, implementing the system
by using independent processes is mandatory. Usually the
tasks have to be finished within predefined time limits. Sys-
tems of this kind are called real-time systems, or, if a timing
violation causes a serious failure, hard real-time systems.

The synthesis of such systems using traditional schedul-
ing algorithms leads to a minimum of one resource per op-
eration type and process. The same problem can be exam-
ined at loops with an unbound iteration count. Traditional
scheduling algorithms won’t allow resource sharing with
blocks outside these loops.

1.1. Resource sharing of conventional static
scheduling algorithms

In the following a survey of resource sharing concepts
within a group of processes or across loop hierarchies
is given. In this paper, the considered resources range
from simple adders, memories or busses to more complex
(pipelined or multicycle) functions including local memo-
ries. In the latter case, the local memory must be private
and selectable for each using process. We do not consider
any problems caused by a sequence of accesses (data in-
consistency, starvation or deadlock). We only consider syn-
chronous systems with a common clock.

Common static scheduling algorithms [1, 2, 3, 4] for
high-level synthesis assign a control step to each operation
of a block. Here, a block is understood as a connected sub-
set of a process description. The control step determines
the execution time of the operation relatively to the starting
time of the block. Using this assignment strategy, all oper-
ations of the processed group receive a fixed temporal re-
lation, thus an assignment of resources to single operations
within this group at synthesis time is possible. However,
the set of the processed operations in these algorithms is al-
ways a subset of one process. Therefore, resource sharing at
synthesis time can only be considered by these procedures
within one process.

Process merging transformations are able to extend the
set of operations for scheduling and therefore the scope of
resource sharing initially defined by the process boundaries.
However, strong restrictions to process behaviours are im-
posed by techniques like process unrolling or latency adap-
tion [5]. E. g. merging processes is not applicable in case
of unpredictable block starting times. So if a process con-
tains operations of unknown execution time or loops with
unbound iteration count, a different method must be used.

A less restrictive approach to share resources within a
set of processes is proposed by the Interface Matching al-
gorithm [6]. Blocking communication results in a temporal
synchronization of two processes. By iterative scheduling
the algorithm attempts to maximize the synchronized pe-

riod. In addition to communication channels also common
resources can be shared within this time range. However,
that also means resource sharing is only possible in this lim-
ited time period and when blocking operation pairs exist.

The problem of sharing resources across loop hierarchies
or process boundaries is discussed in the CADDY-II synthe-
sis system [7]. The modules are synthesized in a bottom-
up manner. At each level resources from already sched-
uled modules can be used in the current module if no ac-
cess conflicts may arise. The conflicts are detected by the
calculation of Clock Cycle Spaces of the involved modules
followed by an examination of the corresponding Collision
Set. Like in the method mentioned above, blocking oper-
ations are used as calculation anchors. Still both methods
cannot cope with loops of unbound iteration count or an op-
eration with unknown execution time.

2. Problem definition

In minimum area applications it is necessary to maxi-
mize the resource sharing under given timing constraints.
Certain constraints like reactivity, performance and inde-
pendence of individual processes needed by the former sys-
tems, will restrict or not allow the use of the methods for
static resource sharing described above. Even if there is
only low utilization of limited or high-cost resources in such
a system, one full resource is needed by each operation type
and process when using traditional static scheduling algo-
rithms. A scheduling algorithm without these restrictions is
needed to reduce the resource requirements of such systems
further.

3. Modulo Scheduling

A new universal method for the extension of con-
ventional static scheduling algorithms is presented. The
method is based on a time-dependent and periodic assign-
ment of resources to processes and does not require a cer-
tain scheduling algorithm. This assignment is determined
at synthesis time and must not be mixed up with a runtime-
executive solving access conflicts. The method is explained
by a time constrained scheduling procedure but can also be
applied to a resource constrained algorithm [8].

The extension allows a static resolution of conflicts aris-
ing from independent processes with at synthesis time un-
known execution times or loops with unbound iteration
count trying to access shared resources. In this way, the
method allows the use of less than one resource per oper-
ation type and process needed by traditional scheduling al-
gorithms. Possible minimum area implementations can now
be explored beyond the traditional limit.

Any block composition of a process is supported by the
method if the following two conditions are met:

(C1) Each single block must also be processable by the non
modified scheduling algorithm. Within a block, time
steps must be assigned statically.

(C2) Two blocks having a non fixed timing relation using
at least one common resource within one process are
not allowed to overlap in execution. A possibly over-
lapping block in this context must be considered as a
separate process.

Under these conditions, loop bodies have to be considered
as separate blocks. Operations having unknown execution
delays at synthesis time may be placed arbitrarily between
the individual blocks. In this way also loops of any depth
with unbound iteration count, running concurrently with
other blocks, can be handled. Summarized, the complete
system schedule is comprised of statically scheduled blocks
with at synthesis time unknown starting times.

When using the time constrained Force-Directed
Scheduling algorithm [9] (FDS) the procedure can be sub-
divided into three steps.

(S1) Resource types are assigned to the processes. For each
assignment a decision between a local and a global as-
signment must be done.

(S2) A periodicity is assigned to each global resource type.
Possible periods are determined by the timing con-
straints of each process and the assignments of step
(S1).

(S3) Coupled Force-Directed Scheduling algorithms are si-
multaneously applied to all process blocks.

The first two steps will establish the periods of the re-
source types and their assignment to processes or process
groups. Note, that an assignment to a process group is not
allowed in a traditional static scheduling algorithm. In the
last step this assignment information is used by the modified
scheduling algorithm.

3.1. Assignment of resources to processes

In the first step, resource types are assigned to the pro-
cesses. A decision between a local and global assignment
for each resource type has to be made. A local assignment
selects the traditional calculation of the resource count for
a process. A global assignment defines a process group and
therefore distinct processes for which a calculation of the
shared resource count will be performed during the schedul-
ing phase.

Let be the set of all resource types and the set of
all processes of the overall system. A process is composed
of blocks . Each block has to comply conditions (C1) and
(C2). A resource type is called global, if it is

assigned to more than one process. The set of all global
resource types is . Every resource type defines a
subset uses of all processes with

. Let be the set of all resource types
globally assigned to the process .

3.2. Periodicity of a global resource type

A global resource type is assigned to a process group.
We allow the processes running independently from each
other, i. e. having no synchronization points. The multiple
use of a single resource instance from blocks within dif-
ferent processes requires an access regulation. The Mod-
ulo Scheduling solves this conflict through a periodical se-
quence of access authorizations of the involved processes.
All accessing processes have to obey these authorizations.
To reflect this, a periodicity is assigned to a global
resource type . The absolute time steps of the
entire system are mapped to the time steps of the period

by

(1)

The aim of a time constrained scheduling algorithm is to
minimize the maximum resource usage over all . This
holds also for the time constrained Modulo Scheduling,
which tries to minimize the maximum resource usage for
global types over . The maximum usage for a
global resource type also defines the needed instance count.

An access authorization for a specific process once
granted for a time step is valid for all that can
be mapped to . Figure 1 gives an example for a pro-
cess and a resource type of the period .
Two operations of type are executed by process at
time step (upper graph). In the lower usage dis-
tribution graph of resource , this is recorded in time step

. By the mapping of equation 1, the process may
execute the same number of operations of this type in all
time steps marked with a rippled line without increasing its
resource requirements (granted access authorizations).

Figure 1. Time steps of access authorization
for process onto

The advantage of the modulo mapping is the unlimited
scope of application. Loops of unknown iteration count or
independent processes can be integrated into the resource
sharing. No blocking operation pairs are needed. Draw-
backs may occur due to the fixed periodicity of the resource
access authorizations, which restricts possible block start-
ing times.

The restrictions for the block starting times, implied by
steps (S1) and (S2), may be formulated as follows: Like any
non modified static scheduling also the modified scheduling
assigns a time relative to the starting time to each opera-
tion of a block. Due to the modification an interdependency
of the schedulings for each block exist. The coupling of the
simultaneously running schedulings concerning the time is
achieved by equation 1 for each commonly used global re-
source. Opposed to traditional procedures, the scheduling
result of a block is now dependent on the starting time .

A block is using a subset of all
global resource types of a process . The modified schedul-
ing of this block is coupled with the parallel scheduling of
all other blocks by possibly multiple equations 1. Due to the
periodicity of this coupling, the scheduling remains valid
for all movements of a block defined by:

(2)

It follows, that blocks without a global resource usage can
be started at any time if condition (C2) is still met.

The dependencies between the periods and the
restriction of the block starting times by equation 2 can also
be formulated into the reverse direction. The possible block
starting times can be quantified by the time spacing
on an equidistant grid. To achieve independence from the
specific resource usage of the different blocks, we consider
the spacing obtained by using all resource types of .
This maximum restricted spacing can be taken from equa-
tion 2:

(3)

For all processes accessing the global resource
type with a fixed grid spacing , the coupling
through equation 1 is to be considered. At least a global
resource type of period

will comply the defined grid spacings.
Not considering any period combination, the impact of

a global resource period is always twofold. On the one
hand higher values allow more processes to share a single
resource instance, on the other hand the invocation interval
of critical loops could be enlarged.

4. Basic Force-Directed Scheduling

The used scheduling algorithm is a further development
of the FDS presented by Paulin and Knight. This Im-
proved Force-Directed Scheduling [10] (IFDS) is dealing
with gradual time frame reduction and global spring con-
stants. For better understanding of the modifications ap-
plied to the IFDS, a brief overview of the unmodified al-
gorithm will be given. For the sake of simplicity, the
look-ahead mechanism and the global spring constants are
not considered here. Except where otherwise stated, the
overview is valid for the original and the improved algo-
rithm.

Input data for the FDS algorithm is the operation set
of a block represented as a graph describing its prece-

dence constraints . The algorithm tries to find a schedul-
ing using minimal resources within the specified time range

. For this, the possible time frames
for each operation are com-

puted by an ASAP and ALAP scheduling. The it-
erative constructive algorithm computes the final schedule
through a sequence of partial solutions. A partial solution

is defined by the set of time frames of all operations
while considering the precedence constraints . From each
partial solution all in the next iteration reachable partial
solutions are evaluated. For this, the original algorithm
places all operations onto all time steps within their time
frames. The improved algorithm only investigates the time
steps and at the outmost ends of the time frames.
It is to be noted, that implicit time frame reductions of other
operations may occur due to the precedence constraints .
Selecting the next partial solution is done by evaluating a
cost function, the so-called force.

4.1. Distribution function

The FDS algorithm tries to find an optimal solution by
smoothing the resource requirement over the time range .
For this purpose, the algorithm calculates with each par-
tial solution the needed number of resources per type in
a distribution function. Each operation has a probability

to be placed at a specific time step . The prob-
ability for an operation to be placed within its time frame is

and zero otherwise. The set of all oper-
ations of a resource type is . The distribution function

is calculated by the sum of the probabilities of all
operations of a resource type:

(4)

The model introduced by Paulin and Knight considers the
individual values of the distribution function as springs with

constants equal to the sum of probabilities. Possible neigh-
bourhood solutions are evaluated by placing an operation

with at a time step . This causes
a modification of at least one distribution function. The
modification corresponds to a displacement of the affected
springs:

(5)

4.2. Forces

The resulting force is the sum of the individual forces
needed for the displacement of the springs obeying Hooke’s
law:

(6)

Negative forces correspond to a decrease of operation con-
currency and therefore to a better smoothing of the distri-
bution function. From all possible neighbourhood solutions
the original algorithm chooses the operation which caused
the least force at its best time step. The operations time
frame is reduced to this single time step.

The gradual time frame reduction calculates the max-
imum and minimum force of
a tentative placement at and of operation

. If a time frame allows more than two placements,
is set to otherwise to

. Thereby a rough estimate for the place-
ments between the outmost ends of the time frame is
done. The maximum difference

of all operations selects the time frame to
be reduced. The selected time frame is shortened at the side
with the higher force. In this way, the worst neighbourhood
solution is taken from the set of all possible ones.

After reducing the affected time frames, all functions are
recalculated and the new partial solution is defined as . If
there are still operations left, a new iteration starts.

5. Modified Force-Directed Scheduling

The IFDS algorithm was extended by a two-part modi-
fication. The first part takes care of the periodical access
of global resource types and operates with a local block
scope. The second part extents the scope of the algorithm
to blocks within a group of processes and takes care of bal-
ancing the global resource requirements within this group.
Except where otherwise stated, only a global resource type

is taken into account and for reason of clarity the index
is left out.

5.1. Periodical alignment of operations

At first, is calculated according to equation
4. Only the probabilities of the operations of block are
taken into account. Then, a modulo-maximum transforma-
tion is carried out:

(7)
with denoting the time range of block . The change
of the modulo distribution function is de-
scribed in accordance with equation 5:

For explaining the effect of this transformation, figure
2 shows the last two iterations of a block containing two
operations. The unmodified IFDS algorithm is depicted on
the left side while the right shows the modified one. The
time range of the block is . The time
frame of operation is while operation

is already scheduled at time 2. For the sake of simplicity,
the indices and as well as the argument lists were left
out.

In figure 2a, of the unmodified algorithm for a
placement of the operation onto the time steps
and is shown. The distribution function of the cur-
rent partial solution is located below these functions. For
the tentative placement of onto the time step , an exem-
plary calculation of the force is performed: shows
an displacement of +2/3 at time 0 and of -1/3 at times 1 and
2 for the distribution . According to equation 6, the force
of this placement is

and therefore obviously leads to an improvement. A place-
ment on the time step leads to a force of and
therefore to an unfavourable solution. The placement is
selected and by reducing the time frame to re-
moved from the possible neighbourhood solutions. Due to
identical forces of both placements in the following itera-
tion (figure 2b), the IFDS algorithm arbitrarily selects the
placement and schedules the operation onto time
step (figure 2c).

Figure 2d shows the correspondent situation of the first
placements for the modified algorithm. The graphs on the
right () are based on absolute time while the
graphs on the left () are using time steps

transformed by equation 1.
On the left hand of each function the modulo maxi-

mum transformed are depicted. For the placement
in the first iteration has only negative val-

ues. Due to the transformation, the positive displacement of

at time 0 is hidden by the value 1 at time 2. This leads to
a further improvement of the good result for by .
The negative displacement for placement at time 0 is
now hidden by an even higher value of 2 for time 2. This
missing negative share on force worsens the result by

. Please note the higher preference of placement
compared to the unmodified algorithm.

In the second iteration, shown by figure 2e, the hiding
effect is even more visible. In the placement at time
the complete negative part is hidden. The place-
ment, which was considered neutral in the unmodified IFDS
algorithm, now has a significantly lower rating. The place-
ment is rated better by the modified method
than the neutral force of the unmodified algorithm. Because
of the preferred placement , the operation is fixed
to this time step in the final solution. The function
in figure 2f shows the periodic usage of time step 0 of this
resource type and therefore enables another process to use
the other time step.

Besides the known effect of smoothing the resource re-
quirements over all time steps, the additional rating for
changes of hidden by the transformation results in an
additional periodic alignment of the operations of a global
resource type.

5.2. Global balancing

The second part of the modifications grants a balancing
of the resource requirements in a group of blocks. Let

be the set of all blocks of a process
accessing resource type . Blocks belonging to one pro-
cess can be handled like branches of an alternation (because
of condition (C2), the blocks are guaranteed not to over-
lap). Therefore the maximum of the distribution function

of all blocks from has to be com-
puted:

(8)

In order to balance the resource requirements for all pro-
cesses, the sum of all over is
built analogously to equation 4.

(9)

5.3. Integration

The force of the modified IFDS algorithm is now given
by the following components:

0

1

0

0

0

0

0

1

1

1 2

2

0

0

1

0

0

0

0

0

0

0

1

0

1

1

1

1

2

2

2

0

1

0

0

0

0

0

1

1

0

1

1

0

0

2

0

1

1

1

0

2

0

0 1

0 1 2

0

0

0

1

0

0

1

1

0

0

1

1 2

0 1

0

2

1

0

0

1

1

0 1

I++

I++

I++

I++

unmodified modified

Figure 2. Unmodified and first part modified
IFDS algorithm for two iterations

where

if
otherwise

if
otherwise

and
if
otherwise

with operation defining block .
The force is substituted in the IFDS algo-

rithm by . Now all blocks of the system are
processed simultaneously. A partial solution therefore
describes the time frames of all operations of the system.

Still the modification doesn’t influence the basic iterative
behaviour of the algorithm.

Please note, that the complexity of the IFDS algorithm is
not increased by the additional computation of the modulo-
maximum transformation and . The addi-
tional effort in equations 7, 8 and 9 is bound by a constant
multiple of the calculation effort in equation 4.

6. Implementation

The Modulo Scheduling method using the IFDS algo-
rithm was implemented in a system called IPS and is based
on parts of the Olympus Synthesis System [11]. At the
moment step (S1) have to be done manually, the possi-
ble periods of step (S2) are automatically generated by
a permutation. The permutation complexity is bound by

, but typically the most sets
of are filtered out by equation 3 before scheduling.

7. Experimental

For experimental evaluation purposes the elliptical wave
filter and the main loop of the differential equation solver
from the HLS workshop benchmarks 1991 are used. The
comparator function is substituted by a subtraction. This
limits the operation types to addition, subtraction and mul-
tiplication. The execution time of the addition and subtrac-
tion is set to a unit delay of 1, the pipelined multiplication
execution time is set to 2. The area cost for a multiplication
is set to 4, for an addition and subtraction to 1.

The scheduled system consists of 5 independently run-
ning processes. Processes , and are elliptical wave
filters, processes and are the main loops of the equa-
tion solver. The total execution time of process and
was set to 30, to 25 and and to 15. Please note,
that although these processes can be merged into one, we
consider the processes as triggered by spontaneous events.
This is impossible to handle by merging, but can be sched-
uled with our new approach.

The global types adder and multiplier are assigned to all
processes. In addition a global subtracter is assigned to the
processes and . The period of all resource
types is set to 5. The modified IFDS algorithm uses a look-
ahead factor of and a global spring constant of .

Table 1 shows the scheduling results of the multi-process
example. The left column contains the resource types
and processes. The second column shows the modulo-
maximum transformation of the probability density
function , which is given in the fourth column. The peri-
odical alignment of operations by the first part of the modi-
fication in can be easily seen. The number of required re-
sources are given in column three. All together, four adders,

Table 1. Scheduling results of the multi-
process example

+ #

11111 1 ˜11111..111111111111111111111˜
1.112 2 ˜.1121..121.1121.1121.1121.11˜
12211 2 ˜221..1211112111121.122.˜
1.... 1 1....1.......˜˜
...1. 1 ...1....1....˜˜

all 43444 4

-

1..1. 1 ˜....1..1.1...˜
.11.. 1 ˜.....1....11.˜

all 1111. 1

*

.1.1. 1 ˜˜˜˜..1.1..1.1..1.1....1..1˜˜˜

.11.. 1 ˜˜˜˜..11...11...1....11...1˜˜˜
1..11 1 ˜˜˜˜11..11...1.1...11.˜˜˜
1.111 1 1.1111.1...˜˜˜˜
111.1 1 111.1..1.1.˜˜˜˜

all 33333 3

one subtracter and three multipliers are required with over-
all area cost of 17. The scheduling time with 711 iterations
on a Pentium 133MHz running Linux was 7 seconds.

A pure local assignment of the resource types with iden-
tical parameters resulted after 728 iterations and an exe-
cution time of 5 seconds in a resource requirement of six
adders, two subtracters and five multipliers. The 1.65 times
higher area cost of 28 is mainly contributed by the two ad-
ditional multipliers.

Whether or not the area saving due to the global adders
and subtracters is compensated by additional multiplexors
and wires is not considered. The global sharing of all re-
source types is applicated here to demonstrate the ability of
the extension to handle many global sharings concurrently.

8. Conclusions

This paper presents a new method for the extension of
static scheduling algorithms, based on a time-dependent and
periodic assignment of globally shared resources to pro-
cesses. The access control is static with no need of a run-
time executive. This overcomes the requirement of at least
one resource per operation type and process, which is given
in traditional scheduling algorithms. The method remains
applicable in reactive systems, if the use of other methods
such as process merging or Interface Matching are impossi-
ble or ineffective.

Restrictions concerning the block starting times and
their dependencies from the resource assignment were ex-
plained. The Improved Force-Directed Scheduling has been
extended with two modifications which allow the sharing of
global resources in multi-process systems. The capability
of lowering the resource usage is shown using an example
of three independent elliptical wave filters and two differ-
ential equation solvers. With a pure global resource assign-
ment the area is decreased by 40 % compared to a traditional
scheduling.

Current work is in progress in order to automatically se-
lect the assignment scope of each resource and to find the
optimal periods of the global resource types without a com-
plete enumeration.

References

[1] S. Davidson, D. Lanfskov, B.D. Shriver, and P.W. Mallet.
Some experiments in local microcode compaction for hor-
izontal machines. IEEE Transactions on Computers, C-
30(7):460–477, July 1981.

[2] Roni Potasman, Joseph Lis, Alexandru Nicolau, and Daniel
D. Gajski. Percolation based synthesis. In 27th Design Au-
tomation Conference, pages 444–449, 1990.

[3] Raul Camposano and Reinaldo A. Bergamaschi. Synthesis
using path-based scheduling: Algorithms and exercises. In
27th Design Automation Conference, pages 450–455, 1990.

[4] Catherine H. Gebotys. Optimal scheduling and allocation of
embedded vlsi chips. In 29th Design Automation Confer-
ence, pages 116–119, 1992.

[5] Keshab K. Parhi. Algorithm transformation techniques
for concurrent processors. Proceedings of the IEEE,
77(12):1879–1895, December 1989.

[6] David Filo, David C. Ku, Claudionor N. Coelho Jr., and Gio-
vanni De Micheli. Interface optimization for concurrent sys-
tems under timing constraints. IEEE Transactions on VLSI
Systems, 1(3):268–281, September 1993.

[7] Oliver Bringmann and Wolfgang Rosenstiel. Resource shar-
ing in hierarchical synthesis. In International Conference on
Computer Aided Design, pages 318–325, 1997.

[8] Christoph Jäschke and Rainer Laur. Resource constrained
scheduling with global resource sharing. In 11th Interna-
tional Symposium on System Synthesis, pages 60–65, 1998.

[9] Pierre G. Paulin and John P. Knight. Force-directed schedul-
ing for the behavioral synthesis of asic’s. IEEE Transactions
on Computer Aided Design, 8(6):661–679, June 1989.

[10] W.F.J. Verhaegh, P.E.R. Lippens, E.H.L. Aarts, J.H.M. Ko-
rst, J.L. van Meerbergen, and A. van der Werf. Improved
force-directed scheduling in high-throughput digital signal
processing. IEEE Transactions on Computer Aided Design,
14(8):945–960, August 1995.

[11] David C. Ku and Giovanni De Micheli. High Level Synthe-
sis of ASICs Under Timing and Synchronization Constraints.
Kluwer Academic Publishers, 1992.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

