
Spanning Tree Based State Encoding
for Low Power Dissipation

Winfried Nöth and Reiner Kolla
Lehrstuhl für Technische Informatik, Universit¨at Würzburg, 97070 W¨urzburg, Germany

Abstract
In this paper we address the problem of state encoding
for synchronous finite state machines. The primary goal
is the reduction of switching activity in the state register.
At the beginning the state transition graph is transformed
into an undirected graph where the edges are labeled with
the state transition probabilities. Next a maximum span-
ning tree of the undirected graph is constructed, and we
formulate the state encoding problem as an embedding of
the spanning tree into a Boolean hypercube of unknown di-
mension. At this point a modification of Prim’s maximum
spanning tree algorithm is presented to limit the dimension
of the hypercube for area constraints. Then we propose a
polynomial time embedding heuristic, which removes the re-
striction of previous works, where the number of state bits
used for encoding of ak-state FSM was generally limited to
dlog2 ke. Next a more sophisticated embedding algorithm
is presented, which takes into account the state transition
probabilities not covered by the spanning tree. The resulting
encodings of both algorithms often exhibit a lower switching
activity and power dissipation in comparison with a known
heuristic for low power state encoding.

1. Introduction
The synthesis of circuits with reduced power consumption
has grown more and more important over the last years. One
driving force behind low power circuit design is the demand
for longer battery life of portable computers and telecommu-
nication equipment. Another one results from the excessive
power consumption of high performance micro processors,
which is currently the limiting factor in integration density
of single- and multi-chip modules. This power consumption
often leads to reliability problems due to overly high oper-
ating temperatures. The growing need for high performance
computers however can be expected to further raise the im-
portance of power related research in the future.

Research activity on low power circuit design is
widespread and ranges from voltage scaling and process op-
timization to high level approaches like instruction set de-
signs and hardware/software codesign. This paper focusses
on minimizing the power consumption of synchronous fi-

nite state machines (FSMs), which form an important part
of many VLSI products. Since the circuit realization of a
FSM is mostly determined by the state encoding, the encod-
ing can be justly assumed to have a great influence on power
dissipation. Our primary goal is the reduction of switching
activity in the state register, but we will show that our encod-
ings often also lead to a reduced overall power dissipation of
the circuits generated by SIS [10].

Research on FSM state encoding was first targeted at
minimization of circuit area and delay. For two level cir-
cuits De Micheli et al. devised algorithms for symbolic min-
imization and bit minimal state encoding [4], while Devadas
et al. [5] developed the MUSTANG state assignment sys-
tem targeting multilevel networks. Power related research
was first aimed at precise computation of switching activ-
ity in sequential circuits [9][11]. Since then several low
power state encoding algorithms have been proposed. Tsui
et al. [12] integrated cost functions for state register and
transition logic activity, while Benini et al. [1] developed
algorithms trading off accuracy vs. computational complex-
ity. Chen et al. [2] already formulated the encoding prob-
lem as a hypercube embedding problem. Common to these
and other approaches however is the limitation to a predeter-
mined number of bits for the state encoding, which will be
removed in this paper. We have just received notice that si-
multaneously to this work Molitor et al. [6] developed a sim-
ilar state encoding algorithm targeting the size of the BDD
representation.

The paper is organized as follows. Section 2 contains an
examination of power related issues in FSM synthesis. In
section 3 we describe the connection of state encoding and
hypercube embedding and present a modification of Prim’s
algorithm for spanning tree computation as well as two al-
gorithms for spanning tree directed state encoding. Section
4 contains results and conclusions.

2. Power dissipation in FSMs
FSMs are representations of sequential boolean functions.
They are conveniently described by a state transition graph
(STG), where nodes represent the states, and directed edges,
labeled with inputs and outputs, describe the transition rela-
tion between states. When implemented in hardware, FSMs

generally are realized by an architecture shown in figure 1.
Each state corresponds to a binary vector stored in the state
register. The combinational logic computes the next state
and output function based on the current state and input val-
ues. The binary values of the inputs and outputs of a FSM
are usually determined by external requirements, while the
state encoding is left to the designer.

state register

inputs outputs
combinational logic

Fig. 1: FSM hardware realization

In a sequential circuit of this type, power is dissipated in the
state register as well as in the combinational logic. This pri-
marily results from changing values of circuit signals, where
capacitances are charged or discharged (dynamic power dis-
sipation).

The dynamic power dissipation in the combinational part
of the circuit is very difficult to estimate, even after the state
encoding is determined. At the beginning there are already
several different realizations to choose from, depending on
what kind of technology will be used. Later, when the gate
level implementation is known, the exact computation of
the dynamic power dissipation including glitches is often
intractable, since it requires the examination of all possi-
ble pairs of input patterns of the combinational logic. Due
to these difficulties the research in this paper focusses on
the minimization of the expected state register switching ac-
tivity described below. This approach still leads to a good
circuit in terms of power consumption, if a low switching
activity in the latch outputs corresponds to a low switching
activity in the combinational logic.

The average dynamic power dissipation of the state reg-
isterPsb can be described by following expression:

Psb =
1

2
V 2
dd � f �

X

i2sb

C(i) E(i)

wheref is the clock frequency of the state machine,C(i)

is the capacitance of the latch storing state biti andE(i)
is the expected switching activity of the latch. Notice, that
C(i) is not necessarily the same for all bits, since it in-
cludes the capacitance of the latch fanout into the combi-
national part. Since this fanout cannot be determined before
the state encoding is known, we simplify by assuming an
overall state register capacityCsr and introduce an expected
register switching activityEsr:

Psb �
1

2
V 2
dd � f � Csr �Esr

Let S be the set of all states. For an infinitely long series of
state transitions,Esr can be expressed by

Esr =
X

i;j2S

p(i$ j) h(i; j) (1)

wherep(i $ j) is the probability of a transition between
statesi and j, andh(i; j) is the hamming distance of the
state codes ofi andj. p(i$ j) can be determined stochasti-
cally by assuming equiprobability of all input patterns of the
FSM and solving the Chapman Kolmogorov equations [3].
Alternatively they can be obtained statistically by applying a
sufficiently long series of input patterns until the state occur-
rence and transition probabilities converge towards discrete
values [9].

For the purpose of minimizing (1), a FSM representation
is sufficient, which contains only the state to state transition
probabilities. We will therefore transform the initial STG by
collapsing all directed edges between any pair of states into
an undirected edge. The undirected edges are then weighted
with their corresponding transition probability. Since the
probabilities concerned are unconditional, the sum of all
edge weights including self loops equals one. From now on
this undirected weighted graph will be referred as theprob-
ability attraction graph(PAG, figure 2).

st1

0.016

st2

st3st4

0.091

0.1900.061

0.052

0.042

0.016

0.257

0.274

Fig. 2: PAG ofdk15

3. Hypercube embeddings
A state encoding can always be formulated as an embed-
ding of the STG or PAG into a (Boolean) hypercube. A
hypercubeof dimensionn is a graph with2n nodes, where
every node is labeled with an unique binary value from 0
to 2n � 1. Furthermore, every nodev hasn edges labeled
1 : : : n, which lead to all nodes whose labels have hamming
distance 1 fromv. Consequently, the hamming distance of
any two nodes in the hypercube equals the length of the
shortest path between the nodes. Anembeddingof a graph
G into a host graphH is an injective mapping of the nodes
of G to the nodes ofH , so that every edge inG corresponds
to the shortest path between the mappings of its terminal
nodes inH . Thedilation of an edge ofG is defined as the

length of the corresponding path inH . More detailed infor-
mation on embedding problems can be found in works on
parallel computing [8][13]. Since most problems concern-
ing embeddings of general graphs are NP complete, we will
only give an informal discussion on what could be a good
hypercube embedding with respect to power dissipation:

(A) Regarding equation (1) it is desirable to embed with
small dilation, since the dilation of an edge(v; w) corre-
sponds directly to the hamming distance of the encodings of
v andw, and the hamming distance determines the register
switching activity for a given state transition. The best ob-
vious solution for our purpose would be an embedding with
dilation 1 for all edges. Graphs with such an embedding are
calledcubical. Unfortunately it can be shown that there is
no dilation-1 embedding for many graphs (e.g. graphs con-
taining odd cycles). Furthermore, the problem of finding an
embedding with minimum overall dilation is NP complete
for general graphs [13]. For most cubical graphs it is also
difficult to determine theircubical dimension, which is the
dimension of the smallest hypercube, where they can be em-
bedded with dilation 1.

(B) Regarding overall power dissipation, it is also desir-
able to embed into a hypercube with low dimension, since
the dimension of the hypercube corresponds to the number
of bits of the state encoding, and unnecessary large state reg-
isters may increase power consumption. Area restrictions
may even limit the number of state bits available for encod-
ing. Without boundaries to dilation it is always possible to
embed a graph withk nodes into a hypercube of dimension
dlog2 ke. Unfortunately this will often lead to a high state
register switching activity for many state transitions.

While most research has concentrated on B with A as a
side issue, we will try to find a solution to A, with B as a
secondary criterion. For that we have to embedG into a hy-
percubeH , so that dilation of edges ofG with high weight
is minimized while the dimension ofH is kept small. Obvi-
ously it is infeasible to optimally embed an arbitrary graph
G(V;E), but the problem can be simplified by embedding
a subgraphG0(V;E0), so that dilation> 1 occurs only on
edges(v; w) with (v; w) 2 E and(v; w) 62 E0. That is, if
we construct a cubical subgraph ofG, which contains the
edges with the highest weights, a dilation-1 embedding of
this subgraph would intuitively lead to a low switching ac-
tivity in the state register. Such a subgraph is the maximum
spanning tree of the PAG.

SPANNING TREES

Let G(V;E) be a weighted connected graph. Aspanning
tree of G is a subgraphT (V;E0) of G, so thatT is con-
nected and#E0 = #V �1. LetT be the set of all spanning
trees ofG. A maximum spanning treeTmax(V;Emax) of G
is a spanning tree, so that8 T (V;E0) 2 T :

X

(v;w)2Emax

W (v; w) �
X

(v;w)2E0

W (v; w)

A maximum spanning tree can be constructed in time
O(#E log#V) e.g. by Prim’s algorithm [7], and it is
unique by construction, if no two edges ofG have the same
weight. Furthermore, all trees are cubical, and while the ex-
act determination of their cubical dimensioncd is NP hard,
some lower and upper bounds ofcd are known. LetT (V;E)
be a tree and letk be the maximum degree of any node
v 2 V . Then

max(dlog2#V e; k) � cd(T) � #V � 1

Both lower and upper bounds of this inequation are at-
tained by certain types of trees. A path graphTP of length
#V �1 e.g. can be embedded by a Gray code withcd(TP) =

dlog2#V e, while the star graphTS with k = #V �1 for the
center node hascd(TS) = k = #V � 1. Since the dimen-
sion of the embedding is strongly connected to the degree
of nodes in the tree, we have modified Prim’s algorithm to
accept a parameterdmax limiting the degree of any node in
the resulting spanning tree:

modified prim(graph G(V;E), int dmax)
f

VT := fone initial vinit 2 V g

ET := ;

cut := f(vinit ; w) 2 Eg

do #V � 1 times
(u; v) := select edge(cut, dmax)

where u 2 VT ; v 2 V nVT
ET := ET [(u; v)

VT := VT [v

remove edges containing v from cut
cut := cut [f(v; w) j w 2 V nVT g

return T (VT ; ET)

g

In the original version,select edge simply selects the
edge with the highest weight from the cut. The new pro-
cedure selects the highest weighted edge(u; v), which does
not increase the degree of the nodeu 2 VT abovedmax, if
this is possible. Subsequent tests with our embedding al-
gorithms showed, that fordmax = log2#V + 1 all bench-
marks could be embedded into a hypercube of dimension
2 log2#V or less with no significant penalty in switching
activity. The resulting spanning tree, which in most cases is
a maximum spanning tree, proved to be a good structure for
directing a hypercube embedding.

TREE EMBEDDINGS

For a given treeT (V;E) our embeddings begin always at
subsets of nodes and edgesVC ; EC of T , which form the
center of the tree with respect to longest paths. This is a
direct way to construct Gray code embeddings with loga-
rithmical dimensions for simple paths. Besides, for a well
balanced tree the subtrees connected by the center of the tree
can be embedded with about the same dimension, so that a

divide and conquer approach should find an embedding of
low overall dimension.VC andEC are defined as follows:

Let forp = v0; : : : ; vk path ofT be�(p) = k the number
of edges onp. Then

VC
p
= fvb k

2
c; vd k

2
eg

is the set of nodes in the center ofp. We now define the
center of the tree as

VC :=
[

p:�(p)=k maximum

VC
p

The center of the tree has the following property:

VC =
\

p:�(p)=k maximum

VC
p

Proof: It is sufficient to prove the expression for any pair of
longest paths.

Assume there are two longest pathsp = v0 : : : vk andq =

u0 : : : uk. The size of the path centers exclusively depend
onk, so that:

#VC
p
= #VC

q

Assume further, that there are nodesvi 2 VC
p anduj 2

VC
q , with vi 62 VC

q anduj 62 VC
p. Let c be the path

betweenvi anduj . Then there are subpathsp0; q0 of p; q
of maximum length, which end invi; uj , so that following
equations hold:

p0 \ q0 = ;

p0 \ c = fvig

q0 \ c = fujg

We will now show, that

�(p0 � c � q0) = �(p0) + �(c) + �(u0) > k (2)

The equation on the left is true, sincec has one node in com-
mon with eachp0 andq0. For the inequation on the right
there are two different cases to be examined:

1. p \ q = ;: In this case�(p0) = �(q0) = d
k
2
e, because

the longest subpaths ofp; q to a node in their path centers
contain at least half of the edges ofp; q. Since�(c) � 1,
here (2) is valid. See figure 3 for illustration.

p

c

u

v

j

i

p’

q

q’

Fig. 3

2. p \ q = V 0
6= ;: In this casec contains a nodev0 2 V 0,

therefore�(c) � 2. Since at least one of the subpaths from
a terminal node ofp; q to vi; uj does not contain nodes from
V 0, �(p0) = �(q0) = b

k
2
c, and (2) is valid again. This is

illustrated in figure 4.
p’

q
q’

uj

p

v’

c

vi

Fig. 4
Expression (2) already implies, that neitherp nor q are
longest paths, if they have different centers.
EC is defined as the set of edges in the center of longest

paths. Here we have to distinguish between two cases for
the lengthk of longest paths:

1. k is even: We know from our definition above, that
#VC = 1. EC is now defined by

EC := f(v; w) j v 2 VC ^ 9 p = v; w; : : : ; u :

�(p) =
k

2
g

2. k is odd: Here#VC = 2 and consequently

EC := f(v; w) j v 2 VC ^ w 2 VC ^ v 6= wg

VC andEC can be efficiently computed by a single pass over
the tree: Our algorithm iteratively removes the set of leafs
from the tree, until#V � 2. VC remains unchanged during
this operation, since

1. no leaf is inVC , if #V > 2, and

2. any longest path looses both terminal nodes.

therefore the path centers do not move. After the last iter-
ation,VC consists of the nodes remaining inV , andEC is
either the final edge inE or the set of edges, which were
removed last from the tree:

get tree center (T (V;E); EC ; VC)

f

Vleafs := fv 2 V j degree (v) = 1g

Eleafs := ;

while #V > 2

Eleafs := f(v; w) 2 E j fv; wg \ Vleafs 6= ;g

V := V nVleafs
E := EnEleafs
Vleafs := fv 2 V j degree (v) = 1g

VC := V

if #E > 0

EC := E

else
EC := Eleafs

g

We will now present polynomial time divide and conquer
algorithms, which construct dilation 1 embeddings of trees
into a hypercube by dividing the trees at the center defined
above.

FAST EMBEDDING ALGORITHM

We have shown that the removal of an edge ofEC breaks
up a longest path at or near it’s center, leaving two subtrees
of unknown size and structure. Since both subtrees are to
be embedded recursively, it would be best to balance the
subtree embeddings with respect to dimension to minimize
the dimension of the overall embedding. It is however diffi-
cult to determine in advance, what dimension a subtree em-
bedding will have. Our first algorithm therefore selects an
edge(v; w) 2 EC , whose removal fromE leads to the most
evenly sized subtreesT 0 andT 00 with respect to the number
of edges of the subtrees. Then an indexi 2 N corresponding
to the edge label in the host hypercube is assigned to(v; w),
which means that the labels of the nodes connected bye dif-
fer exactly in positioni. Now (v; w) is removed from the
tree, splitting it up into two subtrees. The algorithm then re-
cursively processes the subtreesT 0 andT 00:

embed tree fast(tree T (V;E), int i)
f

get tree center (T; VC ; EC)

select edge (v; w) 2 EC

connecting most balanced subtrees

(v; w).idx := i

remove (v; w) from E

get subtrees T 0(V 0; E0); T 00(V 00; E00)

if #E0 > 0

embed tree fast(T 0, i+ 1)

if #E00 > 0

embed tree fast(T 00, i+ 1)
g

The algorithm starts withembed tree fast(T; 1) and
it terminates, when all edges have indices assigned. Overall
runtime is of the order ofO(#V 2) of the original graph,
since the procedure is called once for every edge, while
an efficient implementation ofget tree center runs in
O(#V). To derive an encoding from the embedded tree a
code is first assigned to one of the nodes. Then the codes of
adjacent nodes are computed by toggling the bit adressed by
the index of the connecting edge. This procedure is iterated,
until all nodes are encoded. Since there are no cycles, the
overall encoding is uniquely determined by the code of any
node.

By incrementing the index parameteri during the recur-
sion, the embedding procedure ensures, that for any depth
the index of the edge(v; w) selected fromEC is not again
used in one of the subtrees connected by(v; w). This en-
sures, that any path from one subtree to another traverses at
least one edge with an unique labeli. Therefore all state

codes of nodes in different subtrees differ at least in position
i. Since any pair of nodes is somewhere in the recursion
splitted up and assigned to different subtrees, the encoding
is injective.

GREEDY EMBEDDING ALGORITHM

The above algorithm is very fast, since it only embeds edges
from the spanning tree without regard to costs from other
edges in the PAG. Our second algorithm tries to take into ac-
count those edges of lower weight, too. This however is only
possible between nodes, which are connected by a path of
already embedded edges inT . The new procedure therefore
always maintains a region of encoded nodesVenc, which are
connected by edges with known indices.Venc is initialized
with a nodev 2 VC of the center of the overall tree. Ev-
ery time an index is assigned to an edge(v; w), where one
of the nodes, sayv, is already encoded, the encoded region
is expanded byw and others, which are connected tow by
previously embedded edges:

embed tree greedy(tree T (V;E), int i)
f

get tree center (T; VC; EC)

if Venc= ;

vinit := v 2 VC
vinit .code := 0
Venc := fvinitg

for all (v; w) 2 EC

(v; w).idx := select index (T; Venc; i)
i := i+ 1

remove (v; w) from E

expand region (Venc)

for all T 0(V 0; E0) subtree of T

if #E0 > 0

embed tree greedy(T 0, i)
g

There are two further main differences to the fast algorithm.
First, the index to be assigned to an edge is determined
by a special greedy procedureselect index , which is
described below. Second, all edges inEC are embedded
within the actual call without selection. This usually leads
to a faster growth of the encoded region in comparison with
the previous algorithm. For the same reason the subtrees
are processed in the final loop, so that subtrees containing
encoded nodes are embedded first. This also immediately
increases the encoded region, the size of which determines
the accuracy of the index selection, as follows:

For an edge(v; w) not connected to the encoded region
Venc select index simply returns the maximum index
value, which corresponds to the edge index assigned in
the fast embedding algorithm. If however(v; w) is con-
nected toVenc, the nodew 62 Venc can be encoded, and
select index for all possible indicesi computes the new
code from the code ofv by toggling biti. Then the switching

costs betweenw and all other encoded nodes are determined
from the product of hamming distance and transition prob-
ability from the PAG. If the actuali leads to a code that is
already used for another node, cost is set to1. Finally the
index leading to the lowest switching costs among the en-
coded nodes is selected:

int select index(edge (v; w), node set
Venc, int imax)

f

if v 62 Venc and w 62 Venc
return imax

nn assume v 2 Venc and w 62 Venc

for all i 2 f1; : : : ; imaxg

w.code := v.code toggled in ith bit

cost (i) := 0

for all u 2 Venc
if u.code = w.code

cost (i) :=1

if (u;w) 2 attraction graph
cost (i) :=cost (i) + h(u;w)�W (u;w)

if cost (i) <cost (imin)

imin := i

return imin

g

The greedy algorithm is considerably slower than the fast
one, since for every edgeO(#V) indices have to be tested,
and for every index all codes from the subset of encoded
nodes may be examined. It is however still polynomial, and
feasible at least for medium sized problems, since all bench-
mark embeddings were generated within few minutes.

4. Results
We have run ourfast andgreedy encoding algorithms on
a set of MCNC FSM examples in kiss2 format. As a refer-
ence theO(#V#E) encoding algorithmpow3presented by
Benini [1] was selected, since it computes a minimum length
encoding targeting low state register activity in a compa-
rable small runtime. The results are summarized in table
I. Columns 1 and 2 contain the circuit name and the num-
ber of states after elimination of unreachable and unleavable
states. The following six columns in groups of three present
information about state register size and expected register
activity for each of the algorithms tested. The final three
columns display the estimated power consumption in�W

of the circuit generated by SIS after extraction of sequential
don’t cares and optimization withscript.rugged[10]. The
runtimes of the three encoding algorithms are not printed,
since being in the order of seconds or minutes they were
always dominated by the preceding Chapman Kolmogorov
and the following sequential optimization script. An aster-
isk is printed where the optimization script did not terminate
within several hours.

As we can see, for 28 out of 44 examples the expected
switching activityEsr is reduced with respect topow3 ei-
ther by the fast algorithm or by the greedy algorithm, and it
is increased by both in only three cases. Reduction varies
from 2% to 28% with an average of about 13 percent, while
the state register size is always kept at or below2 log2#V .
Sometimes a reduction in switching activity is achieved
without a penalty in the size of the state register. For the
power consumption after synthesis, as estimated by SIS, the
results can be summarized as follows. Out of 37 circuits,
where SIS optimization terminated for all encodings, 26 of
our best circuits are better in terms of power consumption
than those encoded bypow3, while only six are worse. Here
improvement varies from 1% up to 29% with an average of
about 17 percent. It is also shown in table I, that for 26 out of
37 circuits improvements were achieved either for both reg-
ister switching activity and power consumption or for nei-
ther of them. This as well as many particular results confirm
our assumption, that register switching activity and power
consumption are highly correlated. Comparison of state reg-
ister size and power consumption however reveals no clear
correlation. Sometimes circuits with larger state register dis-
sipate more power, but there are also cases, where the over-
all power dissipation is reduced despite a larger state regis-
ter and higher switching activity in the state register. This
probably comes from larger sequential don’t cares leading
to better optimization by SIS.

This paper addressed the FSM state assignment problem
targeted towards low power dissipation. The problem was
formulated as a hypercube embedding problem, where the
embedding process is directed by a maximum spanning tree
of the probability attraction graph of the FSM. We proposed
a modification of Prim’s algorithm to limit the degree of the
spanning tree and along with it the dimension of the em-
bedding. Then two different state embedding algorithms
were presented, which in about two out of three cases pro-
duced encodings with lower switching activityand power
consumption than a known heuristic of comparable com-
plexity. Due to the polynomial runtimes of our algorithms
they are applicable to many large FSMs, where the states
can be explicitly enumerated. It is also worth mentioning,
that the proposed heuristics can be used for any state encod-
ing problem, where the costs can be described by an edge
weight function of the STG.

References
[1] L. Benini and G. DeMicheli: State Ass. for Low Power Diss.

IEEE Journ. on Solid State Circ., 11(4): 32-40, March 1994
[2] Chen, Sarrafzadeh, Yeap: State Enc. of FSMs for Low

Power Design. To appear in VLSI Design.
[3] D.R. Cox and H.D. Miller:The Theory of Stochastic Pro-

cesses.Chapman Hall, 1965
[4] DeMicheli, Brayton, Sangiovanni: Optimal State Ass. for

FSMs.IEEE Trans. on CAD, 4(3): 269-284, July 1985

circuit #V #bits Esr SIS power (�W)
pow3 fast greedy pow3 fast greedy pow3 fast greedy

bbara 10 4 4 4 0.30 0.29 0.28 155 146 146
bbsse 13 4 5 6 0.86 0.78 0.77 339 320 340
bbtas 6 3 3 3 0.44 0.44 0.44 98 94 97
beecount 7 3 3 4 0.48 0.48 0.47 198 214 192
cse 16 4 6 7 0.29 0.24 0.24 313 332 331
dk14 7 3 3 3 1.24 1.11 1.11 501 455 443
dk15 4 2 3 3 0.85 0.83 0.83 406 391 391
dk16 27 5 6 7 1.84 1.81 1.67 1176 1119 1063
dk17 8 3 4 4 1.04 1.04 1.04 333 308 304
dk27 7 3 3 3 1.19 1.36 1.19 182 207 180
dk512 14 4 5 5 1.48 1.37 1.19 360 348 318
donfile 24 5 5 7 1.25 1.42 1.33 506 593 615
dvram 35 6 6 10 1.03 0.93 0.88 398 406 343
ex1 20 5 5 7 1.23 1.22 1.20 480 451 528
ex3 9 4 4 4 1.49 1.28 1.20 344 326 320
ex4 13 4 4 5 1.04 0.96 0.96 183 241 222
ex5 8 3 3 3 1.13 1.13 1.13 300 300 300
ex6 7 3 4 3 1.01 1.03 1.01 388 387 422
ex7 9 4 4 4 1.00 1.00 1.00 171 152 146
fetch 26 5 5 8 1.19 1.38 1.11 410 457 362
keyb 19 5 8 9 0.65 0.56 0.56 392 528 455
kirkman 16 4 4 7 0.58 0.61 0.61 501 500 397
lion 4 2 2 2 0.40 0.40 0.40 87 87 86
lion9 9 4 4 4 0.80 0.64 0.64 144 141 149
log 17 5 5 8 0.87 0.93 0.76 294 327 *
mark1 13 4 6 6 0.93 0.97 0.95 263 274 319
mc 4 2 2 2 0.43 0.43 0.43 88 88 88
nucpwr 29 5 6 10 1.20 1.16 1.04 506 445 389
opus 10 4 5 5 0.71 0.71 0.71 248 222 239
planet 48 6 8 9 1.30 1.16 1.10 * * *
ram test 72 7 7 9 0.89 0.80 0.76 910 * *
rie 29 5 5 8 0.86 0.77 0.72 376 366 414
s1 20 5 5 8 1.33 1.28 1.12 * * 721
s8 5 3 3 3 0.59 0.69 0.59 156 180 163
sand 32 5 8 9 0.66 0.61 0.57 1278 1267 *
scf 115 7 12 11 0.85 0.87 0.85 1260 997 901
shiftreg 8 3 3 4 1.25 1.00 1.25 190 164 164
sse 13 4 5 6 0.86 0.78 0.77 339 320 331
styr 30 5 6 6 0.59 0.58 0.55 * * *
sync 52 6 6 9 0.88 0.74 0.74 720 536 577
tav 4 2 2 2 1.00 1.00 1.00 158 158 158
tbk 32 5 8 10 1.14 0.98 0.99 * * 1121
train11 11 4 4 6 0.79 0.79 0.57 253 222 191
train4 4 2 2 2 0.47 0.47 0.47 74 74 74

Table I
[5] Devadas, Ma, Newton, Sangiovanni: MUSTANG - State

Ass. of FSMs Targeting Multilevel Logic Implementations.
IEEE Trans. on CAD, 12(11):1290-1300, December 1988

[6] Forth, Molitor, Vogt: State Encoding of FSMs Target. BDD
Repres.Priv. Comm. Univ. Halle, Germany, March 1998

[7] T. Lengauer:Combinatorial Algorithms for Integrated Cir-
cuit Layout.Teubner Verlag, 1990

[8] Livingston, Stout. Embeddings in Hypercubes.Mathemati-
cal and Computational Modelling.11:222-227, 1988

[9] Najm, Goel, Hajj: Power Estimation in Sequential Circuits.
Proc. of the 32th DAC, 635-640, 1995.

[10] Sentovich, Singh, Brayton, Sangiovanni: SIS - A System for
Sequential Circuit Synth. Tech. Rep., UC Berkeley, 1992.

[11] Tsui, Pedram, Despain: Exact and Approximate Methods
for Calculating Signal and Transition Probabilities in FSMs.
Proc. of the 31th DAC, 18-23, 1994

[12] Tsui, Pedram, Despain: Low Power State Assignment Tar-
geting Two- and Multilevel Logic Implementations.Proc. of
the 31th DAC, 82-87, 1994

[13] Wagner, Corneil: On the Complexity of the Embedding
Problem for Hypercube Related Graphs.Discrete Applied
Mathematics, 43:75-95, 1993

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

