
Using Combinational Verification for Sequential Circuits

Rajeev K. Ranjan Vigyan Singhal Fabio Somenzi Robert K. Brayton
rajeevr@synopsys.com vigyan@cadence.com fabio@duke.colorado.edu brayton@eecs.berkeley.edu

Synopsys Inc. Cadence Berkeley Labs University of Colorado University of California
Mountain View, CA Berkeley, CA Boulder, CO Berkeley, CA

Abstract

Retiming combined with combinational optimization is a power-
ful sequential synthesis method. However, this methodology has
not found wide application because formal sequential verification is
not practical and current simulation methodology requires the cor-
respondence of latches disallowing any movement of latches. We
present a practical verification technique which permits such se-
quential synthesis for a class of circuits. In particular, we require
certain constraints to be met on the feedback paths of the latches
involved in the retiming process. For a general circuit, we can sat-
isfy these constraints by fixing the location of some latches, e.g.,
by making them observable. We show that equivalence checking
after performing repeated retiming and synthesis on this class of
circuit reduces to a combinational verification problem. We also
demonstrate that our methodology covers a large class of circuits
by applying it to a set of benchmarks and industrial designs.

1 Introduction

Many solutions to the sequential equivalence problem have been
proposed in the literature which can be broadly divided into two
categories. The solutions in the first category attempt to solve the
general sequential equivalence problem [4, 5, 9, 15, 16]. However,
due to the complexity of the problem, the proposed solutions are
either limited to relatively small-sized circuits or to circuits which
have undergone relatively fewer optimization transformations. In
particular techniques proposed in [15, 4] rely on finding appropriate
logic transformations to facilitate the equivalence checking.

The second approach is to trade off the optimization capability
with the verification complexity. In this approach, sequential opti-
mization is constrained in order to reduce the verification complex-
ity. In the limit, by making all the latches observable, sequential
synthesis reduces to combinational optimization leading to combi-
national verification problems. The solution proposed in [1] falls in
this category.

We propose a methodology that reduces a sequential verification
problem into an equivalent combinational verification problem for a
class of circuits. This allows us to leverage powerful combinational
verification techniques. Our method requires the next state function
to be positive unate in the latch variable for each latch with a feed-
back path. If the original circuit does not meet these constraints, we
make a minimum number of latches observable to satisfy the con-
straints. Thus, our methodology effectively offers another trade-
off point between constraints-on-synthesis versus complexity-of-
verification. Later we show this methodology allows self-loops on
latches, pipelined circuits where the latches cannot be retimed to the
periphery, latches trapped inside combinational blocks, with load-
enabled latches, and latches that conditionally update their contents.
It is worth noting that unlike techniques proposed in [15, 4] which
performs the sequential equivalence checking by solving a series
of combinational equivalence problems, our technique reduces the

original sequential equivalence problem into a single combinational
equivalence problem. Therefore our technique is more efficient be-
cause it solves a theoretically simpler problem. However it can
verify circuits only after they have been appropriately modified as
mentioned above.

Related to our technique, Bischoffet al.[2] verify the implemen-
tation of the bus interface unit for the Alpha 21264 microprocessor.
They compare RTL with gates extracted from a custom transistor
netlist. However, no formal framework for such verification is pre-
sented and no technique to handle circuits with feedback paths was
given. Wherever applicable, we make relevant distinction with their
work.

Our paper proceeds from definitions in Section 2 to the basic idea
in Section 3. In Section 4 we discuss our technique for a circuit with
no feedback latches and in Section 5 we extend it to circuits con-
taining feedback latches. The details of the experimental setup and
results are given in Sections 6 and 7, respectively. Due to space lim-
itations, the proofs for some lemmas are not presented here. These
proofs are published in a technical report.

2 Preliminaries

Here we present our circuit model and notion of equivalence.

2.1 Circuit Model

A sequential circuit is an acyclic interconnection of combinational
gates connected to memory elements along with input and output
ports. Various notions of sequential circuits typically differ in the
definition of memory elements. Our memory elements are edge-
triggered latches driven by the same clock (single phase) with load-
enable signals. A sequential circuit isC = (I;O; G; L), where
I; O; G; andL are sets of inputs, outputs, gates, and latches, re-
spectively. Each latchl 2 L is a pairl = (x; e), wherex is the
latch’s output signal ande is its load-enable signal. A latch without
a load-enable signal (a “regular latch” in this paper) hase = 1. Fol-
lowing [11], we define a latch classcl = (e) to be all latches with
the same load-enable signale. This classification is important dur-
ing retiming transformations, since latches can merge as the result
of a move only if they belong to the same class.

2.2 Notion of Equivalence

We use the notion ofsteady-state equivalence. We do not assume a
power-up initial state for the latches. Instead, we assume each latch
powers up with valueX. This does not prevent the design from
having a reset state for some latches activated when the reset line is
pulled or a reset sequence is applied. Since the latches power-up in
the stateX, the circuit outputs may not take a Boolean value for a
given input sequence.

0 out

outin

(a)

0 out

0 out

(b)

Figure 1: Example of circuits which are steady-state equivalent.

Definition 1 For circuit C, an input sequence� is a steady-state
input sequenceif the exact 3-valued simulation1 of C on � (the
final value of all its outputs), denotedOC(�), results in Boolean
values for all its outputs. The set of all steady-state input sequences
of a circuitC is denoted as�C .

Definition 2 (Steady-state equivalence)Two circuitsC1 andC2

are steady-state equivalentif and only if8�; � 2 �C1
\ �C2

)
OC1

(�) = OC2
(�).

Intuitively, if an input sequence produces non-X values for the out-
puts of both the circuits, then the output values must match for the
circuits to be steady-state equivalent. Note that this notion of equiv-
alence is along the lines ofsufficiently old configuration[12].

Two examples of circuits which are considered equivalent with
this notion are shown in Figure 1. This notion is different from
3-valued equivalence [8] (it distinguishes both the circuit pairs in
Figure 1), and exact 3-valued equivalence [14] (it distinguishes the
circuits in Figure 1b).

It should be noted that the practical application of our verification
technique would require that the initializability of the optimized de-
sign is verified appropriately. This would ensure that the set of
steady-state input sequences is not empty leading to trivial equiv-
alence.

In the next section we present our technique to derive a combi-
national representation of sequential circuits. In Section 4 we apply
it to sequential circuits without feedback and add feedback in Sec-
tion 5.

3 From Sequential to Combinational Rep-
resentation

We reduce the problem of sequential verification to an extension of
combinational verification. The goal of our technique is to obtain
a canonical acyclic combinational circuit from a given sequential
circuit. Towards that we use the following extensions of regular
Boolean functions.

t : t 2 Z Represents current time

T : f� 2 Z : � � tg

3.1 Clocked Boolean function

A clocked Boolean function (CBF)is defined for circuits contain-
ing combinational gates and regular latches. Given a circuitC, the
CBF for the circuit represents the functionality of its outputs. This
functionality is given in terms of input values in multiple (but finite)
clock cycles.

Definition 3 A clocked Boolean functionfor the output of a cir-
cuit, with n inputs and sequential depthd is a Boolean function

1Similar to symbolic simulation [3] the top circuit in Figure 1a, outputs
“0” in the first clock cycle.

y
z

x

(a)

x w

(b)

y
z

x w

(c)

(d)

a b c d
o

Figure 2: Some acyclic circuits.

F : Bn�d 7! B . For a signals in the circuit, the CBF of the signal
s(t) at timet is defined inductively as follows:

� If s is the output of a gateG, the corresponding CBF is the
functional composition of the CBFs of its fan-ins at the same
time instant, i.e.,s(t) = fg(y1(t); y2(t); : : : ; yn(t)), where
y1; y2; : : : ; yn are the fan-in signals ofG, andfg represents
its functionality.

� If s is the output of a latch, then the CBF is the value of its
fan-in after one clock cycle, i.e.,s(t) = y(t� 1), wherey is
the input of the latch.

� If s is the primary input of the circuit, its CBF is an indepen-
dent input variables(t). Note thats(t) and s(t0) for t 6= t0

are different independent variables.

We illustrate this concept using the following examples (Figure 2).
The functionfx for the output of the AND gate is nothing but the
logical AND of the functions at the input, i.e.,x(t) = y(t)z(t).
The function for the latch is interpreted as the function of the latch
input signal at the previous clock cycle, i.e.,w(t) = x(t�1). If we
put the latch and the AND gate together as shown in Figure 2(c),
the functionality of the latch output in terms of the primary inputs
is given by,

w(t) = x(t� 1) = y(t� 1)z(t� 1)

Consider the circuit given in Figure 2(d). The output function is
given as:

o(t) = c(t)d(t)

d(t) = c(t� 1)

c(t) = b(t)� a(t)

b(t) = a(t� 1)

o(t) = (a(t� 1)� a(t))(a(t� 2)� a(t� 1)) (1)

Essentially, the output function depends on the value of inputa
in three different clock cycles. By generating three different inputs
for different time instants, we can rewrite the (1) as

o = (a�1 � a0)(a�2 � a�1)

Unlike the regular Boolean functions which give the value of a
signal based on the assignment of input values for one time instant
only, the CBF gives the value of a signal for input values delayed by
a finite number of clock cycles. This notion is very similar to the no-
tion of Timed Boolean Functiongiven in [10] and recurrence equa-
tions in [6]. In [10], similar expressions are obtained for the signals
which integrate both timing and logical functionality and generalize
the conventional Boolean functions to the temporal domain. These
expressions were used in timing analysis, analysis and optimization
of wave-pipelined circuits, and performance validation of circuits
and systems. In [6], synchronous recurrence equations were pro-
posed for modeling and optimization of sequential circuits. How-
ever, their usage in representing and verifying the functionality of
sequential circuits has not been seen before.

3.2 Event driven Boolean function

First we define some notation.

pi(�) : T 7! B Boolean predicates over time
P = fp : T 7! Bg Set of Boolean predicates
E =

S
k�0

fE : E 2 P kg Set of events

where elements ofP k are denoted by[p1; p2; : : : ; pk] and an event
E 2 E is an ordered set of timed Boolean predicates.

Next we establish the time instant defined by an event. We define
the function� : E 7! T as follows:

�([]) = t empty event denotes the current time

�([p1; p2; : : : ; pn]) =

8
<
:
�1 if A([p1; p2; : : : ; pn]) = ;
max�f� 2 A([p1; p2; : : : ; pn])g

otherwise

where

A([p1; p2; : : : ; pn]) = f� < �([p2; p3; : : : ; pn]) : p1(�)g

Intuitively, for an eventE 2 E, consisting of Boolean predicates
over time,�(E) gives the most recent time instant after which all
the Boolean predicates inE have been active in the order in which
they are listed. If the Boolean predicates in an event cannot be active
in the order they are listed,�(E) = �1 indicating an undefined
value.

Using the� notation, we now define the next extension to a reg-
ular Boolean function.

Definition 4 An event driven Boolean function (EDBF) is de-
fined for circuits containing combinational gates and enabled
latches. The EDBF for the output of a circuitC, with n inputs
andk distinct events, is a Boolean functionf : Bn�k 7! B . For a
signals in C, and an eventE, the functionality ofs at time�(E) is
defined inductively as follows:

� If s is the output of a gateG, the corresponding
EDBF is the functional composition of the EDBFs of
its fan-ins values associated with the same event, i.e.,
s(�(E)) = fg(y1(�(E)); y2(�(E)); : : : ; yn(�(E))), where
y1; y2; : : : ; yn are the fan-in signals ofG andfg represents
its functionality.

� If s is the output of a latch with fan-in signaly and enable
signal e, then it takes the most recent value ofy at whiche
was active. This is given ass(�(E)) = y(�([e; E])).

� If s is the primary input of the circuit, it represents an inde-
pendent input variable.

Intuitively, for a signals and an associated eventE 2 E, the
EDBF s(�(E)) gives the value ofs at the most recent time instant
after which all the Boolean predicates inE were active in the time
order consistent with the listed order.

The following examples illustrate the concept. In Figure 3(a), the
value of signaly, can be represented asx(�([e])), since the value
of y is equal to the value ofx at the time at whiche was last active.
In Figure 3(b), the functionality of signalz associated with an event
E can be obtained as follows:

z(�(E)) = y(�(E)) � x(�(E))

y(�(E)) = w(�([e2; E]))

w(�([e2; E])) = u(�([e1; e2; E]))

x(�(E)) = v(�([e3; E]))

z(�(E)) = u(�([e1; e2; E])) � v(�([e3; E])) (2)

e

y

e3

xv

u

e1 e2

yw

z
L1 L2

L3

x

(a) (b)

Figure 3: Combinational functionality in the presence of enabled
latches: two illustrations.

Eqn. 2 indicates that the value ofz is equal to the AND of the
value ofu which has been propagated through both latchesL1 and
L2 and ofv which has been propagated throughL3.

In the next section we show how we make use of CBFs and
EDBFs to obtain combinational functions for sequential circuits.

4 Sequential Circuits without Feedback

We consider sequential circuits without feedback paths (also known
as “acyclic sequential circuits”). The typical circuits in this category
include pipelined circuits and acyclic circuits with latches trapped
within a combinational block (e.g., Figure 2d). We first explain our
technique for circuits with regular latches (no load-enable signal)
and then describe the case with load-enabled latches.

4.1 Circuits with Regular Latches

In this class of circuits the latches update their contents at each clock
cycle. The functionality of the circuit depends on the input values
possibly at multiple time instants.

We give the method to obtain the CBF for a general circuit.
Given an acyclic sequential circuitC, in general, the value of a
signal can be required for multiple time instants corresponding to
different delays (depending on the number of latches along differ-
ent paths between the signal and the primary outputs). Starting from
the primary outputs, we recursively obtain the CBF for each signal
as shown in Figure 4. The result of the CBF computation routine is a
Boolean formula for each of the outputs in terms of the values of the
inputs in multiple cycles. By treating the input values at different
time instants as independent variables, we obtain a combinational
function representation for the outputs of the circuit.

Figure 5 conceptually captures the functionality of the algorithm
given in Figure 4.

4.1.1 Canonicity of the Formula

Theorem 4.1 (Canonicity of CBF) SupposeC1 and C2 are two
acyclic sequential circuits with regular latches andF1 andF2 their
CBFs. ThenF1 � F2 , C1 � C2, where equivalence between the
circuits is steady-state as defined in Section 2.2, and equivalence
between the CBFs is combinational.

Proof:
(
Assume thatF1 6� F2. Then there exists a CBF mintermm on the
input values such thatF1(m) 6= F2(m). Since the circuit has finite
depth, using this mintermm we can generate an input sequence of
finite length such that when applied to the two circuits, will produce
different simulation results. This impliesC1 6= C2.
)

Compute CBF(C)f

foreach primary output x
Compute CBF Recursively (x; 0);

g

Compute CBF Recursively(x; d)f
if x is a primary input, return x(t� d);
if f(x; d) is already computed, return f(x; d);
if x is output of a latch f
y = corresponding latch input;
f(x; d) = Compute CBF Recursively(y; d+ 1);

g elsef
Gx = Gate corresponding to signal x;
foreach fan-in y of Gx

Compute CBF Recursively(y; d);
f(x; d) = Compose the fan-in functions;

g

Cache the result of f(x; d);
return f(x; d);

g

Figure 4: Computing the CBF for the outputs of a feedback free
circuit.

(a) (b)

a

b2
a1

b0

a0
b

o2
o1 o1

o2

b1

Figure 5: Generating equivalent combinational equivalence prob-
lems.

Compute EDBF(C)f

foreach primary output x
Compute EDBF Recursively (x; []);

g

Compute EDBF Recursively(x; E)f

if x is a primary input, return (x;E);
if f(x;E) is already computed, return f(x;E);
if x is a latch output f

y = latch input;
e = enable signal;
f(x;E) = Compute EDBF Recursively(y; [e;E]);

g elsef
Gx = Gate corresponding to signal x;
foreach fan-in y of Gx

Compute EDBF Recursively(y;E);
f(x;E) = Compose the fan-in functions;

g

Cache the result of f(x;E);
return F (x;E);

g

Figure 6: Computing EDBF for the outputs of a circuit.

Assume thatC1 6� C2. Then there exists an input sequence� such
thatC1(�) 6= C2(�). Since the circuits are acyclic and have finite
memory,� has finite length. Using this sequence we can generate
a CBF minterm such that when applied to the two formulae, will
produce different results implyingF1 6= F2. Hence contradiction.

Note that the above result is stated for any two sequential equiv-
alent circuits not just those obtained by retiming and combinational
optimization.

4.2 Circuits with Load-enabled Latches

In the case where the latch output is controlled by an enable sig-
nal as well, the functionality is as follows: if the enable signal is
high, the latch propagates the data value to the output, else the latch
retains its old value. In [11], a retiming technique was proposed
to handle latches with different enable signals and different clocks.
In this work, we propose a verification methodology where all the
latches are driven by the same clock but can have different enable
signals. Extension to circuits with multiple clocks is straightfor-
ward.

We obtain a Boolean function along the lines of the previous case
(regular latches). However, in this case we make use of event driven
Boolean functions (EDBF) as defined in Section 3.2. By instanti-
ating separate Boolean variables for each unique combination of
primary input and event, we create a combinational representation
of the circuit.

Starting from primary outputs, we recursively obtain the EDBF
for each signal as shown in the Figure 6.2

4.2.1 Canonicity of the Formula

Theorem 4.2 (Canonicity of EDBF) Given two acyclic sequen-
tial circuits C1 and C2 with load-enabled latches, such thatC2

has been obtained fromC1 by retiming and combinational synthe-
sis transformations. SupposeF1 and F2 are their EDBFs, then
F1 � F2.

2Though this algorithm was developed independently, a very similar al-
gorithm was presented in [2]. For completeness sake, we produce it here.

Backward Backward

Forward Forward

Figure 7: Primitive retiming operations. All general retiming oper-
ations can be built from a sequence of these.

C1 C2
x d

C2

e

x

Figure 8: Modeling feedback using a latch with enable and data
signals.

Proof: (sketch)
We prove this theorem by induction on the transformation steps.
The combinational synthesis does not change the functionality of
the circuit, trivially, EDBFs are also equivalent. For retiming steps,
we show the correctness using the basic retiming moves as illus-
trated in Figure 7 (moving latches across NAND gates and fan-out
junctions defined as primitive elements). A general retiming can be
constructed as sequence of basic retiming moves. It can be easily
shown that the retiming across primitive elements results in equiva-
lent EDBFs. Since the EDBFs are obtained by recursive functional
composition, two circuits that structurally differ because of a re-
timing move across a primitive element, will also have equivalent
EDBFs. The iterative retiming moves across primitive elements
also result in equivalent EDBF because of the transitivity of the
EDBF equivalence.

Theorem 4.2 is necessary to validate the algorithm given in Fig-
ure 6 and [2]. Unlike the regular latch case, the result does not hold
for any two sequentially equivalent circuits.

5 Sequential Circuits with Feedback

In these circuits there exists a feedback path for some latches. Our
strategy is to model a latch with feedback in the form of a latch with
feedback path with appropriate enable and data signals as shown in
Figure 8. Next we derive the conditions under which this modeling
is feasible.

Lemma 5.1 (Decomposition condition)Suppose the next-state
function of a latchx given asF (x). ThenF (x) = e � d + �ex ,
F�x � Fx, i.e.,F (x) can be decomposed in the form of Figure 8
if and only ifF (x) is positive unate inx. Note thate and d are
independent ofx.

As a matter of fact, anyd, which satisfies,

F�x � d � Fx (3)

can be used as the data signal. On the other hand, using simple
Boolean algebra we can show that the value ofe is unique and is
given as �Fx + F�x.

Thus for latches whose next-state function is positive unate in the
latch variable, the feedback can be modeled via a multiplexer. The
advantage of the model shown in Figure 8 is that a latch fed by a
multiplexer can be thought of as an enabled latch as shown in the
Figure 9. This gets rid of the feedback path and for our purposes the
circuit becomes acyclic. Now we can apply the analysis techniques
developed in Section 4.2 for acyclic circuits with enabled latches.
However, we need to be aware of following issues:

d
e

out outd
e

Figure 9: Modeling an enabled latch with extra logic.

en

oute2
e3

e1

d1
d2

d3
dn

Figure 10: Conditional updating of the latch content.

1. The data-input and the enable signal both need to be indepen-
dent of the latch signal, else it will create a cycle.

2. The data valued obtained from the functionF = ed+ �ex is
not unique as shown in (3) sinced hase as don’t care. Hence
for two circuitsC1 andC2 we can come up with different de-
compositions leading to false negatives. This can be handled
in the following ways:

(a) By fixing the latch modeling in the circuit, i.e., once
we model the feedback path of a latch by an enabled
latch, we restrict the logic optimization of the feedback
logic by not usinge as don’t care and also, we move the
latch in tandem with the logic for the enable signal. This
will guarantee the event correspondence in two circuits.
However, by preserving the multiplexor logic we incur
some optimization penalty.

(b) By using the lower limit of the possible data signal, i.e.,
d = F�x. This guarantees the matching of the enable
signals, but an optimization penalty may be incurred.

(c) By performing a canonical decomposition of the enable
and data signals. The lemma 5.2 gives a sufficient con-
dition for such a decomposition.

Lemma 5.2 (Data-enable decomposition)Given a functionF =

Ax + B, suppose(e; d) and (e; d̂) are two decompositions such
thate andd have disjoint Boolean supports. Thend = d̂, i.e., there
is a unique decomposition ofF such thatd and e have different
supports (if such decomposition exists).

The feedback modeling as derived in Figures 8 and 9 is best
suited for the class of circuits where latches update their values
when a set of conditions is met, else they keep their previous values.
This is illustrated in Figure 10.

The latches with feedback paths, for which we cannot derive the
enabled latch model, are handled in the following way. We find
a minimum number of latches that need to be exposed, i.e., need
to be made observable, in order to remove the feedback path for
these latches. By exposing latches, we treat their outputs as primary
inputs and hence the feedback paths are broken, i.e., we cut the
latches from the circuit.After finding the minimal set of latches to
be exposed, we impose constraints on the synthesis step such that
these latches cannot be moved during retiming.

6 Experimental Setup

6.1 Circuit Modification

Given a sequential circuitC, we create a directed graphG = (V; ~E)
in the following manner. For each combinational gate, latch, pri-
mary input and primary output we create a node. An edge from
nodevi to vj is created if there is a fanout from gate/latch/primary-
input i to gate/latch/primary-outputj. The graph in general has cy-
cles due to feedback paths to latches. In the current work we have
not implemented the technique to identify the latches with feedback
paths that satisfy the criterion mentioned in the previous section.
Instead, we obtain a minimal set of latches to expose such that the
circuit becomes acyclic.

6.2 Retiming

Retiming was done usingMinaret [13]. This tool only supports the
constant delay model (we could not find any efficient public domain
retiming tools, that supported better delay models). Retiming was
performed in two modes. First, the minimum feasible period was
obtained and the area of the circuit was optimized for this period.
In the second mode, the delay obtained through combinational op-
timization was used as the timing constraint and then constrained
minimum area retiming was performed.

We could not find a retiming tool which could handle latches
with enable signals as proposed in [11]. Hence, in the current work
we show results on retiming of circuits with regular latches.

6.3 Combinational Optimization

We used SIS [7] to obtain a minimum delay circuit. A modified
version of “script.delay” was used. The modifications were made
because the original script was not able to handle large designs (or
took very long to complete).

As mentioned earlier, the unit delay model was used during re-
timing. Hence for consistency we used the unit delay model during
the synthesis steps as well. To keep the size of gates small, we cre-
ated a library consisting of inverter, 2-input nand and 2-input nor
gates only. Also, for reasonable optimization results we limited the
number of fanouts of each gate to four. The delay models and the
fanout limitation changes were achieved by appropriately modify-
ing the library.

6.4 Generating Equivalent Combinational Equiva-
lence Problems

In order to leverage from the existing combinational equivalence
tools, we mapped the equivalence problem of CBF/EDBFs into
combinational equivalence problems. This was done by creating
a combinational circuit with appropriate variables which represents
the CBF or EDBF as shown in Figure 5. The combinational cir-
cuit Figure 5(b) represents the CBF for the sequential circuit Fig-
ure 5(a). Essentially, if the circuit outputs depend on the value of a
signal atk different time instants (for a circuit with regular latches)
or with k different enable signal paths (for a circuit with enabled
latches), the cone of logic for the signal is replicatedk times. The
size of these circuits could become large due to replications. Note,
however, that this step is performed only for convenience (to treat
the combinational equivalence checker as a black box). In practice,
a modified combinational equivalence checker could be used which
would not require generation of such circuits and hence no blow-up
would occur. The combinational verification was performed by an
in-house tool.

7 Experimental Results

Our experiment consisted of the following steps

1. Given the sequential circuit (A), modify it appropriately to
satisfy constraints on all feedback paths to obtain a new cir-
cuit (B). This is done by creating a circuit graph and finding
a minimal feedback vertex set. Due to the lack of a retim-
ing tool which could handle load-enabled latches, we did not
model any latches with feedback path as load-enabled latches
(as shown in Figure 8).

2. Perform synthesis for delay optimization and min-period re-
timing on the modified circuit (B) to obtain a new circuit (C).

3. To illustrate the advantage of combining retiming with combi-
national synthesis, we also performed pure combinational op-
timization (using the same script) on the original circuit (A)
to obtain circuit (D).

4. We also compared the savings in area by performing con-
strained minimum area retiming. This was done on circuit
(B) with the delay value of circuit (D) to obtain a new circuit
(E).

5. Combinational circuits (H and J) were created (as described
in Section 6.4) from circuits (B) and (C) respectively.

6. Perform combinational verification between (H) and (J). Veri-
fying equivalence of circuits (B) and (E) would be similar and
is not done in the experiment.

The active area and delay numbers are obtained by the “map” com-
mand. The verification was performed on an UltraSparc-1 with
256MB of memory.

In Table 1, we have given results comparing the optimization po-
tential of our strategy and also the corresponding verification times.

All the industrial circuits we investigated contained load-enabled
latches. Since we did not have access to a retiming tool for circuits
with load-enabled latches, we could not perform retiming on these
circuits and hence could not get optimization and verification re-
sults. We performed a structural analysis of 12 industrial designs
with upto 2200 latches. The percentage of latches that needed to be
exposed to make the circuit acyclic ranged from 2% to 61% with an
average of 36%.

7.1 Analysis

By analyzing the data given in Table 1 we make the following ob-
servations:

1. Comparing� values in columns C and D, for most of the cir-
cuits the delay values obtained through our approach is better
than that by pure combinational optimization. In some cases
delay values reduce by as much as 50%. The area penalty
incurred in the process is negligible.

2. Comparing area numbers in columns D and E, for the same
delay, retiming allows us to reduce the area.

3. The verification times were quite reasonable. Most of the ex-
amples took less than a minute to verify. The maximum time
taken is fifteen minutes. Note that, for only a few of these se-
quential circuits the state-space can be traversed, and for fewer
yet the state-space of the product machine can be traversed.
This makes the proposed technique quite attractive.

Circuit A C D E Time
L % # L Area � Area � # L Area H vs J

minmax10 30 66 30 0.74 50 1.00 56 30 0.74 2
minmax12 36 66 36 0.75 54 1.00 57 36 0.75 2
minmax20 60 66 60 0.80 64 1.00 94 60 0.80 3
minmax32 96 66 96 0.72 96 1.00 145 96 0.72 5

prolog 65 43 65 0.97 17 1.00 18 65 0.97 7
s1196 18 0 18 1.00 21 1.00 21 18 1.00 5
s1238 18 0 18 0.99 19 1.00 19 18 0.99 7
s1269 37 75 37 0.98 32 1.00 33 37 0.98 6
s1423 74 95 74 1.00 44 1.00 45 74 1.00 6
s3271 116 94 116 0.99 25 1.00 26 116 0.99 7
s3384 183 39 154 0.95 56 1.00 57 154 0.95 34
s400 21 71 21 0.98 13 1.00 14 21 0.98 1
s444 21 71 21 0.99 13 1.00 14 21 0.99 1
s4863 88 18 142 1.04 32 1.00 58 83 0.99 4:25
s641 19 78 19 1.00 24 1.00 24 19 1.00 1
s6669 231 17 234 1.00 55 1.00 85 214 0.98 1:54
s713 19 78 19 0.96 24 1.00 25 19 0.96 1
s9234 135 66 144 1.00 27 1.00 30 135 0.98 22
s953 29 20 29 1.00 14 1.00 16 29 1.00 3
s967 29 20 29 1.00 14 1.00 15 29 1.00 3
s3330 65 43 65 0.96 17 1.00 19 65 0.96 7
s15850 515 72 515 1.00 46 1.00 46 515 1.00 11:24
s38417 1464 70 1463 1.03 36 1.00 37 1463 1.03 15:32

Table 1: Results on sequential optimization and verification.

A,B,C,D,E,H,J: As described in Section 7
L,%: Latches, Percentage of latches exposed in B
Area/�: Area (normalized against D) / Delay of the circuit
H vs J: CPU time (in minutes:seconds) for combinational verification between H and J

8 Conclusions and Future Directions

We proposed a practical verification technique for circuits which
have undergone retiming and combinational synthesis transforma-
tions. In particular, we show that the corresponding sequential ver-
ification can be reduced to an extension of combinational verifica-
tion. The proposed technique can deal with circuits with and with-
out feedback paths, and with regular and load-enabled latches. We
impose a constraint on the feedback path (if one exists) of latches.
If these constraints are not met by the original circuit, we fix the po-
sition of some of the latches to cut the feedback paths. Our strategy
can be used to obtain faster circuits by allowing retiming transfor-
mations while performing fast verification, as indicated by our ex-
perimental results. Availability of a retiming tool which can move
enabled latches across combinational blocks is critical for sequen-
tial optimization of industrial circuits. To make our approach exact
for arbitrary sequential optimizations, we need to develop a com-
plete technique to distinguish events and combination of events and
signals.

References

[1] P. Ashar, A. Gupta, and S. Malik. Using Complete-1-Distinguishability for
FSM Equivalence Checking. InProc. IEEE/ACM International Conference on
Computer-Aided Design, Nov. 1996.

[2] G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan. Formal Implementation
Verification of the Bus Interface Unit for the Alpha 21164 Microprocessor. In
Proc. IEEE/ACM International Conference on Computer Design, 1997.

[3] R. E. Bryant. Boolean Analysis of MOS Circuits.IEEE Trans. Comput.-Aided
Design Integrated Circuits, pages 634–49, July 1987.

[4] C. A. J. van Eijk. Sequential Equivalence Checking without State Space Traver-
sal. InDesign Automation and Test in Europe, Feb. 1998.

[5] O. Coudert and J. C. Madre. A Unified Framework for the Formal Verification of
Sequential Circuits. InProc. IEEE/ACM International Conference on Computer-
Aided Design, pages 126–9, Nov. 1990.

[6] M. Damiani and G. De Micheli. Recurrence Equations and the Optimization
of Synchronous Logic Circuits. InProc. of the IEEE/ACM Design Automation
Conf., pages 556–561, June 1992.

[7] E. M. Sentovich et al. SIS: A System for Sequential Circuit Synthesis. Tech-
nical Report UCB/ERL M92/41, Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, May 1992.

[8] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. On Verifying the Correctness of
Retimed Circuits. InProceedings. The Great Lakes Symposium on VLSI, pages
277–80, 1996.

[9] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen. AQUILA: An Equivalence Veri-
fier for Large Sequential Circuits. InProc. of Asian and South Pacific Design
Automation Conf., 1997.

[10] W. Lam. Algebraic Methods for Timing Analysis and Testing in High Perfor-
mance Designs. PhD thesis, University of California Berkeley, Apr. 1993. Mem-
orandum No. UCB/ERL M94/19.

[11] C. Legl, P. Vanbekbergen, and A. Wang. Retiming of Edge-Triggered Circuits
with Mulitple Clocks and Load Enables. InProc. IEEE/ACM Intl. Workshop on
Logic Synthesis, 1997.

[12] C. E. Leiserson and J. B. Saxe. Optimizing Synchronous Systems.Journal of
VLSI and Computer Systems, 1(1):41–67, Spring 1983.

[13] N. Maheshwari and S. S. Sapatnekar. An Improved Algorithm for Minimum-
Area Retiming. InProc. of the IEEE/ACM Design Automation Conf., 1997.

[14] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Brayton. The Validity of Retiming
Sequential Circuits. InProc. of the IEEE/ACM Design Automation Conf., pages
316–21, June 1995.

[15] D. Stoffel and W. Kunz. A Structural Fixpoint Iteration for Sequential Logic
Equivalence Checking Based On Retiming. InProc. IEEE/ACM International
Conference on Computer-Aided Design, Nov. 1997.

[16] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Implicit State Enumeration of Finite State Machines using BDD’s. InProc.
IEEE/ACM International Conference on Computer-Aided Design, pages 130–
133, Nov. 1990.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

