
Abstract
Dynamically reconfigurable embedded systems offer

potential for higher performance as well as adaptability to
changing system requirements at low cost. Such systems
employ run-time reconfigurable hardware components such as
field programmable gate arrays (FPGAs) and complex
programmable logic devices (CPLDs).

In this paper, we address the problem of hardware/
software co-synthesis of dynamically reconfigurable
embedded systems. Our co-synthesis system, CRUSADE, takes
as an input embedded system specifications in terms periodic
acyclic task graphs with rate constraints and generates
dynamically reconfigurable heterogeneous distributed
hardware and software architecture meeting real-time
constraints while minimizing the system hardware cost. We
identify the group of tasks for dynamic reconfiguration of
programmable devices and synthesize efficient programming
interface for reconfiguring reprogrammable devices. Real-
time systems require that the execution time for tasks mapped
to reprogrammable devices are managed effectively such that
real-time deadlines are not exceeded. To address this, we
propose a technique to effectively manage delay in
reconfigurable devices. Our approach guarantees that the
real-time task deadlines are always met. To the best of our
knowledge, this is the first co-synthesis algorithm which
targets dynamically reconfigurable embedded systems. We
also show how our co-synthesis algorithm can be easily
extended to consider fault-detection and fault-tolerance.

Application of CRUSADE and its fault tolerance
extension, CRUSADE-FT to several real-life large examples
(up to 7400 tasks) from mobile communication network base
station, video distribution router, a multi-media system, and
synchronous optical network (SONET) and asynchronous
transfer mode (ATM) based telecom systems shows that up to
56% system cost savings can be realized.
1   Introduction

Embedded systems perform application-specific functions
using central processing units (CPUs) and application-specific
integrated circuits (ASICs). ASICs can be based on standard
cells, gate arrays or FPGAs or CPLDs. An embedded system
architecture consists of hardware architecture and software
architecture. Hardware architecture of an embedded system
defines interconnection of various hardware components.
Software architecture defines the allocation of sequence of
codes to specific general-purpose processors. Hardware/
software co-synthesis is a process to obtain hardware and
software architecture such that various embedded system
constraints such as real-time, cost, power,etc., are met.
Hardware/software co-synthesis involves various steps such as
allocation, scheduling and performance estimation. Optimal
hardware/software co-synthesis is known to be NP-complete
problem [1]. Embedded systems employing reconfigurable
hardware such as FPGAs and CPLDs are referred as
reconfigurable embedded systems. Reconfigurable systems
can provide higher performance as well as flexibility to adapt
with changing system needs at low cost [2]-[4]. Dynamically
reconfigurable embedded systems exploit reconfigurability of
programmable devices at run-time to achieve further cost
savings. With the availability of partially reconfigurable

devices such as those from ATMEL AT6000 series and
XILINX XC6200 series, dynamically reconfigurable systems
have become viable [5]-[8]. However, dynamic
reconfiguration of programmable devices adds additional
complexity to already complex co-synthesis problem due to
the identification and management of multiple reconfiguration
programs for each programmable device in the system
architecture.

Co-synthesis of heterogeneous distributed system have
been previously addressed in [9]-[24]. Some of these co-
synthesis systems [12,15,16,20,23,24] employ programmable
devices such as FPGA. However, none of these systems target
dynamically reconfigurable embedded systems.

Dynamically reconfigurable embedded system
architectures requires dynamic reconfiguration of
programmable hardware components such as   FPGAs and
CPLDs. These devices are either completely or partially
reprogrammed at run-time to perform different functions at
different times. Hardware/software co-synthesis of the
dynamically reconfigurable architectures spans three major
sub-problems: 1) Delay management, 2) Reconfiguration
management, and 3) Reconfiguration controller interface
synthesis. Delay for a circuit through a programmable device
varies depending on how the constituent circuit is placed and
routed. Delay management technique ensures that the delay
constraint for the specific function is not exceeded while
mapping the tasks to the programmable devices.
Reconfiguration management technique identifies the
grouping of tasks and their allocation such that the number of
reconfigurations as well as time required for each
reconfiguration is minimized while ensuring that the real-time
constraints are met. Reconfiguration interface synthesis
determines the efficient interface for reprogramming
programmable devices such that cost of the system is reduced
while minimizing the reconfiguration time.

We have developed a heuristic-based constructive co-
synthesis algorithm, CRUSADE (Co-synthesis of
ReconfigUrable System Architectures of Distributed
Embedded systems) which optimizes the cost of the hardware
architecture while meeting the real-time and other constraints.
To the best of our knowledge, it is the first algorithm to address
the co-synthesis of dynamically reconfigurable architectures.
Fault-tolerant distributed embedded systems can offer high
performance as well as dependability (reliability and
availability) to meet the needs of critical real-time
applications. We also show how CRUSADE can be easily
extended to address needs of fault-tolerant systems. In order to
establish its effectiveness, CRUSADE has been successfully
applied to several large real-life examples from mobile
communication network base station, video distribution router,
and telecom embedded systems. However, in general, being
heuristic, CRUSADE can never guarantee optimality.

The paper is organized as follows. Section 2 describes co-
synthesis problem and preliminaries. Section 3 describes
motivation behind dynamically reconfigurable architectures.
Section 4 describes the challenges associated with co-
synthesis of dynamically reconfigurable embedded system
architectures and proposed techniques to address them.
Section 5 provides overview of CRUSADE algorithm. Section
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6 provides extension of CRUSADE to address fault-tolerant
systems. Section 7 gives experimental results. Section 8 gives
the conclusions.
2   Preliminaries

In this section, we define the co-synthesis problem and
give the basic definitions and concepts which form the basis
for co-synthesis framework.
2.1   Problem Description

The embedded system functionality is generally described
through a set of acyclic task graphs. This task based model is
used in variety of prior co-synthesis systems [9,21,22,23,24].
Nodes of a task graph represent tasks and a directed edge
between two communicating tasks indicate communication.
Task are atomic units performed by embedded systems. A task
contains both data and control flow information. Task graphs
are required to be acyclic to reduce the complexity of the co-
synthesis problem. However, there can be loops/cycles within
a task. Each periodic task graph has an earliest start time
(EST), period, deadlines as shown in Figure 1(a).

     A co-synthesis problem can be summarized as follows.
Given embedded system specifications in terms of acyclic task
graphs, the objective is to find the hardware and software
architecture such that the architecture cost is minimum while
making sure that all real-time constraints are met.
2.2  Co-synthesis Framework
The architecture model: Our co-synthesis system does not
employ a pre-determined (fixed) architectural template since
such an approach can result in an expensive architecture and
may not be suitable for a variety of embedded systems. In our
co-synthesis system, the resulting embedded system can have
a heterogeneous distributed architecture employing different
types of processing elements (PEs) and links, where the
architectural topology is not determineda priori. In the
resulting architecture, there can be more than one
configuration program for each FPGA/CPLD,i.e, it is time
shared among multiple functions requiring reprogramming/
reconfiguration.
The resource library: Embedded system specifications are
mapped to elements of aresource library, which consists of a
PE library and a link library.

The PE library consists of various types of FPGAs,
CPLDs, ASICs, and general-purpose CPUs. Each FPGA/
CPLD (also referred as programmable PE (PPE)) is
characterized by: 1) the number of gates/flip-flops/
programmable functional units (PFUs), 2) the boot memory
requirement, 3) the number of pins,etc. Each ASIC is
characterized by: 1) the number of gates, and 2) the number of
pins. Each general-purpose processor is characterized by: 1)
the memory hierarchy information, 2) communication
processor/port characteristics, 3) the context switch time,etc.

The link library consists of various types of links such as
point-to-point, bus, LAN. Each link is characterized by: 1) the
maximum number of ports it can support, 2) an access time
vector which indicates link access times for different number
of ports on the link, 3) the number of information bytes per
packet, 4) packet transmission time,etc.
The execution model: Embedded system functions are
specified by acyclic task graphs. Parameters used to
characterize task graphs are described next. Each task is
characterized by:

1.  Execution time vector: This indicates the worst-case execu-
tion time of a task on the PEs in the PE library.

2.  Preference vector: This indicates preferential mapping of a
task on various PEs (such PEs may have special resources
for the task).

3.  Exclusion vector: This specifies which pairs of tasks can-
not co-exist on the same PE (such pairs may create pro-
cessing bottlenecks).

4.  Memory vector: This indicates the different types of stor-
age requirements for the task: program storage, data stor-
age and stack storage.

A cluster of tasks is a group of tasks which is always
allocated to the same PE. Clustering of tasks in a task graph
reduces the communication times and significantly speeds up
the co-synthesis process [23]. Each cluster is characterized by
the preference and exclusion vectors of its constituent tasks.

Each edge in the task graphs is characterized by:

1. The number of information bytes that need to be trans-
ferred.

2. Communication vector: This indicates the communication
time for that edge on various links from the link library. It
is computed based on link characteristics.

The communication vector for each edge is computeda
priori . At the beginning of co-synthesis, since the actual
number of ports on the links is not known, we use an average
number of ports (specified beforehand) to determine the
communication vector. This vector is recomputed after each
allocation, considering the actual number of ports on the link.
The communication and computation can go on
simultaneously if supported by associated hardware
components.
Scheduling: We use a static scheduler which employs a
combination of preemptive and non-preemptive scheduling to
derive efficient schedules. Tasks and edges are scheduled
based on deadline-based priority levels (see Section 5). The
schedule for real-time task graphs is defined during
architecture synthesis.
3  Motivation behind reconfigurable architectures

Reconfigurable architectures employ reconfigurable
components such as FPGA and/or CPLD and are desirable for
the following three major reasons.
1. In spite of heavy emphasis on simulation and regression

testing, occasionally, design errors are indeed detected
after the design is introduced in the market. If such
design errors are found to be in FPGA/CPLD, then these
devices can be reprogrammed in the field to prevent
large expenses associated with recall of products as well
as design upgrades in the factory.

2. Embedded system are generally released in the field
with initial set of functions/features. At a later date,
additional features or feature enhancements are offered
to the customer. If the reconfigurable devices in initial
release have sufficient resources and required connectiv-
ity to support additional features and/or feature
enhancements, it would be possible to provide the
required upgrade via simply reconfiguring the FPGAs
and CPLDs.

3. Dynamic reconfiguration of FPGA/CPLD can result in
low cost architectures due to temporal sharing of
resources across multiple functions. To illustrate this,
consider an example where there are 3 task graphs,T1,
T2 andT3 required by an embedded system functions as
shown in Figure 2(a). For simplicity, consider that
resource library has two FPGAs,F1 andF2 as shown in
Figure 2(b).F1 can accommodate eitherT1 andT2 or
T1 andT3 but not all three. On the other handF2 can
accommodate all three task graphs if dynamic reconfig-
uration is employed. Execution times of task graphs on
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resource library are shown in Figure 2(c). For simplicity,
it is assumed here that execution times for each task
graph are same on both FPGAs. However, in reality exe-
cution times will vary depending on the type of the
FGPA. Hyperperiod,Γ, is computed as the least common
multiple of periods of all task graphs. In traditional real-
time computing, ifPi is period of task graphTi, then [Γ ÷
Pi] copies are obtained for it. In order to ensure feasibil-
ity of schedule, we need to ensure that real-time dead-
lines of all copies of all tasks in hyperperiod are mt. As
shown in Figure 2(c), the execution times of task graphs
2 and 3 never overlap. Further, only two of the three
functions are required at any time in the hyperperiod.
Therefore, if reconfiguration of FPGAs is not employed,
it would result in two architecture options shown in Fig-
ure 2(d).F1i is an ith instance ofF1, and so on. If recon-
figuration of FPGA is employed, architecture with one
FPGA as shown in Figure 2(e) would have been suffi-
cient. In such architecture, an FPGA will have two
modes:mode 1 andmode 2. In mode 1, theF11 will sup-
port task graphsT1 andT2 whereas in mode 2, it will
support task graphsT1 andT3.

4    Co-synthesis of Dynamically Reconfigurable Embedded
Systems: Challenges and Solutions

In this section, we discuss challenges in co-synthesis of
dynamically reconfigurable embedded systems and follow-up
with techniques to address them.
4.1   Identification of non-overlapping task graphs
Challenge: Reconfigurable embedded systems are
characterized by a set of task graphs whose execution slot do

not overlap in time and therefore offer opportunities of realizing
cost effective architectures by assigning multiple sets of task
graphs to the same set of PPEs. The co-synthesis system needs
to facilitate identification of such tasks graphs which can be
assigned to the same PPEs.
Solution: In order to facilitate identification of non-
overlapping task graphs, we define compatibility vector as
follows.

Compatibility_vector of task graph (Ti) = [∆i1, ∆i2, ...,∆ik]
indicates compatibility of task graphTi with other task graphs
of embedded system.∆ij  indicates compatibility of task graph
Ti with task graphTj. If ∆ij  = 0, it implies that task graphTi is
compatible with task graphTj and 1, if otherwise. If execution
time of two task graphs do not overlap, they are said to be
compatible task graphs and they can share the FPGA/CPLD
resources. If two task graphs are not compatible, it implies that
their respective execution time indeed overlap and therefore an
independent set of FPGA/CPLD resources must be assigned.
Generally, during task graph generation process, it is identified
whether two task graphs are compatible with each other or not
and that information relayed to the co-synthesis system by
specifying the compatibility vector for each task graph. When
compatibility vectors for task graphs are not specified, the co-
synthesis system automatically identifies the non-overlapping
task graphs based on start and stop times of tasks and edges
following scheduling using the procedure shown in Figure 3.

Task graphs for which compatibility vector is not
specified, we build architecture without requiring dynamic
reconfiguration of the PPEs. Once the architecture is defined
and deadlines are met, we identify merge potential of the
architecture as summation of number of PPEs and links in the
architecture. We create merge array that includes merge
possibilities for each PPE. Each element of the merge array has
tuple which specifies a pair of PPEs which can be merged into
a single PPE with multiple modes resulting from dynamic
reconfiguration. We pick each tuple and explore merge by
creating multiple modes for PPE and follow-up with scheduling
and finish time estimation. If deadlines are met, we accept the
merge and use the modified architecture otherwise reject the
merge and explore next merge from the merge array. Once all
merges are explored, we compare modified architecture with
the previous architecture, and if the architecture cost or merge
potential is decreasing, we repeat the process. We stop the
process when we can no longer reduce the architecture cost or
merge potential.
4.2 Allocation of non-overlapping task graphs
Challenge: Once the non-overlapping task sets are identified,
their allocation needs to be determined such that all real time
constraints are met. During allocation, reconfiguration of a
programmable device must be considered to exploit temporal
sharing of a programmable device across multiple functions.
Solution: During allocation step, we create an allocation array
which is an array of possible allocations at that point in co-
synthesis. In allocation array, we provide multiple versions of
each programmable device. Each version corresponds to
different configuration of device which is also known as a mode
of the device. A non-overlapping set of tasks is allocated to
different version (mode) of the device. Once the architecture is
defined, we merge the various versions of the device ensuring
that real-time constraints are met.

Let us illustrate with an example. A cluster is a group of
tasks which are allocated to same PE (clustering procedure is
explained in Section 5). Clustering is performed to reduce
allocation complexity and speed up co-synthesis algorithm at
minimal cost impact on the architecture [23]. Consider four
clustersC[0]-[3]  as shown in Figure 4(a). Numbers next to
cluster indicates its priority level (see Section 5). Further,
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assume that clustersC1 and C2 are non-overlapping,i.e.,
execution window of tasks fromC1 do not overlap with tasks
from C2. However, execution slots for tasks fromC3 do
overlap with those of clusterC1. Assume that clustersC1
throughC3 require an FPGA implementation. For allocation,
higher priority clusters are allocated first. Therefore,C0 is
called for allocation first and the resulting partial architecture
requiring CPU, RAM and ROM-A is shown in Figure 4(b).
Next clusterC1 is called for allocation.C1 requires an addition
of an FPGA1

1 and ROM-B for storing associated
programming interface as shown in Figure 4(c). FPGAi

j
indicatesith instance andjth mode of the FPGA. Next cluster
C2 is called for allocation assuming deadlines are met. If the
deadlines are not met, we explore next possible allocation as
explained in Section 5.3. SinceC2 is non-overlapping with
clusterC1, we create a new mode FPGA1

2 as shown in Figure
4(d). Assuming that the deadlines are met, we call clusterC3
for allocation. Cluster C3’s execution slots do overlap with
that of clusterC1, and therefore resources used forC1 can not

be time-shared withC3. Hence,C3 is allocated to FPGA11 to
avoid a new mode as shown in Figure 4(e). Once all clusters
are allocated, we explore merging of modes. In other words,
we try to combineC1, C2, andC3 in the same FPGA mode if
there exists sufficient resources and deadlines are met.
However, in this case since it is not feasible, architecture
shown in Figure 4(e) is the final architecture.

4.3 Management of Multiple Software Images
Challenge: As explained before, various modes of
programmable devices are created to facilitate time-sharing of
resources. Each of this mode requires unique configuration
software also known as software image. Switching between
modes requires reconfiguration of a device. Time required to
reconfigure a device is called boot time of the device. A co-
synthesis system shall take into consideration the time required
to reprogram the device while checking whether the deadlines
will be met.
Solution: In order to address this, each programmable device
is characterized by areboot_task. This task is added at the
beginning in each mode. Time required forreboot_task is
determined by the type (serial or parallel) and speed of the
programming interface. The boot time of the device is taken
into consideration while estimating the finish time of the tasks
to check whether deadlines are met. For example, taskTrc is
added in front ofT3 as shown in Figure 2(c) to take into
consideration time required for reconfiguration.
4.4 Reconfiguration Controller Interface Synthesis
Challenge: FPGAs/CPLD need to be programmed for correct
operation. CPLDs are programmed via standard test port [5]
used for boundary-scan testing. There are two different types
of programming modes for FPGAs [6]-[8]: 1) serial, and 2) 8-
bit parallel. Further each of these modes can be configured to
be either Master or Slave. Master mode is used when FPGAs
are programmed from a stand-alone PROM. Slave mode is
used when the FPGA is programmed via CPU. Master mode
can be used on power-up where as slave mode can be used in
the field to provide upgrade of reconfiguration programs for
bug fixes or providing new set of features. The speed of
programming interface can vary from 1 MHz to 10 MHz
(current technology). Also, when multiple programmable
devices are used, they are generally chained to reduce the cost
of the programming interface and share the PROM used for
storing software image for various modes of various devices.
The boot time of FPGAs/CPLDs can be as high as few hundred
milliseconds which can be of concern for real-time systems
requiring mode changes. Thus, there are several factors which

GENERATE_DYNAMIC_RECONFIGURATION(architecture,
 task graphs){

current_arch = architecture;
previous_arch_cost = previous_arch_merge_potential  =∞;
current_arch_merge_potential = number of PPEs;
current_arch_cost = cost of current_arch;
while(current_arch_cost< previous_arch_cost OR

current_arch_merge_potential<
previous_arch_merge_potential){
previous_arch_cost = current_arch_cost;
previous_arch_merge_potential =
current_arch_merge_potential;
IDENTIFY_MERGE_TUPLES(current_arch,
task graphs){

for each PPE{calculate the merge potential
with respect to rest of the PPEs;}
for each PPEi {PPEi _tag = UNPAIRED;}
for each unpaired PPEj {

merge_array = NULL;
inter_PPE_tuple (PPEj, PPEk)  ← group PPEj
with one of the adjacent PPE, PPEk,with
which the merge potential is maximum;
add inter_PPE_tuple (PPEj, PPEk) to merge_array;
PPEj_tag = PPEk_tag = PAIRED;}

for each element i of merge_array{i_tag = unexplored;}
EXPLORE_MERGE{

for each element j of merge_array{
inter_PPE_merge_array← identify the
merge possibilities using architectural hints;
j_tag = explored;}

for each element k of
the inter_PPE_merge_array{k_tag = unexplored;}
for each element l of inter_PPE_merge_array{

temp_arch← current_arch is
modified considering l;
l_tag = explored;
perform merge← create additional mode
for the FPGA and update download time;
run scheduler;
if (deadlines are met){

current_arch = temp_arch;
current_arch_merge_potential = number of
PPEs+ number of links in current_arch;}

}
}

}
}
return final_arch = current_arch;

}

Figure 3.   The procedure for dynamic reconfiguration
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can determine the boot time for each device. Each of these
options can impact boot time as well as cost and power of the
system. Therefore, hardware/software co-synthesis system
shall consider above aspects while synthesizing the correct
programming interface for the programmable device.
Solution: For each embedded system, its boot time
requirement is specifieda priori. For each architecture option,
reconfiguration option array is created. Each element of the
reconfiguration option array indicates various options for
programming. Each option in the configuration option array is
characterized by boot time. Elements of the reconfiguration
option array are ordered on the order of increasing dollar cost.
We choose the one which has the lowest architecture cost
while meeting the boot time requirements of the system. Boot
time is recomputed based on the allocation and number of
resources (CLBs/PFUs) that require reconfiguration.
4.5 Delay management
Challenge: Generally, all logic blocks of programmable
devices, such as FPGAs and CPLDs, are not usable due to
routing restrictions. A very high utilization of PFUs and pins
may force the router to route the nets in such a way that it may
violate the delay constraint,i.e., the worst-case execution
times defined by the execution time vector (defined in Section
2.2) may be exceeded. Therefore, hardware/software co-
synthesis system shall manage delay through a programmable
device such that delay constraint used during scheduling is not
exceeded.
Solution: In order to address this aspect, we use two
parameters: 1) effective resource utilization factor (ERUF),
and 2) effective pin utilization factor (EPUF) to control the
variations in delay once the functions mapped to the
programmable device are synthesized and routed. We set
ERUF equal to 70% and EPUF equal to 80%. These
percentages were derived based on the existing designs and
experimentally verified to guarantee the meeting of delay
constraints during co-synthesis (see Section 7 for experimental
results). Therefore, while allocating tasks to FPGAs/CPLDs,
we ensure that we do not utilize more than 70% of resources
(PFUs/CLBs/Flipflops) and 80% of the pins.
5   The CRUSADE Algorithm

 In this section, we provide an overview of CRUSADE.
Figure 5 presents one possible co-synthesis process flow
which we follow in our work. This flow is divided up into three
parts: pre-processing, synthesis, and dynamic reconfiguration
generation. During pre-processing, we process the task graph,
system constraints and resource library, and create necessary
data structures. In traditional real-time computing theory, if
periodi is the period of task graphi then [hyperperiod÷
periodi] copies are obtained for it [9]. Co-synthesis algorithm
must ensure that deadlines of all copies of all tasks in the
hyperperiod are met. However, this is impractical from both
co-synthesis CPU time and memory requirements points of
view, specially for multi-rate task graphs where this ratio may
be very large. We tackle this problem by using the concept of
association array [23]. Theclustering step involves grouping
of tasks to reduce the search space for the allocation step [23].
Tasks in a cluster get mapped to the same PE. This
significantly reduces the overall complexity of the co-synthesis
algorithm since allocation is part of its inner loop. Our
experience from [23] shows that task clustering results in up to
three-fold reduction in co-synthesis CPU time for medium-
sized task graphs with less than 1% increase in system cost.
Our clustering technique addresses the fact there may be
multiple longest paths through the task graph and the length of
the longest path changes after partial clustering. We use the
critical path task clustering method given in [23]. In order to
cluster tasks, we first assign deadline-based priority levels to

tasks and edges using the procedure from [23]. The priority
level of a task is an indication of the longest path from the task
to a task with a specified deadline in terms of computation and
communication costs as well as the deadline. In the beginning,
when allocation is not defined, we sum up the maximum
execution and communication times along the longest path and
subtract the deadline from the sum to determine the priority
levels. However, priority levels are recomputed after each
allocation as well as task clustering steps. In order to reduce
the schedule length, we need to decrease the length of the
longest path. This is done by forming a cluster of tasks along
the current longest path. This makes the communication costs
along the path zero. Then the process can be repeated for the
longest path formed by the yet unclustered tasks, and so on.

The synthesis step determines the allocation of clusters.
We define the priority level of a cluster as the maximum of the
priority levels of the constituent tasks and incoming edges.
Clusters are ordered based on decreasing priority levels. We
pick the cluster with the highest priority level and create an
allocation array.The synthesis part has two loops: 1) anouter
loop for allocating each cluster, and 2) aninner loop for
evaluating various allocations for each cluster. For each
cluster, an allocation array consisting of the possible
allocations at that step is created. While allocating a cluster to
a hardware module such as an ASIC or FPGA, it is made sure
that the module capacity related to pin count, gate count,etc.,
is not exceeded. Similarly, while allocating a cluster to a
general-purpose processor, it is made sure that the memory
capacity of the PE is not exceeded. Inter-cluster edges are
allocated to resources from the link library. After the allocation
of each cluster, we recalculate the priority level of each task
and cluster. Once the cluster is allocated, programming
interface for the reconfigurable devices is synthesized.

The next step isscheduling which determines the relative
ordering of tasks (edges) for execution (communication) and
the start and finish times for each task (edge). We employ a
combination of both preemptive and non-preemptive priority-
level based static scheduling. Preemptive scheduling is used in
restricted scenarios to minimize scheduling complexity. For
task preemption, we take into consideration the operating
system overheads such as interrupt overhead, context-switch,
remote procedure call (RPC)etc. through a parameter called
preemption overhead (this information is experimentally
determined and provideda priori). Incorporating scheduling
into the inner loop facilitates accurate performance evaluation.
Performance evaluation of an allocation is extremely
important in picking the best allocation. An important step of
performance evaluation isfinish-time estimation. In this step,
with the help of the scheduler, the finish times of each task and
edge are estimated using the longest path algorithm [23]. After
finish-time estimation, it is verified whether the given
deadlines in the task graphs are met. The allocation evaluation
step compares the current allocation against previous ones
based on total dollar cost of the architecture.

If deadlines are met, we explore merging of different
modes of a programmable device as explained in Section 4.1
and 4.4 duringdynamic reconfiguration generation phase.
6  Co-Synthesis of Fault Tolerant Systems

Embedded systems employed in critical application
demand fault tolerance which provides fault detection
followed by error-recovery. Such systems demand high
dependability (reliability and availability) to meet the needs of
critical real-time applications. For best results, hardware-
software co-synthesis of such systems must incorporate fault
tolerance during the synthesis process itself. We use the
concepts from [24] to impart fault tolerance to the distributed
embedded system architecture. Fault tolerance is incorporated
by adding assertion tasks and duplicate-and-compare tasks to



the system followed by error recovery. An assertion task
checks some inherent property/characteristic of the output data
from the original task. If that property is not satisfied, it flags
the output data as erroneous. Some common examples of
assertion tasks used in communication systems are: a) parity
error detection, b) address range check, c) protection switch-
control error detection, d) bipolar coding error detection, e)
checksum error detection,etc. For each task, it is specified
whether an assertion task is available or not. If not, the task is
duplicated and the outputs of the two versions compared. For
each assertion, an associated fault coverage is specified. It is
possible that a single assertion is not sufficient to achieve the
required fault coverage, and a combination of assertions is
required. For each such task, a group of assertions and the
location of each assertion is specified. For each check task
(assertion or duplicate-and-compare task), the weight of the
communication edge between the checked task and check task
and the execution vector of the check task is specified. If a task
is capable of transmitting any error at its inputs to its outputs,
it is said to be error-transparent. This property is quite
common. We exploit it to reduce the fault tolerance overhead.
In order to facilitate dependability analysis, we require that the
failure-in-time (FIT) rate, and mean-time-to-repair (MTTR)
are specifieda priori for each hardware and software module.
The FIT rate indicates the expected number of failures in 109

hours of operation. Also, different functions of embedded
systems can have different availability requirements.
Therefore, we require that the availability requirements are
specified for each task graph in the specification. Error
recovery is enabled through a few spare PEs. In the event of
failure of any service module (a set of PEs grouped together
for replacement), a switch to a standby module is made for
efficient error recovery. The basic co-synthesis process of
CRUSADE is also used in its extension for fault tolerance,
termed CRUSADE-FT. We describe next how various steps
are modified.
Task clustering: We use the clustering technique [24] which
exploits the error transparency property and determines the
best placement of assertion and/or duplicate-and-compare
tasks such that fault-detection times do not exceed associated
constraints. This procedure is also used while creating the sub-
architecture based on preference vectors. We assign the
assertion overhead and fault tolerance level [24] to each task.
We still use priority levels to identify the order of clustering
for tasks. However, we use fault tolerance levels to cluster the
tasks.
Inner loop of co-synthesis:For each allocation, in addition to
the finish-time estimation, we explore whether any assertions
need to be added, removed or shared following scheduling. We
also obtain the service modules from the architecture using
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architectural hints (if available, otherwise using an automated
process [24]) and task graph availability requirements. Markov
models are used to evaluate the availability of service modules
and the distributed architecture.
Dynamic reconfiguration generation:While evaluating each
possible PPE merge, we also perform: 1) addition/removal of
assertions, as necessary, to reduce the fault tolerance overhead,
and 2) dependability analysis to ensure that the resulting
architecture continues to meet the availability constraints.
7   Experimental Results

Our co-synthesis algorithms CRUSADE and
CRUSADE-FT are implemented in C++.

In order to test efficacy of our delay management
technique through programmable PEs, we ran a series of
experiments varying EPUF and ERUF from 70% to 100%
while observing the impact on the delay constraint of various
functional blocks. Sample results are shown in Table 1. It was
observed that while setting EPUF = 80% and ERUF = 70%,
delay constraints used for various functional blocks during co-
synthesis process was not violated when those functions are
actually synthesized with other functions on a device.

We also ran CRUSADE on communication system task
graphs. These are large task graphs representing real-life field
applications. These task graphs contain tasks from digital
cellular communication network base station, video
distribution router (video encoding/decoding using MPEG
standard), synchronous optical network (SONET) interface
processing, asynchronous transfer mode (ATM) cell
processing, digital signal processing, provisioning,
transmission interfaces, performance monitoring, protection
switching,etc. These task graphs have wide variations in their
periods ranging from 25 microseconds to 1 minute. The
execution times were either experimentally measured or
estimated based on existing designs. The general-purpose
processors in the resource library had the real-time operating
system, pSOS+, running on them. The execution times
included the operating system overhead. For results on these
graphs, the PE library was assumed to contain Motorola
microprocessors 68360, 68040, 68060, Power QUICC, (each
processor with and without a 256KB second-level cache), 16
ASICs, XILINX 3195A, 4025, and 6700 series FPGAs,
ATMEL AT6000 series FPGAs, XILINX XC9500 and
XC7300 CPLDs, one ORCA 2T15 and 2T40 FPGAs. For each
general-purpose processor, four DRAM banks providing up to
64 MB capacity were evaluated. DRAM devices with 60 ns
access time were used. The link library was assumed to contain
a 680X0 and Power QUICC buses, a 10 Mb/s LAN, and a 31
Mb/s serial link. Table 2 shows the experimental results. The
first major column in this table gives characteristics of the
distributed architecture derived by CRUSADE without
employing dynamic reconfigurations of programmable
devices,i.e., each programmable device had only one mode.
The CPU times are on Sparcstation 20 with 256 MB of
DRAM. The system cost is the summation of the costs of the
constituent PEs and links. The cost estimates of hardware
components were based on yearly volume of 15K for the
embedded system. The second major column gives the results
with CRUSADE employing multiple modes for each of the
programmable devices to time share the resources to reduce
the cost. CRUSADE can realize up to 56% cost savings by
employing dynamic reconfiguration of programmable devices.

For experiments with CRUSADE-FT, the FIT rates for
various modules were either based on the existing designs or
estimated using Bellcore guidelines [25]. MTTR was assumed
to be two hours. The unavailability requirements for task
graphs providing provisioning and transmission functions

were assumed to be 12 minutes/year and 4 minutes/year
respectively. The results with CRUSADE-FT are shown in
Table 3. CRUSADE-FT can realize up to 53% cost savings by
employing dynamic reconfiguration of programmable devices
while deriving fault tolerant architectures.
8   Conclusions

We have presented an efficient co-synthesis algorithm
for synthesizing dynamically reconfigurable heterogeneous
distributed real-time embedded system architectures.
Experimental results on various large real-life examples are
very encouraging. To the best our knowledge, this is the first
co-synthesis algorithm to tackle dynamically reconfigurable
heterogeneous distributed embedded systems. We have also
shown how fault tolerance considerations can be incorporated
into our algorithm. For this case as well, the efficacy of
algorithm was established through experimental results.
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Table 1: Experimental results for delay management through FPGAs/CPLDs

Circuit
No.
of

PFUs

Increase in delay (%), EPUF = 0.80

ERUF=0.70 ERUF=0.75 ERUF=0.80 ERUF=0.85 ERUF=0.90 ERUF=0.95 ERUF=1.00

cvs1 18 0.0 0.0 4.6 7.1 18.2 42.1 121.6
cvs2 20 0.0 2.5 6.1 8.3 22.6 68.7 138.9
xtrs1 36 0.0 8.9 9.3 9.8 28.1 46.2 88.6
xtrs2 40 0.0 10.4 12.6 18.6 24.8 53.6 72.1
rnvk 48 0.0 9.1 9.3 11.9 18.9 39.6 88.7
fcsdp 35 0.0 7.4 7.8 10.6 29.6 121.8 156.1
r2d2p 46 0.0 11.1 11.1 12.8 24.2 78.6 Not routable
cv46 74 0.0 9.2 10.4 11.9 22.8 62.1 Not routable

wamxp 84 0.0 12.1 14.6 18.1 28.6 54.7 Not routable
pewxfm 47 0.0 8.6 10.2 16.8 21.7 39.2 144.5

Table 2: Efficacy of CRUSADE

Example/
(No. of tasks)

CRUSADE without dynamic reconfiguration CRUSADE with dynamic reconfiguration

No.
 of
PEs

No.
 of

links

CPU
time
(sec.)

Cost
($)

No.
 of
PEs

No.
of

links

CPU
time

 (sec.)

Cost
($)

Cost
savings

%

A1TR/(1126) 74 19 19322.6 26,245 61 16 20,473.4 16,225 38.2
VDRTX/(1634) 118 33 30,118.0 20,160 98 21 34,665.8 12,890 36.1
HROST/(2645) 244 48 68,771.6 34,898 219 36 77,125.4 24,100 30.9

EST189A/(3826) 334 87 82,664.7 48,445 312 68 91,705.3 33,815 30.2
HRXC/(4571) 388 93 89,183.4 51,170 348 74 104,045.6 37,900 25.9
ADMR/(5419) 406 102 112,629.1 64,885 375 93 124,118.1 40,005 38.3
B192G/(6815) 448 132 120,336.2 69,745 405 128 129,810.6 34,030 51.2
NG XM/(7416) 522 142 129,876.1 83,885 417 138 140,018.2 36,325 56.7

Table 3: Efficacy of CRUSADE-FT

Example/
(No. of tasks)

Fault tolerance without dynamic reconfiguration Fault tolerance with dynamic reconfiguration

No.
 of
PEs

No.
 of

links

CPU
time
(sec.)

Cost
($)

No.
 of
PEs

No.
of

links

CPU
time

 (sec.)

Cost
($)

Cost savings
%

A1TR/(1126) 98 28 22,800.6 30,815 74 21 24,487.8 21,355 30.7
VDRTX/(1634) 144 51 39,079.2 27,900 130 34 45,890.1 18,885 32.3
HROST/(2645) 361 88 85,690.6 52,830 275 59 97,550.4 33,075 37.4

EST189A/(3826) 470 116 105,943.1 64,965 398 85 123,540.2 43,115 33.6
HRXC/(4571) 512 131 110,968.9 60,688 446 108 131,627.7 41,930 30.9
ADMR/(5419) 526 136 134,559.8 79,025 474 136 158,864.7 50,810 35.7
B192G/(6815) 579 164 146,183.2 88,430 518 154 161,754.9 41,385 53.2
NG XM/(7416) 628 182 168,449.1 99,886 531 168 183,946.4 48,744 51.2
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