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Abstract
The basic drawbacks related to the design of self-checking
circuits include high hardware cost and design effort.
Recent developments on self-checking operators based on
parity prediction compatible schemes allow us to achieve
high fault coverage and low hardware cost in self-checking
data paths for the majority of basic data path blocks such
as, adders, ALUs, shifters, register files, etc. However,
parity prediction self-checking multipliers involve a
hardware overhead significantly higher than for other
blocks. Thus, large multipliers will increase significantly
the hardware overhead of the whole data path. Residue
arithmetic codes allow to reduce this cost. The tools
presented in this paper generate automatically self-
checking multipliers using such codes. They complete our
tools using parity prediction for various other blocks, and
enable automatic generation of low cost self-checking data
paths.
Keywords: Self-Checking Circuits, Fault Secure Circuits,
Multipliers, Residue Arithmetic Codes.

I. Introduction

Self-checking designs achieve concurrent detection of
errors produced by both permanent and transient faults. In
the past this kind of circuits was dedicated to specific
applications requiring high safety levels (e.g. Railway
control [DUF96], control of critical functions in
automotive [BOE97], etc.), or evolving in hostile
environments (e.g. satellites). In addition, device
shrinking, power supply reduction and increased operating
speeds that accompany the process of very deep sub-
micron scaling, affect adversely circuit noise margins [NIC
98a] [NIC 98b] [NIC 98c]. This makes circuits
increasingly sensitive to various internal and external noise
sources. We are approaching a point where soft error rates
are becoming unacceptable. In this context, protection
against soft errors will be necessary even for applications
for which reliability is not a main concern. For instance,
for CMOS processes below 0.1 µm, the. frequency of
single event upsets (SEUs) induced by hot neutrons will
become unacceptable even at ground level.

Due to the high clock frequencies this problem will no
more affect memories only but also logic parts. The main
problem will concern the logic parts, since memories can
be protected efficiently by using error detecting and
correcting codes. Self-checking circuits may provide a
potential solution to this problem, since they can detect
soft errors immediately as they occur. Thus, we can correct
them by repeating the last operation. As a matter of fact, in
the new context, the interest for self-checking design is
enhanced drastically. Data paths are essential (and
generally the biggest) logic parts of microprocessors and
micro-controllers. As a matter of fact efficient self-
checking data path design may have an important impact
on the design of the next generations of ICs. Self-checking
designs verifying the fault secure property guaranty that
the output errors generated by the modelled permanent or
transient faults are detectable. Thus, designs verifying the
fault secure property will allow to achieve high levels of
reliability.
The basic drawbacks related to the design of self-checking
circuits include high hardware cost and high design effort.
Using parity codes for checking memory systems and
register files may guaranty the fault secure property and
still maintain low hardware cost. However arithmetic
operators produce output errors of random multiplicity
which generally are not detectable by the parity code. Thus
the parity prediction scheme [SEL68], [GAR68] does not
achieve the fault secure property for these circuits. Recent
developments on arithmetic operator design based on parity
prediction [NIC 93] [NIC97a] [NIC97b] [DUA97] have
demonstrated the feasibility of low cost fault secure, for
many of the basic blocks used in data paths including:
adders, ALUs, dividers and shifters. These solutions  was
integrated into a set of tools that generate automatically
various versions for these blocks. These tools reduce
drastically the design effort related to the implementation of
a self-checking data path and make self-checking data paths
attractive. However, in the case of multipliers, fault secure
design based on parity prediction requires a hardware
overhead in the range of 40% to 50% . This is much higher
than the overhead required for the other types of blocks. In



the case of large multipliers it will affect adversely the
hardware overhead required for the whole data path. As an
alternative, residue arithmetic codes can be used to check
the arithmetic operators [PET72] [AVI73] [SPA93]
[SPA94]. These codes add in the information part a check
part representing the modulo A of the information part.
Usually A is of the form 2k-1, and the resulting codes are
known as low-cost residue arithmetic codes. These codes
may ensure fault secureness in many arithmetic operator
cases. In addition, the arithmetic code prediction for an
adder or a multiplier requires compact hardware. It consists
on a small arithmetic operator (adder, multiplier) which
adds or multiplies operands of two or three bits length (the
check parts of the operands), followed by a modulo A
generator which computes the modulo A of the result. This
hardware is constant (i.e. independent of the size of the
arithmetic operator). Arithmetic code checking also
requires an arithmetic code checker and some code
translators. The translators (modulo A generators and parity
generators) are required between the parity checked parts
(memory system and some blocks of the data path) and the
arithmetic code checked parts. The size of the checker and
translators is proportional to the size of the operands and
represent a high hardware cost. Because the extra parts are
either of constant size or proportional to the size of the
operands, while the size of the multiplier is proportional to
the square of the size of the operands, for large multipliers
the area overhead for the arithmetic coding can become
very low. However for small and medium size operands the
parity prediction will require a lower overhead. Thus, an
efficient CAD system must includes tools for both schemes.
To complete our software, this paper presents a set of tools
allowing automatic generation of self checking multipliers
based on residue arithmetic codes. The tools handle a wide
range of multiplier structures.

II. Self-Checking Data Path

An example of a self-checking data path based on a BUS
oriented architecture is shown in figure 1.This data path
includes: a Carry Checking/Parity Prediction adder/ALU
block based on the technique presented in [NIC93]
[NIC97b], a parity prediction shifter implemented
according to [DUA97], and a register file extended to
include a parity bit to each register location. The functional
blocks communicate through the data path BUSes A and
B. The S-C shifter includes means for parity prediction,
while the S-C adder/ALU includes means for carry
checking and parity prediction. The register file and the
BUSes include a parity bit. The data are checked during
their transfer from one block to another by the two parity
checkers connected to the BUSes. The selection of parity
checking for the BUSes, and register file is obvious since
we just need to add a parity bit, resulting to the lowest
possible hardware cost. In addition this solution achieves
fault secureness due to the bit slice structure of these parts,

and also it is compatible with  parity checked memory
systems. The selection of parity prediction for shifters is
also clear since this scheme achieves the fault secure
property by means of low hardware cost [DUA97], while
arithmetic code prediction for shifters requires very high
hardware

PBUS A

Register
File

E.I

P
ar

ity
 c

he
ck

.

E.I

P
P. Reg. File

BUS B

PBUS B

BUS A

S
H

IF
T

E
R

P
ar

ity
 c

he
ck

.

PS

C

S

C

Q

Q

E.I

PA

PB

Parity
Predict

2-
R

 C
he

ck
er

A
LU

 O
ut

. L
at

ch

S
-C

 A
dd

er
/A

LU

 Figure 1: Self-checking data path

cost. The selection of the Carry Checking/Parity
Prediction scheme for adders and ALUs is also clear since
this scheme achieves the fault secure property for any
adder/ALU design by means of low hardware cost
[NIC93] [NIC97b]. On the other hand, arithmetic code
prediction requires to use two arithmetic code generators
to generate the check parts for the adder input operands,
an arithmetic code checker to check the results, and a
parity generator to make the results compatible with the
other data path blocks. We also have to add the arithmetic
code prediction circuit, which in the case of adders is
simple but in the case of ALUs is very complex These
extra blocks require a very high hardware cost, so that the
use of arithmetic codes in the case of adders/ALUs has
reduced interest.
The choice is less obvious in the case of multipliers. For
these circuits the parity prediction solutions presented in
[NIC97a] achieve fault secureness by means of a hardware
cost of the order of 40% to 50%, which is significantly
higher than in the case of adders/ALUs and shifters. On the
other hand, although the use of arithmetic codes for
multipliers requires the same input and output code
translator and checkers as for adders, these blocks have a
cost linear to the size of the operands, while the cost of the
multiplier is linear to the square of the operands. Thus, for
large multipliers the use of arithmetic codes may result on
very low cost. As a matter of fact, an efficient set of tools
must include generators of S-C multipliers based on both
schemes. This way the user will be able to implement the
less expensive solution depending on the size of the
multiplier. Based on the solution described above, we have
developed several parameterised macro-block generators.
They generate all the basic blocks with parameterised size
required for the design of the S-C data paths including:
parity checkers, double rail checkers, parity prediction
shifters, Carry Checking/Parity prediction adders and



ALUs for various ripple-carry and carry look ahead
implementations, parity prediction for various multiplier
structures and array dividers, as well as various multiplier
structures based on arithmetic codes. The tool is developed
in C and generates a netlist description of the operator in
VHDL or Verilog HDL. This description can then be used
by standard CAD tools to synthesize the layout of the self-
checking design. The following sections present the tools
allowing the generation of self-checking multipliers based
on arithmetic codes.

III. Self-Checking Multipliers Based on
Residue Arithmetic Codes

In the following, we discuss the fault secure
implementation for the various structures of multipliers
proposed in the literature and used in practice. The fault
model includes faults affecting a single gate at a time.
These faults will produce an error on the gate output. The
error can be propagated through the subsequent gates until
the multiplier outputs. To guaranty fault secureness, all
output errors produced by this process must be detected by
the residue arithmetic code. The fault model considered
above can be extended to include distinct sets of gates.
Thus, in the case of figure 2 we will consider any fault
affecting the set of gates generating C and any fault
affecting the set of gates generating S. In figure 3 we will
consider any fault affecting the XOR gate generating P, the
XOR gate generating S, or the set of gates generating C.

III.1. Array Multipliers

Array Multipliers are implemented by a partial product
generator (AND gates) and a network of full and half
adders. The network of adder cells is often implemented,
as an iterative array of full and half adders, followed by a
carry propagate adder (last row of the array), which is
usually implemented as a ripple-carry adder (e.g. Braun
multiplier, Pezaris multiplier, etc. [HWA79]).
For array multipliers the effects of an error in self-checking
multipliers based on residue arithmetic codes are well
known from the literature. To ensure the fault secure
property for this scheme, the arithmetic value of the errors
produced at the multiplier outputs must not be divided by
the base of the residue arithmetic code. An error produced
on one output of a full/half adder cell has the arithmetic
value +, - 2i, where i is the weight of the erroneous signal.
This error is added to the result through the adder cells
network, resulting on the same value of output error. This
is a single arithmetic error and it is not divided by 3. Thus,
if the cells produce single errors on their outputs (i.e. only
the output S or only the output C is erroneous) we can use
as check base A = 3, which corresponds to the cheapest
check base (2 check bits). This situation will arise when
there is no circuitry shared between the carry and sum

outputs of the adder cell, as in the case of figure 2. On the
other hand, when S and C share some gates, as in figure 3,
both signals S and C can be erroneous at the same time. In
this case the error can also take the values +  3. 2i and -  3.
2i. Then the check base A = 7 can be used to achieve fault
secureness. However, in figure 3, the double error on
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Figure 3: cell with some logic shared between
The signals S and C (type 2)

signals C and S occurs when a fault on the shared logic
produces an error on the signal P. This error is always
propagated to S (since S=P⊕Cin). Since C = P.Cin+A.B,
this error will also be propagated to C only if Cin = 1 and
A.B = 0. In this case we have S = p  and C = P. Thus, the

arithmetic values of this double error are 2i+1-2i = 2i for P =
0�1 and -2i+1+2i = -2i for P =1 �0. In both cases we have
a single arithmetic error. Therefor , using the check base A
= 3 will achieve fault secureness for the cell of figure 3
too.

III.2. Fast Multipliers

III.2.1. Wallace Trees

For large multipliers the arrays of full and half adders will
introduce large signal delay, i.e linear to the number of the
multiplier inputs. For achieving logarithmic delay, the
partial products generated by the AND gates are
accumulated using Wallace trees [KOR93]. Although the
structure of the network adder cells used in the Wallace
trees is different than the one used in array multipliers, the
errors produced to the multiplier outputs due to a fault in
an adder cell are the same. This is because in both cases
the adder network will add to the final result the arithmetic
value of the error produced on the outputs of the faulty
adder cell.
The outputs of the wallace trees feed a carry propagate
adder. This adder can be implemented in a ripple-carry
manner. This adder structure is a network of adder cells
and the output error is again ±2i. Thus the base 3 achieve
fault secureness as discussed above. However, the ripple-
carry implementation of the carry propagate adder is
inefficient since the Wallace trees exhibit logarithmic



delay while the delay of the ripple-carry adder is linear.
Thus, to improve the speed, the carry propagate adder
must be implemented in a carry lookahead manner. In that
case, the adder is not a network of full and half adder cells,
and the choice of the base is less obvious. This problem is
discussed below.

III.2.2 Base Selection for Fast Adders

The base selection for fast adders was discussed  in details
in [SPA93]. The problem here is that the
carries are generated by a carry lookahead function which
has a structure radically different than the adder cell
networks. Thus, the error propagation is also different,
resulting on various error types. To determine the
arithmetic values of the output errors, we can consider the
following facts :
1. only faults on signals with divergent degree higher than
one may give errors different than ±2i .
2. consider an error on such a signal (e.g. signal wi ). This
error can be propagated on carry ci. Each carry cj (j>i)
functionally dependent on ci is also functionally dependent
on wi (i.e. cj can be expressed as a function of wi and of
other various signals). However, in the actual
implementation we can have that all signals cj (j>i) are
structurally dependent on wi or only a subset of these
signals are structurally dependent on wi. In the first case an
error on wi is always propagated on an error of the form
±(2 i+k-2i+k-1-2i+k-2-…-2i+1)= ±2i+1, which is a single
arithmetic error. The errors in the second case can be
obtained from the errors obtained from the first case [±(2
i+k-2i+k-1-2i+k-2-…-2i+1)] if one removes the errors on the
carries which are not structurally dependent on wi . The
analytical description of these errors is given below :
The signals c i+k, k∈{1, 2, …, r}; c j1+k1 , j1>i+r, k1∈{1, 2,
…, r1}; c j2+k2 , j2>j1+r1, k2∈{1, 2, …, r2}; …; cjm+km , jm>j

m-1+r m-1, km∈{1, 2, …, rm}, j m+rm<n are structurally
dependent on wi and no other signal is structurally
dependent on wi . In this case the output errors are :
±[a0(2

i+1+2i+2+…±2i+k)+a1(2
i1+1+2i1+2+…±2i1+k1)+

a2(2
i2+1+2i2+2+…±2i2+k2)+…+ am(2im+1+2im+2+…±2im+km)],

where a0, a1, …, am ∈{0,1}.
In addition to this relationship we have the following
conditions :

1. aq+1=0 if aq=0.
2. aq+1=0 if the sign of 2iq+kq is negative.
3. the sign of 2iq+kq is always negative if kq<rq.

In order to exploit these results our software explores the
carry lookahead network to establish the set of carries that
are dependent on each signal wi . From these sets, the
analytical description of the output errors is generated.
Then, the tool searches for the smallest odd integer that
does not divide any of these errors values. This number
can be used as check base to achieve fault secureness for
the multiplier that includes the particular adder structure

on its output stage. Because the low-cost arithmetic codes
(check base of the type 2k-1) usually require simpler
hardware than other check bases, then, if the smallest
check base identified by the above procedure is not of the
type 2k-1, the tool also searches for the smallest check base
of this type. This way we can generate the hardware for
both bases and select the most compact one.
The macro-block generators for fast adder modules in our
set of tools generate the most efficient adder structures
proposed in the literature, including : Kogge&Stone
[KOG73], Han&andCarlson [HAN87], Brent&Kung
[BRE82], Sklansy [SKL60], and an adder using Carry
Look Ahead Units [HWA79]. Table 1 shows the bases
found for the different structures used. For Kogge-Stone
and Han-Carlson cases we give the minimal base and the
minimal low cost base that ensure fault secureness.

Check Base 16 bits 32 bits 64 bits 128 bits

26-1 37 37 37
Kogge&Stone

212-1 212-1 212-1

24-1 26+1 26+1 26+1
Han&Carlson

28-1 28-1 28-1

Brent&Kung 7 7 7 7

Sklansky 3 3 3 3

Carry Lookahed
Units

3 3 3 3

Table 1 : Check bases found for different structures of
fast carry determination.

III.2.3. Booth Multipliers

In Booth multipliers, the number of partial products is
reduced by one half by means of encoding the biggest
input operand. So, the area cost for the overall circuit is
also reduced. For these multipliers, beside the problem of
check base selection for the fast adder (which might be
used at the last stage), local errors in the Booth encoding
may produce output errors which need a base > 2n-1 to be
detected (where n is the size of the biggest input operand).
In [SPA96], the duplication of the encoder was proposed,
then errors in encoding logic are detected by using a
double-rail checker. It was also shown [SPA96] that some
local errors in the network of full and half adders produce
overflow errors at the output of the multiplier (since two's
complement numbers are treated). In this case the lowest
check base achieving fault secureness is 7. For the base 3,
undetectable errors may occur only for one input
combination, and for a very small number of faults. Thus
the use of the check base 3 will slightly  reduce reliability.
As a matter of fact, in our experiments we have used both
3 and 7 values for the check base.

IV. Modulo Generators



The residue generator is an essential building block for
arithmetic error detecting codes. Because the output errors
are of the type ±2i , only odd check bases are of interest.
For low-cost arithmetic codes (check base of type 2k-1),
modulo residue generators can be efficiently implemented
by exploiting particular properties of modulo arithmetic
applied to these codes. In fact for A=2k-1, 2km modulo A=1
for any integer m. Thus, the residue of a binary number can
be obtained by splitting it into bytes of k bits and
performing modulo A addition of these bytes. Modulo A
addition of two k-bit bytes is performed by using a k-bit
adder in which the carry output is injected on the carry
input (carry end-around adders). This is because 2k modulo
(2k-1)=1. Thus, a tree of k-bit carry end-around adders can
be used to build the residue generator for the check base
A=2k-1. These results are known from the very early
developments on residue arithmetic codes (e.g. see
[AVI73]). However in several multiplier cases, residue
generators for other check bases can be of interest.
In [PIE94] new procedures for synthesizing residue
generators and Multi-Operands Modular Adders
(MOMA's) were presented. First, the periodic properties of
the series of powers of 2 taken mod A, previously
observed and exploited for A=2a-1, were extended to any
odd A. Then, due to periodicity, it was shown that a Carry
Save Adder/Carry Propagate Adder (CSA/CPA) network
with end-around carry can be built for any odd base A..
These new generators are shown faster and less costly than
conventional designs. The simpler designs correspond to
the bases of the type 2k-1. Such an example for k=3 is
shown in figure 4.a. The period of the powers of 2 modulo
7 is 3. Thus, this example exploits the fact that the residue
modulo 7 of 1, 8, 64,… is equal to 1. Thus X0, X3 and X6

are added by using a full adder. Similarly, the residue
modulo 7 of 2, 16, 128, … is equal to 2. Thus a full adder
is used to add X1, X4, and X7, and so on. Another simple
case corresponds to the bases of type 2k+1. Such an
example for k=3 is shown in figure 4.b. The half-period of
powers of 2 modulo 9 is 3. Thus, this example exploits the
fact that the residues modulo 9 of 1, 8, 64, … are
respectively +1, -1, +1, …. Thus , X0, -X3 and X6 have to
be added. Similarly the residues modulo 9 of 2, 16, 128 are
respectively 2, -2, 2, …. Thus X1, X4, X7 have to be added.
To avoid subtraction which may require complex circuits,
the above operations are performed by using a full adder
and inverting the bit that has to subtracted. In this
operation, each inverted bit add an error of +1x2i (i.e. +1
for X3, +2 for X4 and +4 for X5). This error is corrected by
subtracting a constant modulo A at the end. In the example
we have to subtract 8 modulo 9 or equivalently to add 1
modulo 9. For bases different than A=2a-1 and A=2a+1 the
design is more complex. It employs some ROM's and a
Modular Adder. For more details see [PIE94]. Sharting
from this analysis we have implemented systematic
procedures that allow to implement residue generators for
any check base.
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Figure 4 : Schematic block for 8-bits number modulo 7
and modulo 9.

V. Self-Checking Multiplier System

The block diagram of the self-checking multipliers based
on residue arithmetic codes is shown in figure 5. It is
composed of the multiplier block, two modulo A
generators to generate the check parts of the input
operands (these check parts are not provided by the data
path which is checked by the parity code), a  Modular
Multiplier  to generate the check part of the result of the
multiplication, an arithmetic code checker to check the
result of the multiplication against its check part (such a
checker is not provided by the data path), and finally a
parity generator to generate the parity of the result for use
by the other data path blocks. The Modular Multiplier is
composed of AND gates and a Modular Adder [PIE94] in
the case of low cost bases and of a multiplier and a modulo
generator in other cases. The arithmetic code checker is
composed of a modulo A generator to generate the residue
of the multiplier output, a translator [NIK88] to overcome
the problem of the two representations of zero (not
necessary when using not low-cost bases), and a double-
rail checker. The design is pipelined as shown in the figure
5, by inserting a set of latches on the outputs of the
multiplier and on the outputs of the Modular Multiplier.
Thus, the results of the multiplier are checked during the
subsequent clock cycle. So, no performance penalty will be
introduced if none of the blocks placed beyond or below
the latches has a delay longer than the multiplier itself.
This case however happens in small or medium size
multipliers(8x8, 16x16) using check bases different than
2k-1 and 2k+1. In such situations the modulo A generator
placed on the outputs of the check-parts multiplier is
transferred to the front of the arithmetic code checker (i.e.
below the latches). This balances better the delays of the
different parts and reduces the performance penalty. This
solves problem for most cases but for check bases different
than 2k-1 and 2k+1 we still introduce performance penalty
as illustrated from the results shown in the next sections.
To generate the self-checking multiplier system, we have



implemented a set of tools for determining the check bases,
and various parameterised

T1

T2

     M u ltip lie r
(operands)

M ultiplier
(check parts)

M
o

d
u

lo
 A

G
e

n
e

ra
to

r

M
o

d
u

lo
 A

G
e

n
e

ra
to

r

Latches

M odulo A
Generator

Inverters
block

D-R Checker

Parity
Generator

Latches

Arithm etic
code

checker
Translator

M odulo A
Generator

M odular
M ultiplier

(M M )

Figure 5: Block diagram of the S-C multiplier
system based on the residue arithmetic codes.

macro-block generators that generate the different blocks
shown in figure 5 (modulo A generators for any check
base and data length, translator, 2-rail checker and
multipliers). In particular our tools generate various
multiplier structures such as array multipliers, Wallace
trees multipliers and Booth multipliers, using various carry
propagate adders such as ripple-carry, Kogge&Stone,
Brent&Kung, Sklanski, and carrylook ahead units. The
tool is implemented in C and generates netlist description
in VHDL and Verilog HDL.

VI. Experimental Results

The tool was used to perform experiments for various
multiplier sizes and structures. Area and time were
calculated using the Synopsys software. The results are
shown in tables 2 to 7. In tables 2, 4 and 6 T1 represents
the worst case delay for the multiplier and T2 the worst
case delay for the extra blocks (see figure 5). For Braun
multiplier, the Full Adder choice impacts drastically the
speed of the multiplier and so we have reported results for
the two types of full adder (see figures 2 and 3). In the
other cases, the two full adders produces almost the same
delay and so we reported results for type 2 full adder
which is smaller. The area overhead for 8x8 multipliers is
quite high. In this case the parity prediction scheme
[NIC97a] will be preferred. For bigger multipliers the area
overhead is reduced significantly going down to 5% or 6%
for 64x64 multipliers. This illustrates the superiority of the
residue checked scheme in the case of big multipliers.
Tables 4 and 6 concern the case of multipliers using
Wallace trees and fast carry propagate adders on their last
stage. The type of the adder structure determines the check

base required to achieve fault secureness. In tables 4 and 6
we can observe that for small operands size (8x8
and16x16), the use of Kogge-Stone and Han-Carlson

8x8 16x16 32x32 64x64
Performance

Penalty T1
(ns)

T2/T1
%

T1
(ns)

T2/T1
%

T1
(ns)

T2/T1
%

T1 (ns)
T2/T1

%
FA type1 29,9 0,0 64,7 0,0 135 0,0 282,9 0,0
FA type2 34,4 0,0 74,1 0,0 155.3 0,0 321,6 0,0

Table 2 : Performance penalty for Braun multiplier.

Area
Overhead(%)

8x8 16x16 32x32 64x64

FA type1 47.3 21.5 10.3 5.0
FA type2 54.4 25.0 12.0 5.9

Table 3 : Area overhead results for Braun multiplier.

8x8 16x16 32x32 64x64Performance
Penalty T1

(ns)
T2/T1

%
T1
(ns)

T2/T1
%

T1
(ns)

T2/T1
%

T1
(ns)

T2/T1
%

37 34,7 75,2 54,1 23,8 91,0 0,0

Kogge &
Stone 212-1 23,5 58,7

(26-1)
34,7 67,4 54,1 7,4 91,0 0,0

26+1 39,3 22,4 58,7 0,0 95,3 0,0Han &
Carlson

28-1 26,2 8,0
(24-1)

39,3 22,4 58,7 0,0 95,3 0,0

Brent &
Kung

7 27,3 0,0 40,3 0,0 62,4 0,0 102,3 0,0

Sklanski 3 26,1 3,8 37,9 0,0 58,3 0,0 96,6 0,0

CLA
units.

3 26,3 3,0 39,3 0,0 59,4 0,0 98,8 0,0

Table 4 : Performance penalty for Wallace multiplier.

A rea
O ve rhe a d  (% ) 8x8 16x16 32x32 64x64

37 1 0 0 .3 3 5 .8 1 1 .9

K ogge &
S tone

212-1
8 2 .4
(26-1 )

6 8 .8 2 3 .3 9 .0

26+ 1 4 2 .6 1 7 .5 7 .6
H an  &
C arlson

28-1
5 5 .0
(24-1 )

4 0 .7 1 6 .5 7 .4

B rent &
K ung 7 5 3 .4 2 6 .0 1 2 .8 6 .3

S k lansk i 3 4 3 .9 2 2 .0 1 1 .1 5 .6

C arry
look

A head .
3 4 5 .6 2 2 .7 1 1 .4 5 .7

Table 5 : Area overhead results for wallace multiplier.

adders might compromise the speed of the multiplier due
to the selection of check bases that result on modulo A
generators with long delay. In some cases we changed the
pipeline position of the check-part in order to not
compromise the speed. An example of that is the case of
Wallace 32x32 with Kogge-Stone adder with check
base=37, where the latches will be positioned on the
outputs of the modulo generators of the two operands.
Note that this change also implies an extra cost of 6 latch
cells. For check bases not of the type 2k-1 or 2k+1, the



hardware overhead and performance penalty can be quite
high. Thus, in that case, we do not stop with the lowest
check base but we continue our search until finding the
smallest base of the type 2k-1 or 2k+1. If this base of the
form 2n-1 the solution corresponds to the duplication
checking. Among the 5 fast adder cases, only the
Kogge&Stone adders give a minimal check base (37) not
of the type 2k-1 or 2k+1. For this adder we have also found
that the base 212-1 guarantees fault secureness. This base,
although much bigger than 37, gives better results as
shown in tables 5 and 7. Also for the three adders, the
lowest check base is a low-cost one (i.e. of the type 2k-1).
Finally for the Han&Carlson adder, the lowest check base
is 26+1. In this case also we have searched for a low-cost
check base and found the 28-1 one. This base gives slightly
better results. From the results we observe the following :
1. The selection of the adder structure impacts the
selection of the check base. This last may have a
considerable impact on hardware cost since modulo A
generators are very expensive for some check bases. Also
they may be very slow making some blocks slower than
the multiplier itself, thus impacting adversely the
performance of the whole design. The Kogge&Stone
adder which gives significant improvement on the
multiplier speed when compared with the adder using
carry look ahead units, is giving slower self-checking 8x8
and 16x16 multipliers. This is due to the check bases
required to achieve fault. In addition, the carry lookahead
units adders are more compact than any other adder. Thus
they will be preferred in most cases to any other adder
scheme. The Kogge&Stone  adder is becoming of interest
for 32x32 and 64x64 multipliers, in applications where
speed improvements are important. For instance, for the
32x32 multiplier using the Kogge&Stone adder, the self-
checking solution requires an area of 6.42 mm2  and has an
operation speed of 55.5 ns. The adder using carry
lookahead units requires an area of 5.508 mm2 and offers a
speed of 59.4 ns. Thus by paying an additional 16.6% of
area, the Kogge&Stone multiplier offers a 7% speed
improvement
2. Note that the area overhead for implementing the
self-checking solution is becoming very low as the
multiplier size is increased. For instance, for the 16x16
Wallace multiplier using the carry look ahead units, the
area overhead is 22.7% and becomes as low as 5.7% for
the 64x64 multiplier. At the same time no performance
penalty is introduced. This low-cost makes self-checking
design quite attractive even for applications not requiring
very high reliability levels.
The results for Booth-Wallace multipliers are shown in
tables 6 and 7. The area cost is lower than the area cost
required for both Braun multipliers and Wallace trees
multipliers. This is true for both the simple and self-
checking multipliers (except the 8x8 case). In addition the
speed performance is better than in the case of Wallace
trees multipliers. Finally the area overhead of the self-
checking version is increased due  to the duplication

checking of the Booth encoder part. However it still
remains acceptable for the 16x16 case (e.g. 33.5% for
carry lookahead units case) and decreases down to 9.5%
for the 64x64 multiplier.

8x8 16x16 32x32 64x64Performance
Penalty T1

(ns)
T2/T1

%
T1
(ns)

T2/T1
%

T1
(ns)

T2/T1
%

T1
(ns)

T2/T1
%

37 34.0 78,8 46.2 45,0 67.3 4,0

Kogge
& Stone

212-1 25.9 44.0
(26-1) 34.0 70,9 46.2 25,8 67.3 0.0

26+1 37.5 27,2 49.4 9,7 70.4 0.0
Han &
Carlson 28-1 26.8 5,6

(24-1)
37.5 28,3 49.4 14,2 70.4 0.0

Brent &
Kung

7 27.7 0.0 39.8 0.0 54.3 0.0 78.4 0.0

3 26.0 4,2 36.0 0.0 49.0 0.0 71.6 0.0
Sklanski

7 26.0 0.0 36.0 0.0 49.0 0.0 71.6 0.0

3 25.9 4,6 39.7 0.0 50.8 0.0 75.2 0.0Carry
Look

Ahead
units

7 25.9 0.0 39.7 0.0 50.8 0.0 75.2 0.0

Table 6 : Performance penalty for Booth-Wallace
multiplier.

Area overhead
(%) 8x8

16x1
6

32x32 64x64

37 126,8 50,7 18,3
Kogge

& Stone
212-1

92,4
(26-1)

88,8 34,1 14,3

26+1 56,9 26,5 12,1

Han &
Carlson 28-1 25,2

(24-1)
54,7 25,2 11,7

Brent &
Kung 7 63.0 37,4 20,3 10,2

3 54,5 32,5 18,2 9,3Sklanski

7 62,5 36,5 19,9 10,1

3 55,6 33,5 18,8 9,5Carry
Look

Ahead
units 7 63,7 37,6 20,7 10,3

Table 7 : Area overhead results for Booth-Wallace
multipliers

In the results presented, the delay of the parity generator is
not considered. This circuit adds several levels of XOR
gates increasing the total delay. Although the faster XOR
tree is the logarithmic one, this is not the network giving
the best results, due to the unbalanced delays on the
outputs of the multiplier. In the case of the multipliers
having a linear delay (array multipliers, multipliers using a
ripple-carry adder at their last stage, etc.), the best solution
is to use a linear XOR tree. In this case and for any
multiplier size, only one two-input XOR gate is added in



the critical path of the block composed by the multiplier
and the parity tree. In fast multipliers (using Wallace trees
and fast adders), again the logarithmic XOR tree does not
provide the best solution. By adapting the tree structure to
the delays of the multiplier array, the extra delay can be
reduced by one or two XOR levels. The obtained results
show approximately a delay of 18% for the 16x16 fast
multipliers using Wallace trees, 14% for the 32x32 fast
multipliers and 8.8% for 64x64 fast multipliers. However,
when speed is a main concern this performance penalty can
be avoided by sending the results of the multiplier to their
destination as soon as they are ready, and sending their
parity several nanoseconds later. This is possible because
no block in the data path needs to receive the parity bit at
the beginning of its clock cycle. This solution will require
to add some latches within the parity generator (e.g. 5
latches for the 16x16 multiplier), and implement the parity
slice of the data path by using a delayed clock. The details
of this implementation are not given here for space
reasons.

VII. Conclusions

In this paper we presented a tool for automatic generation
of self-checking multipliers based on residue codes. It
includes : a tool for computation of the check base
required for achieving fault secureness, a tool for building
residue generators for any check base and various macro-
block generators producing a wide variety of multiplier
structures. Experimental results show that the fault secure
property can be achieved with low hardware cost,
especially for large multipliers. This software completes
our tools for automatic generation of self-checking data
paths. They include generators for self-checking adders,
ALUs, shifters, register files, dividers and multipliers, all
based on parity coding. Thus, self-checking data paths are
generated by means of low hardware cost and design
effort. This kind of tools is becoming increasingly
important, in a context where the number of applications
requiring high levels of reliability is rapidly increasing and
where the shrinking of device size in IC technologies will
make mandatory the protection against transient errors.
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