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Abstract

In general, logic redundancy tends to degrade design-
quality by introducing additional delays in signal propaga-
tion, by increasing the gate count or simply by making the
resulting hardware untestable. Since they cannot always be
avoided, unwanted redundancies have to be first identified
and then removed from our designs. In this paper, an alter-
native methodology to identify and remove redundancy is
proposed, which is based on a formal, symbolic verification
strategy. The formal framework underlying our approach
aids in identifying redundancies and allows us to guarantee
the correctness of their removal.

1. Introduction

During the electronic hardware design process, logic re-
dundancies are sometimes deliberately introduced, in order
to improve certain performance aspects — e.g. timing, sta-
bility or fault tolerance — of a given circuit. Such redun-
dancy must however be added with care, since it does not
necessarily lead to an improved design. More specifically,
logic redundancies generally tend to impair a circuit’s qual-
ity by introducing extra delays in signal propagation, by in-
creasing the gate count — and thus the final silicon area —
or simply by making the resulting hardware untestable.

At this point, one could simply argue not to introduce
such detrimental redundancies. However, it turns out that
most of the time, redundancies enter logic designs unin-
tentionally, and therefore unnoticed. In [3], for instance,
D. Bryan et al. give a clear overview of how undesired re-
dundancies can inadvertently be created during the design
process. For one, they demonstrate that structural hierarchy
can cause redundancies, even though the hierarchical com-
ponents themselves are proven to be irredundant.

Since they cannot always be avoided and they degrade
the overall design-quality, unwanted redundancies have to
be first identified and then removed. For that purpose, vari-

ous approaches have been proposed and implemented [3, 7].
Common to most identification approaches, however, is that
they are mainly based on deterministic test pattern genera-
tion (DTPG) algorithms — e.g. the D, the PODEM, and the
state-of-the-art FAN algorithms [1].

In this paper, an alternative methodology to identify
and remove redundancy is proposed, which does not make
use of a DTPG-based identification strategy. Instead, our
methodology is based on a formal, symbolic verification
strategy. As will be demonstrated, the formal framework
behind our approach aids us in identifying redundancies and
allows us to formally guarantee the correctness of their re-
moval. The key message we want to convey in this paper is
that it is possible to identify logic redundancy by reasoning
on a set of formal (Boolean) expressions, without the need
to examine specific test patterns.

This paper is organized as follows. In the next section,
some basic concepts on redundancy are defined. Section 3
describes the principles underlying our symbolic identifica-
tion strategy. In section 4, we demonstrate how the identi-
fied redundancies can be removed, guaranteeing the formal
correctness of the circuit. To illustrate our symbolic ap-
proach, a few practical examples are discussed in section 5.
Finally, section 6 summarizes our conclusions.

2 Preliminaries

In this section, some basic concepts on logic redundancy
are defined and illustrated. For reasons of simplicity, these
definitions have been kept informal. They can, however, be
expressed in terms of a more formal, directed-acyclic-graph
(DAG) representation of combinational circuits.

Definition 1: NodeN of circuit C is called aredundant
node, if the observable input-output behaviour ofC is in-
dependent of the value ofN, for all possible states and all
possible input combinations ofC.
Based on this definition, node X in figure 1 is clearly a re-
dundant node of the circuit, since the output is independent
of the value of X.
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Figure 1. X is a redundant node, since the out-
put of the circuit is independent of X’s value.

Definition 2: GateG of logic circuitC is called aprime-
redundant gate, if at least one of its inputs can be removed
without affecting the observable input-output behaviour of
C, for all possible states and all possible input combinations
of C.
Consider the example in figure 2. It is relatively easy to
check that theAnd3-gate in this circuit is prime-redundant;
when Boolean valuesa, b, c andd are applied at the inputs
of the circuit, the inputs of theAnd3-gate area + b, a + c

andc:d. Clearly, the output expressiona:c:d only depends
on the Boolean conjunction ofa + c andc:d, whereas the
third input of theAnd3-gate can be removed (together with
the associated logic).
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Figure 2. Example of a prime-redundant gate.

Definition 3: GateG of logic circuit C is called aredun-
dant gate(type 1), if G can be removed without affecting
the observable input-output behaviour ofC, for all possible
states and all possible input combinations ofC.
As an example, consider again the circuit in figure 2. Once
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Figure 3. Example of a type-2 redundancy.

the redundant input of the prime-redundant gate has been
removed, the gate driving that node becomes a type-1 re-
dundant gate. Removing that gate does not affect the work-
ing of the circuit.

Definition 4: GateG of logic circuit C is a redundant
gate(type 2), if the set of nodesfNig driven byG can be re-
placed by a set of ’earlier’1 nodesfMjg without affecting
the observable input-output behaviour ofC, for all possible
states and all possible input combinations ofC.
To illustrate the notion of type-2 redundancy, we can take
a look at the circuit in figure 3. Here, it is possible to re-
place nodeY of theNor-gate by the ’earlier’ nodeX, without
changing the output function of the circuit itself. Therefore,
theNor-gate can be labelled a type-2 redundant gate.

Our definition of type-2 redundancy closely resembles
the general type of redundancy defined by Hayes [6]. Hayes
indicated that circuits exhibit redundancy when it is possi-
ble to cut a set ofm wires and to connect a subset of those
cut wires to other wires in the circuit without changing its
observable input-output behaviour. Definition 4 merely re-
stricts Hayes’ general definition to individual gates.

3 Redundancy Identification

3.1 DTPG-based Identification

The basic principle underlying DTPG-based redundancy
identification is to identify redundant nodes by searching for
undetectable stuck-at-faults. More precisely, DTPG-based
identification compares the original circuit with the same
circuit containing an assumed stuck-at-0 or stuck-at-1 fault.
When no input combination (or test pattern) can be gener-
ated to distinguish the faulty circuit from the correct cir-
cuit, then — according to definition 1 — the corresponding
stuck-at node is a redundant node. Once redundant nodes
have been identified, simplification rules will be applied to
remove the associated redundant logic [1].

1A setfMig is called a set of ’earlier’ nodes with respect to a setfNjg,
if each nodeMi is (logically) independent of all the nodes infNjg



Curiously enough, DTPG-based approaches are only
concerned with identifying redundant nodes. Gate redun-
dancy is only dealt with indirectly through the simplifica-
tion rules. For instance, if an undetectable stuck-at-1 fault
is identified on an input node of anAnd-gate, that input can
be removed from the gate without changing the input-output
behaviour of the circuit. In our terminology, such anAnd-
gate is aprime-redundantgate.

The narrow focus on node redundancy could be consid-
ered a shortcoming of DTPG-based identification. Closer
examination reveals that node redundancy is merely a
’symptom’ of gate redundancy. More specifically, each re-
dundant node indicates the existence of a redundant logic
gate. The reverse, however, is not necessarily true. A logic
circuit may contain redundant gates without exhibiting re-
dundant nodes. The most obvious example of this phe-
nomenon is depicted in figure 4. This very simple circuit
contains type-2 gate redundancy, yet no redundant nodes
will be identified by standard DTPG-based techniques (see
note on type-2 redundancy).

in out
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Figure 4. A logic circuit containing (type-2)
gate redundancy, but no redundant nodes

The reader will agree that, instead of looking for the
symptoms, it could be more efficient to immediately
track down the actual causes — i.e. gate redundancies
— themselves. And that is exactly the objective of the
methodology presented in the remaining sections.

Note on type-2 redundancy
It is important to note that for identification techniques

based on DTPG-algorithms, most of the concepts in sec-
tion 2 are defined in terms of undetectable stuck-at-faults.
Type-2 redundancy, however, deals with a much more gen-
eral concept of redundancy than the concepts associated
with the existence of undetectable stuck-at-faults. Con-
sequently, standard DTPG-algorithms cannot directly deal
with type-2 redundancy.

Indirectly, type-2 redundancy can be identified by modi-
fying the initial circuit – e.g. by inserting well-chosen XOR-
gates, as is described in [2] – and to examine the testability
of these modifications. But modifying the circuit under in-
vestigation may still be seen as a disadvantage. In the fol-
lowing sections, we will point out that our approach is more
successful in dealing directly with this more general notion
of redundancy.

3.2 Symbolic Redundancy Identification

As mentioned before, our redundancy identification is
based on a formal verification strategy. In this section, the
concepts underlying that strategy are discussed.

3.2.1 Formal Verification Strategy

In the past, various strategies have been devised for the for-
mal verification of electronic designs — e.g. model check-
ing, equivalence checking and theorem proving. The work
presented in this paper is based on an equivalence checking
strategy.

Equivalence checking aims to prove that the observable
input-output behaviours of two circuits are logically equiv-
alent. For instance, equivalency can be proven by exhaus-
tively comparing the truth-tables of both circuits. In a for-
mal approach, however, the behaviour of each circuit is first
formally analyzed, after which the equivalency of the de-
rived formal expressions is examined.

As part of an experimental verification framework, we
developed a symbolic analyzer for logic circuits. Symbolic
analysis automatically constructs Boolean expressions for
the functional behaviour of a circuit (see e.g. [5]). For that
purpose, symbolic values (or functions) are applied at the
inputs of the circuit and are ‘propagated’ through the logic
network. Finally, the outputs of the circuit will be expressed
in terms of the symbolic values applied at the inputs.

Formally proving the equivalence of the expressions pro-
duced by the symbolic analyzer is relatively straightfor-
ward. Internally, the symbolic values (and functions) are
constructed using Binary Decision Diagrams (BDDs) — an
efficient technique to represent Boolean functions [4]. To
prove that two symbolic expressions are logically equiva-
lent, we need only to check that they refer to the same BDD.

3.2.2 Formal Redundancy Identification

Using our symbolic analyzer, we can also extract a set of
Boolean expressions describing the full behaviour of a cir-
cuit — i.e. expressions forall the nodes. Because of the
memory overhead involved, such an approach is usually un-
desirable. For circuits that suffer from an exponential ex-
plosion in the size of their BDD-representations, as is the
case for multipliers, such a description of the full behaviour
may even be impossible [4]. Nevertheless, when possible, a
complete set of expressions does have its own advantages.
For one, it allows us to formally reason about redundancy.

Interested in the possibility of a formal approach to iden-
tify logic redundancies starting from a set of Boolean ex-
pressions, we finally established four generic identification
(and removal) rules (see section 4). As the examples in sec-
tion 5 will demonstrate, these simple rules allow us to iden-
tify and to remove redundancy in logic circuits. Moreover,



these rules formally guarantee the correctness of the redun-
dancy removal.

3.2.3 Formal Correctness of Removal

A major advantage of the identification rules in section 4 is
that they guarantee the functional correctness of the redun-
dancy removal. More precisely, during the identification
process, it can be guaranteed that our rules will preserve the
input-output behaviour of the circuit under investigation.

Basically, three types of rules can be distinguished. In
the first place, we have rules that explicitly remove logic
gates from a circuit. Such rules preserve the correctness,
because they only remove gates that have absolutely no ef-
fect on the functionality of the circuit.

The second type of rules locally transforms prime-
redundant gates into functionally equivalent units by dis-
connecting one of the inputs. Again, the correctness of such
a transformation can be guaranteed, because the symbolic
expressions for the output nodes of such a gate are never
changed by the rule. Therefore, such a local transformation
will have no effect on the overall circuit behaviour.

The third type of rules selectively replaces circuit nodes
by ‘earlier’ nodes. For instance, when two nodes are char-
acterized by equivalent symbolic expressions, it is possible
to replace one node by the ‘earlier’ node, without chang-
ing the overall functionality, thus guaranteeing the correct-
ness of the resulting circuit. In a similar fashion, when one
can replace the input node of a logic gate by an ‘earlier’
node, such that the output expression of that gate remains
the same, the resulting circuit will be equivalent to the ini-
tial circuit.

4 Rule-based Identification and Removal
System

To examine the feasibility of the proposed methodology,
our symbolic circuit analyzer was extended with a rudimen-
tary rule-based identification system. In this section, the
generic set of identification (and removal) rules that have
been considered so far, are presented. The next section will
illustrate the application of these rules at the hand of some
examples.

The first rule is responsible for explicitly removing logic
gates whose outputs have been disconnected from the cir-
cuit. Such gates are typical representatives of type-1 redun-
dant gates.

� Rule1: If a logic gateG drives no output nodes of a
circuit C andG drives no other logic gates inC, then
removeG from C.

Clearly, when a logic gate doesn’t drive other logic gates
anddoesn’t drive the output nodes of a circuit, it can simply

be removed without affecting the functional behaviour of
that circuit. By itself, such a rule will only partially cover
type-1 gate redundancy. Together with the following rules,
however, rule 1 proves to be sufficient to remove redundant
gates in general.

� Rule2: If the outputs of a logic gateG with N inputs
depend only onN � 1 of those inputs,then discon-
nect theN th input node fromG and replaceG by an
equivalent gate with onlyN � 1 inputs.

Rule 2 deals with prime-redundancy. For instance, when
one of the inputs of anAnd3-gate is characterized by a con-
stant symbolic value1 (for all possible input combinations),
rule 2 states that the redundant input node can be discon-
nected from theAnd3-gateandthat theAnd3-gate itself can
be replaced by anAnd2-gate of the remaining two inputs.

� Rule3: If the symbolic value on an output nodeNo of
a logic gateG is equivalent to the symbolic value on
an ’earlier’ nodeNe, then replaceNo byNe.

Clearly, rule 3 deals with type-2 gate redundancy. For in-
stance, when one of the two inputs of anAnd2-gate is char-
acterized by a constant symbolic value1 (for all possible
input combinations), rule 3 states that the output node of
the And2-gate can be replaced by the second input of that
gate, without changing the behaviour of the circuit.

� Rule4: If an input nodeNi of a logic gateG can be
replaced by an ’earlier’ nodeNe and still preserve the
symbolic value on the outputs ofG, then replaceNi

byNe.

Rule 4 deals with a much more complicated form of type-2
gate redundancy. A typical application of this rule has al-
ready been illustrated in figure 3. NodeY can be replaced by
nodeX, without affecting the symbolic value on the output
of theOr-gate. After disconnecting nodeY — and succes-
sively applying rule 1 — the redundant inverter andNor-
gate will be removed as well.

We have implemented the generic identification rules
for each logic gate supported by our verification tool.
More precisely, each rule is directly integrated into the
object-oriented implementation of the symbolic analyzer
itself. This allows us to automatically proceed to the
identification of redundancy, once the symbolic analysis
has determined a set of symbolic (Boolean) expressions
denoting the functional behaviour of a given circuit.

Note on search strategy
It is important to emphasize that the above rule-based

system is not intended for optimization purposes. Rule-
based systems for logic optimization are far more complex,
since they require elaborate search strategies, backtracking



facilities, efficient management of intermediate results, pre-
cise definitions of cost and performance, etc. Our objective
is simply to make a circuit irredundant, not to obtain the
most ’optimal’ solution.

In this sense, our rule-based system is very simple. Ba-
sically, there is no real search strategy. When a rulecanbe
applied, itis applied, ’transforming’ the circuit currently in
our memory. If more than one rule applies, the rule that will
be executed is determined according to some predefined pri-
ority (or simply selected randomly). In other words, we do
not need to keep track of all the intermediate results and we
do not need to implement backtracking, allowing a straight-
forward implementation of the identification system.

5 Examples

5.1 Example 1

The logic circuit depicted in figure 5 was first examined
by Bryan et al. in [3], where they showed that the given cir-
cuit contains several logic redundancies. In this section, we
illustrate the identification and removal of those redundan-
cies, using the rules discussed in the previous section.
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Figure 5. A circuit containing redundancies

A : a G : a+ b

B : b H : c:d

C : c I : a:c:d

D : d J : b:(c+ d)

E : a K : a:c:d

F : a+ c L : b:(c+ d+ a) + (a:c:d)

Table 1. Boolean expressions obtained by
symbolic analysis of the circuit in figure 5

Symbolic analysis of this circuit provides us with the set
of Boolean expressions depicted in table 1. Independent of
the inputs, the values on nodesK andI will always be the
same. This means that rule 3 can be applied to gate 7 — i.e.
gate 7 is a type-2 redundant gate. Applying rule 3 intercon-
nects nodesK and I, and disconnects the output of gate 7

from the circuit. Subsequently, rule 1 can be applied to re-
move gate 7, resulting in the following (equivalent) circuit.
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We can also apply the second rule to gate 5. Gate 5 is
a prime-redundant gate, because inputG can be removed
without changing the value on nodeI. Following rule 2, gate
5 can be replaced by anAnd2-gate and nodeG can be dis-
connected from the rest of the circuit. Once nodeG has
been disconnected, gate 3 becomes a type-1 redundant gate,
and will be removed from the circuit by applying rule 1.
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The next logic redundancy to be identified is less obvi-
ous. As it turns out, rule 4 can be applied to gate 5 — node
F can be replaced by the ’earlier’ nodeA without changing
the value on nodeI. OnceF has been disconnected from
gate 5, rule 1 applies to gate 2. Removal of gate 2 results in
the following circuit:
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Evidently, the removal of gate 2 makes gate 1 a type-1
redundant gate. After removing the redundant inverter, no
more rules apply to the resulting circuit (see figure 6) — i.e.
the circuit is irredundant.

5.2 Example 2

The circuit depicted in figure 7 is another example con-
taining logic redundancy. Close examination of the circuit
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Figure 6. Irredundant version of example 1

reveals that gate 10 is bothprime-redundantandtype-2 re-
dundant. First, gate 10 is type-2 redundant since its output
nodeY can be replaced by the ’earlier’ nodeD. In addition,
gate 10 is prime-redundant since the value of its output de-
pends only on the value of its inputG.

X1

X2

Y

A

B
C D

E

G

F

type-2 redundant gate
1

2

3

4

5 6
7

8

9
10

X1 : a D : a:b+ a:b

X2 : b E : a:b

A : a:b F : a:b

B : a:b G : a:b+ a:b

C : a:b+ a:b Y : a:b+ a:b

Figure 7. A logic circuit containing redun-
dancy

Because of its dual nature, more than one rule applies to
gate 10 — e.g. rule 2, rule 3 and rule 4. Here, we assume
that rule 3 has the highest priority and is executed first. In
that case, nodesY andD are interconnected and gate 10 is
removed, resulting in the following circuit.
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Once gate 10 has been removed, gate 9 automatically
becomes type-1 redundant. Rule 1 can then be applied to
remove that gate. Removing gate 9, in turn, causes gates 7
and 8 to become type-1 redundant. In other words, rule 1
can again be applied (twice) to remove both gates 7 and 8.
At that point, no more rules apply and the resulting circuit
(see figure 8) is irredundant.
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Figure 8. Irredundant version of example 2

6 Conclusion

The key message conveyed in this paper is that it is pos-
sible to identify (and to remove) logic redundancy by rea-
soning on a set of formal (Boolean) expressions. To demon-
strate this key idea, an identification methodology based on
a formal verification strategy has been proposed. To exam-
ine the feasibility of this methodology, a rule-based identi-
fication system was implemented and successfully applied
to a number of examples. It appears that a limited set of
identification rules proves to be sufficient to remove the re-
dundancies in logic circuits. In addition, the formal frame-
work underlying our approach allows us to guarantee the
correctness of the redundancy removal.
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