
Symbolic Reachability Analysis of Large Finite State Machines Using Don’t Cares

Abstract
Reachability analysis of finite state machines is essential to
many computer-aided design applications. We present new
techniques to improve both approximate and exact reach-
ability analysis using don’t cares. First, we propose an iter-
ative approximate reachability analysis technique in which
don’t care sets derived from previous iterations are used in
subsequent iterations for better approximation. Second, we
propose new techniques to use the final approximation to
enhance the capability and efficiency of exact reachability
analysis. Experimental results show that the new techniques
can improve reachability analysis significantly.

1. Introduction

Symbolic reachability analysis techniques using binary
decision diagrams (BDD’s) [1] were introduced by Coudert
et al. [4], and have been shown to be able to analyze much
larger FSMs than was possible using explicit state tech-
niques which process one state at a time [4, 5, 6]. Neverthe-
less, symbolic techniques cannot handle some large FSMs
because they either require too much memory or are compu-
tationally too expensive.

Various techniques have been developed to enhance the
capability and efficiency of symbolic reachability analysis.
One class of the techniques consists of BDD variable order-
ing heuristics [2, 3] because the size of a BDD depends
greatly on the ordering of the BDD variables [1].

Numerous other techniques to analyze large FSMs have
been developed. Ravi et al. [17] proposed a mixed breadth-
first and depth-first traversal to utilize subsets of states that
are representable with small BDDs. This technique can
reduce the size of the BDDs significantly at the expense of
more iterations to complete reachability analysis. Cabodi et
al. [18] and Narayan et al. [19] proposed topartition state
sets to avoid the problem of too many iterations. In addition,
Cabodi et al. [20] presented an approach that extends the
application of disjunctive partitioned transition relations
from asynchronous circuits to synchronous ones and utilizes
iterative squaring. Their approach is effective for FSMs with
high sequential depth.

The run-time performance of reachability analysis may
also be improved by using don’t cares (DCs) [4,11]. Coudert
et al. [4] proposed to reduce thefrontier set BDD using
reached states, i.e. reachable states computed thus far, as
DCs. Brayton et al. [11] presented techniques to reduce the
size of thetransition relation BDDs(TR) using transitions
originating from non-frontier states and transitions to
reached states as DCs. The major disadvantage of these
approaches is that the minimization needs to be repeated in
each iteration because the reached states, and consequently
the DC sets, are updated at each iteration.

Ranjan et al. [10] discussed techniques to reduce the size
of TRs using DCs derived from overapproximated reachable
states [12]. The main advantage of this approach is that the
minimization needs to be performed only once because the
DC set is fixed for the entire reachability analysis. However,
surprisingly, the BDD minimization led to larger BDDs in
their experiments and performance improvements were not
reported in their work. Hong et al. first reported successful
results based on TR minimization in [23], a preliminary ver-
sion of this paper. Recently, Moon et al. [24] showed that
TR minimization using approximate reachable states can
improve CTL model checking.

In this paper, we present new techniques to make use of
the overapproximated reachable states to improve both
approximate reachability analysis and exact reachability
analysis. Novel aspects of our approach include:

• A clustered DC BDDconstructed from partitioned DC
BDDs to maintain high BDD minimization ratio with
manageable DC BDD size.

• An iterativeapproximate reachability analysis in which
DCs computed in previous iterations are used to
improve the quality of the approximation computed in
subsequent iterations.

• A heuristic tominimize the support set size of TRsto
improve the early quantification schedule in exact
reachability analysis.

After describing background in Section 2, we present the
new techniques in Section 3. Section 4 reports our experi-
mental results and Section 5 presents some conclusions.

Youpyo Hong
Synopsys, Inc

19500 Gibbs Dr. Hillsboro, OR 97006

Peter A. Beerel
Department of Electrical Engineering - Systems

University of Southern California, LA, CA 90089

2. Background

The next state functionδ for a FSM withn state bits consists
of δi’s for 1 ≤ i ≤ n, referred to as atransition function vector

[4], whereδi represents the next state logic forith state bit. A
transition relation [4], denoted byTR, defines all possible
current/next state pairs using the conjunction of the transition
function vectors as follows.

TR(x, y) = TFi(x, y),

wherex represents present state and input variables,y repre-
sents next state variables, andTFi(x, y) representsyi ≡ δi (x).

To represent the transition relations, symbolic techniques
use BDDs [4]. Because a single BDD representing the TR
can be prohibitively large, techniques to represent the TR
using a list of BDDs representingTFi’s, referred to as aparti-
tioned transition relation, have been proposed [7]. In this
paper, we represent theith cluster byTRi. Then the TR can be
implicitly represented using clusters as follows.

TR = TRi(x, y),

wheren is the number of clusters.
The states,To, reachable from a set of states,From, in at

most one step can be obtained from the BDD representing the
TR by performing existential quantification, denoted∃, and
conjunction as follows.

To(y) = From(y) ∪ [From(x) ⋅ TR(x, y)].

Here, the conjunctions are performed iteratively, forming
manyintermediate results. If there exist a set of variables that
some clusters do not depend on, the existential quantification
can be distributed over the partial products. We quantify out
such variables from the intermediate results before the entire
multiplication is finished to reduce the size of intermediate
result BDDs [6]. This technique is calledearly quantification.

3. Symbolic Traversal Using Don’t Cares

Because the size and complexity of the TR greatly affects the
run-time performance and capacity of symbolic FSM tra-
versal, techniques to simplify of the TR can be very useful.

An effective way of simplifying a BDD is to utilize DC
information, i.e. the flexibility of the function that the BDD
represents. For the BDD representing the TR, any transition
originating from an unreachable state is a DC for exact reach-
ability analysis because such a transition will never be
explored during the analysis. Although the complete set of
unreachable states cannot be available until exact analysis is

completed, a subset of unreachable states can be computed
with significantly less computational resources using approx-
imate traversal techniques [12]. Thus, transitions from this
subset of states can be a computationally cheap source of
DCs for the TR used in exact reachability analysis. Moreover,
we will show how these DCs can be used to improve approx-
imate reachability analysis.

The overall flow of our approach is shown in Fig. 1. We
first run coarse approximate reachability analysis and derive
clustered DCsfrom the approximation results. Note that this
clustered DC approach is applicable to both approximate and
exact analysis. We then use these clustered DCs to improve
approximate reachability analysis using aniterative
approach, yielding smaller overapproximated reachable state
set. Finally, we derive clustered DCs from the final approxi-
mation and utilize them to improve exact reachability analy-
sis.

3.1. DC Transitions and Clustered DC BDDs
Currently known approximate reachability techniques are
based on state space decomposition [12, 13, 14]. They pro-
duce a superset of reachable states associated with the state

space of each cluster in the form of a list of BDDs,R+
1, . . . ,

R+
n. The conjunction of allR+

i’s yields the smallest superset
of the reachable states for the entire state space. Thus, its
complement yields the largest DC set using the overapproxi-
mated reachable states. In practice, however, the conjuncted
BDD can be prohibitively large. Alternatively, it is possible
to individually apply BDD minimization to eachTRi (or each

TFi if the TF is minimized) using their respectiveR+
i as the

care set. However, this approach may lead to poor minimiza-

tion because the DC fraction obtained from individualR+
i

∏
i =1

k

∏
i =1

n

∃
xi∈x

approximate traversal

TF, R+ = 1

is R+ improved?

exact traversal
R

build TR

minimize TR

derive DC for TR

derive DC for TF

state space decomposition

new R+

clustered-DC

TR

minimized TF

clustered-DC

TR

minimized TR

minimize TF

iterative approximate
reachability analysis

 Figure 1: Flow of our approach

may be very small. This suggests that we need to derive DC
sets with reasonably high DC fractions and affordable BDD

size.1

We propose a clustered DCapproach, in which we con-
struct a BDDCi representing the care set associated withTRi
by conjunctingR+

j’s which are likely to improve the minimi-
zation quality forTRi. We identify R+

j’s for eachTRi such
that the support set ofR+

j includes at least one variable that is
also contained in the support set ofTRi. Then we existentially
quantify out the nonsupporting variables ofTRi from such
R+

j’s to further reduce their size. This means that the support
set ofCi is a subset of the support set ofTRi and consequently
thatCi is typically much smaller thanTRi. Figure 2 shows the
algorithm to build clustered-DCs.

3.2. Iterative Approximate FSM Traversal
The main reason for the computational efficiency of the
approximate reachability analysis is that each sub-FSM rep-
resented by a cluster is traversed separately. The separated
traversal, however, introduces some loss of information con-
cerning the interaction among sub-FSMs. If we decompose a
FSM into too many sub-FSMs, the information loss is
increased leading to a coarse approximation. Consequently,
there is a trade-off between the computational efficiency and
the quality of the approximation and existing clustering tech-
niques ensure that each cluster size is smaller than a predeter-
mined threshold [12, 14].

We propose to improve the quality of the approximation
using BDD minimization. In particular, we propose to derive
DCs from one approximate reachability analysis, minimize
the original TFi’s using these DCs, re-cluster these mini-
mizedTFi’s, and repeat the approximate reachability analysis
using the new clusters. Because theTFi’s are smaller, the re-
clustering algorithm can lead to fewer clusters and conse-
quently the approximation can be improved, leading to more
DCs. The larger set of DCs now leads to better minimization
of the TFi’s. Therefore, we propose to repeat this process
until no significant improvement is made.

To quantify improvement we currently use the number of
clusters as a simple cost function rather than the exact DC

fraction because the exact DC fraction (which requires the
conjunction of allR+

i’s when the state space of eachR+
i’ is

not mutually disjoint) is computationally expensive if not
infeasible. Consequently, the process is completed when the
number of clusters obtained is not reduced.

Another important factor determining the quality of the
approximation is the effectiveness of the state decomposition.
The basic idea of existing state decomposition techniques
[22, 14] is to combineclosely related TFi’s into one cluster
where the closeness of the relationship between twoTFi’s is
estimated by examining the number of common variables in
their support sets. BDD minimization can indirectly lead to
better state decomposition because it sometimes removes
some variables from the support sets of BDDs leading to a
more accurate analysis of the relationships amongTFi’s.

It is obvious that the choice of a BDD minimization heu-
ristic is important. We userestrict [4] because it is fast and is
competitive in terms of both size minimization and support
set minimization. Compaction algorithms [9] are typically
better thanrestrict in terms of minimization power but worse
in terms of support set reduction. This is because compaction
algorithms apply a node minimization operation, calledsib-
ling-substitution, less aggressively thanrestrict does to pre-
vent overall BDD size growth. There exists aggressive
variants ofrestrict presented by Shiple et al. [8] but they are
prohibitively slow for large BDDs such as the TRs.

Finally, we note that reduced support sets of the sub-FSMs
can also lead to faster run-times in the approximate FSM tra-
versal. This is because if fewer sub-FSMs have support sets
that intersect with the support set of a sub-FSM, fewer sub-
FSMs need to be re-traversed after the sub-FSM is traversed
[12]. This typically means that the total number of sub-FSM
traversals needed is reduced, reducing overall run-time.

3.3. Exact FSM Traversal Using Support Set
Minimization (SSM)
Using the DCs obtained from the above approximate reach-
ability analysis, we propose to minimize the TRs used in the
exact traversal. This has two effects. First, the smaller TR
size can directly lead to reduced run-times because the TRs
are heavily used. Second, BDD minimization can minimize
the support set of each cluster which can lead to a better early
quantification schedule. This reduces the maximum number
of variables that an intermediate result can have, leading to
reduced memory requirements. We first consider using
restrict as the TR minimization algorithm and then explore a
new heuristic specifically targeting support set minimization.

The choice of minimization algorithms is important. Ide-
ally we want an algorithm that minimizes the support set
while still reducing BDD size. Unfortunately, there is typi-
cally a trade-off between BDD size and support set size, both
cannot be minimum simultaneously. Our experiences suggest
that the more important factor is the support set size because

1Analogies can be found in the logic synthesis area [15, 16]. For example,
the satisfiability DC set of the whole network is too large for a two-level
minimizer [15] so a subset of the DC set is used instead.

for i = 1 tom /* m : number ofTRi’s */

if support(TRi) ∩ support(Rj) ≠ ∅ then

ProcedureBuild-clustered-DC ({TRi}, { R+
j})

 Figure 2: Algorithm to build clustered-DCs

for j = 1 ton
Ci = bdd_one

∃
x ∉TRi

R+
jCi = Ci ⋅ ()

return ({Ci})

the quality of the early quantification schedule often dictates
the size of the systems that can be analyzed.

We first applyrestrict because it heuristically minimizes
the support set without increasing the BDD size and it is fast.
Then, we apply a more expensive new heuristic that specifi-
cally tries to reduce the support set size.

Our heuristic is based on the notion of anonessentialvari-
able. Given an incompletely specified functionff represented
by f andc, wheref is a cover offf andc is the care function of
ff, we call a variablex nonessential iffx⊕ fx ⊆ cx+ cx. Equiva-
lently, x is a nonessential variable offf if and only if there
exists a cover offf that does not depend onx. For example,
consider an incompletely specified function denoted byf = xy
andc = xy+ xy, i.e.xyandxyare DC minterms. Sincefx⊕ fx =
y ⊆ cx+ cx = 1, x is a nonessential variable. This makes sense
because, if we letf(xy) = 1 andf (xy) = 0, we obtain a cover
f′= y which does not depend onx.

Note that, in general, there can be more than one cover that
does not depend on a particular nonessential variable. In this
work, we usef ′ = fxcx+ fxcx which was shown to be a cover of
f in [8] and clearly does not depend onx.

An incompletely specified function may have more than
one nonessential variable. Unfortunately, it may not be possi-
ble to simultaneously remove all nonessential variables from
its cover because different nonessential variables may require
conflicting DC assignments. For the above example, notice
thaty is also a nonessential variable becausefy⊕ fy = x ⊆ cy+
cy = 1. The only cover that does not depend ony is f ′= x
which is derived by assigningf(xy) = 0 andf (xy) = 1. Notice
that because the required don’t care assignments are in con-
flict, there does not exist any cover that is independent of
both x andy. This means that we must choose which nones-
sential variable to remove when multiple nonessential vari-
ables cannot be simultaneously removed.

Our heuristic resolves this choice by removing nonessen-
tial nodes one by one in a greedy fashion based on a priority
function that reflects the number of intermediate results from
which the nonessential variable is removed.

First, we compute thebenefitof removingeverysupport-
ing variable in a cluster under the assumption that the vari-
able is nonessential. Let’s consider aTR consisting ofn
clusters,TR1 to TRn, and a variablex of clusterTRi. If x is in
the support set of any cluster whose index is larger thani,
removingx from TRi will not improve the early quantification
schedule (under the current cluster ordering). In other words,
the number of intermediate results containingx does not
change and the benefit of removingx is thus defined as 0. On
the other hand, ifx is not in the support set of any cluster with
index larger thani, removingx from TRi will allow x to be
quantified out earlier than specified by the original early
quantification schedule. More precisely,x can now be quanti-
fied out immediately after the intermediate result is multi-
plied with the last cluster that hasx in its support set (not

including thei-th cluster). Let this cluster beTRk and notice
thatk must be less thani. The benefit of removingx, i.e., the
number of intermediate results from which the variable x is
removed, is theni - k.

The second step is to check and remove non-essential vari-
ables following their priority. Notice that the benefit of
removing a nonessential variable depends on the support set
of later clusters. To ensure that this benefit is not changed by
subsequent nonessential variable removal, the clusters are
processed from last to first. More specifically, all nonessential
variables that can be greedily removed from one cluster are
removed before the next earlier cluster is processed. After all
clusters are processed, we re-order the clusters to further
improve the early quantification schedule.

Note that removing a nonessential variable from a cluster
implies that some DCs must be fixed to boolean values. Con-
sequently, the care set of the cluster is expanded once a cover
replaces the original function. In particular, when we remove
a nonessential variablex from a clusterf, we produce a new
coverf ′ = fxcx+ fxcx with the new care setc ′ = cx+ cx.. With
the updated cover and care set, we continue the process of
checking and removing the next best nonessential variable.

The fact that the DC set changes after removing one non-
essential variable is the reason why we chose to compute the
benefits of every variable before checking to see whether any
variable is essential. In particular, this order of operations
avoids an initial relatively expensive calculation of essential-
ity of a lower priority variable using a DC set that may be
invalidated by the removal of a higher priority essential vari-
able.

Note also that the size of the cover with reduced support
set can be larger than the original cover. We only remove a
nonessential variable if the size of the cover is smaller than
the maximum cluster size. Lastly, note that we also remove a
non-essential variable with benefit 0 as long as it leads to a
smaller cluster.

Figure 3 shows our algorithm which we call support set
minimization (SSM) based exact reachability analysis.

{ R+
j} = iterative-approximate-traversal ({TFi}, I)

ProcedureSSM-traversal ({ TFi} , I)

return R

Figure 3: Algorithm for SSM based exact FSM traversal

R = standard-exact-traversal ({TRk}, I)

{ TRk} = build-clusters ({TFi})

{ Ck} = build-clustered-DC ({TRk}, { R+
j})

{ TRk} = restrict ({TRk}, { Ck})
reorder ({TRk})

{ TRk} = support-set-minimize ({TRk}, { Ck})

reorder ({TRk})

3.4. Applicability of Our Techniques to Existing
Exact Traversal Algorithms
A salient feature of ourapproximate reachable states based
TR minimization techniqueis that it is applicable to most
existing TR-based exact reachability analysis algorithms.
We explain how to apply our techniques to minimize vari-
ous types of transition relations, i.e. monolithic TR, con-
junctive partitioned TR, and disjunctive partitioned TR, and
discuss their impacts.

The application of DC-based minimization to monolithic
TR is straightforward. The support set minimization is not
helpful in this case because no early quantification is used in
monolithic TR based traversal. Yet we can still expect per-
formance improvement due to the smaller TR size.

The conjunctive partitioned TR based traversal algo-
rithms form a major category in reachability analysis and
many state-of-the-art traversal algorithms [17, 18, 19] have
been developed. A common idea of these algorithms is to
extract subsets of the state sets that are representable with
small BDDs and use the subsets as frontier sets. We may
store the clusters on hard disk to better utilize main memory
but the functionality of TR is not modified. Therefore our
DC-based BDD minimization techniques can be applied to
conjunctive partitioned TR without any modification.

We also note that the method proposed by Touati et al. [5]
using an implicit conjunction ofTFi’s to represent the TR
can also be improved using our techniques. They first multi-
ply the frontier set with eachTFi and conjunct the results to
form the final results in a balanced binary tree fashion. Dur-
ing this process, they existentially quantify out all variables
from a partial product when all the BDDs that depend on the
variables are combined into the partial product. We can
derive the clustered-DC for each partial product and use it to
minimize the support set size of the partial product in order
to maximize the number of variables that we can existen-
tially quantify out.

Lastly, we consider Cabodi et al.’s work in which the dis-
junctive TR, originally introduced to model asynchronous
circuits [7], is extended to model synchronous circuits [20].
The basic idea is to represent the TR by the listTR⋅p1, . . .
,TR⋅pk implicitly disjuncted, i.e.TR = TR⋅p1+. . . +TR⋅pk,
with Σ pi = 1. During their reachable state computation,
existential quantification is performed independently for
each partitioned TR. Consequently, support set minimiza-
tion of each partitioned TR may not be useful. However,
since the size of each partition is still a major concern, our
DC-based minimization technique can still improve its per-
formance.

4. Experimental Results
We incorporated the new techniques into VIS-1.2 [10] using
Long’s BDD package [21]. We conducted experiments on
the reachability analysis of ISCAS 89 and ISCAS-Adden-
dum 93 benchmark circuits using a SUN UltraSPARC with
168MHz clock. The data-size limit was set to 128Mb. We

used all default parameter setting provided by VIS including
image_cluster_size of 5000 and the clustering heuristic
described in [10] for both approximate and exact reachabil-
ity analysis. Dynamic variable ordering was enabled at all
times except during approximate reachability analysis.
Because different variable ordering typically leads to differ-
ent clusterings, dynamic variable ordering during iterative
approximate traversal can yield better approximation
results. For these experiments, however, we disabled it so
that we can accurately estimate the contribution of BDD
minimization.

The results from approximate reachability analysis are
given in Table 1. We used Cho et al.’s MBM traversal [12]
as the standard approximate traversal algorithm. The col-
umnR+ represents the percentage of approximate reachable
states over the entire state space,Time denotes the run-time
in CPU seconds, and# Iter reports the number of standard
approximate traversals our approach performed. In one
case, we could not compute theR+ fraction exactly because
R+ was too large to build. In this case, denoted with a *, we
used an upper bound of the approximate reachable states
computed using the method described in [14]. The last col-
umn describes the improvement factor by showing the ratio
of the R+ obtained by the standard approximate traversal
over theR+ obtained by our iterative approximate traversal.

The results show that our iterative approach produces
significantly better results in terms of approximation quality
with minor run-time overhead (two times slower than stan-
dard traversal in the worst case). Note that the run-times for
the approximate traversals are still very small fractions of
the typical run-time needed for an exact traversal of a large
FSM.

Before we show the results from exact reachability analy-
sis, we report the size of TR and the number of current state
variables from the TR used in each traversal in Table 2. The
columnVISrepresents the standard exact traversal and SSM
represents our new traversal using bothrestrict and our sup-
port set minimization heuristic. The parenthesized number
shows the data from the traversal usingrestrict only.

The results show that the TRs used in SSM are signifi-
cantly smaller in size and have fewer current state variables
than the TRs used in the standard traversal. The reduction of
current state variables is largest for the three biggest exam-

Circuit
MBM Iterative

MBM /
IterativeR+ (%) Time R+ (%) Time # Iter

s1423 0.608 202 0.424 225 3 1.434

s3271 5.32 115 4.520 142 3 1.178

s3330 7.147 119 1.98e-3 140 4 3.61e3

s4863 1.16e-3 490 2.25e-4 548 4 5.167

s5378 4.31e-8 261 4.33e-9* 519 4 > 10.00

Table 1: Comparison between standard and iterative
approximate traversals. (* indicates an upper bound)

ples whose DC fractions are much higher than those for the
smaller examples.

The results from exact reachability analysis are given in
Table 3. The column denoted# Level reports the number of
iterations and* symbol indicates the entire traversal success-
fully completed. The last three columns report the run times
taken only for exact traversals, i.e., excluding clustering and
approximate traversal.

The results show that SSM outperforms standard traversal
in all aspects. SSM traversal successfully completes the
entire traversal for s3271 while the standard traversal stops
after 7 of 17 iterations. The SSM traversal runs out of mem-
ory after 7 iterations (6 iterations usingrestrict only) of
s5378 while the standard traversal runs out of memory after
4. For all examples, SSM takes significantly less time than
the standard traversal to complete the same number of itera-
tions.

Notice that for the examples s3330 and s5378 SSM with
support set minimization yields significantly better results
than SSM using the “restrict only” method even though the
support set minimization increased the BDD sizes signifi-
cantly. This suggests that the impact of support set minimiza-
tion on the early quantification schedule may be more critical
than the BDD sizes in determining the overall run-time and
memory requirements.

5. Conclusion
In this paper, we have presented techniques to improve
approximate and exact reachability analysis using DCs. The
basis of the techniques is that approximated reachable states
can be used as DCs to simplify the state transition representa-
tion of the FSM to be analyzed.

We have demonstrated the effectiveness of the techniques
on a standard reachability analysis framework. The experi-
mental results show that, compared to the traditional
approach, our techniques can significantly reduce the reach-
ability analysis run-time for large FSMs and explore more
states.

Because our approach is orthogonal to most existing
reachability analysis algorithms, our new techniques can fur-
ther improve the capability of recently proposed reachability
analysis algorithms.

Acknowledgments

The authors would like to thank A Narayan for his help on
our experimental setup and H. Cho, F. Somenzi, and G.
Hachtel for constructive comments on our work.

References

[1] R. E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. C-35, pp. 677-
691, 1986.

[2] A. Aziz, S. Tasiran, and R. Brayton, “BDD Variable Ordering
for Interacting Finite State Machines,”Proc. DAC, pp. 283-
288, 1994.

[3] R. Rudell, “Dynamic Variable Ordering for Ordered Binary
Decision Diagrams,”Proc. ICCAD, pp. 42-47, 1993.

[4] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Syn-
chronous Sequential Machines Based on Symbolic Execu-
tion,” Automatic Verification Methods for Finite State
systems, Springer-Verlag, pp.365-373, 1989.

[5] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton and A. Sangio-
vanni-Vincentelli, “Implicit State Enumeration of Finite State
Machines using BDD’s,”Proc. ICCAD, pp.130-133, 1990.

[6] J. R. Burch, E. M. Clarke, D. Long, K. L. McMillan, and D. L.
Dill, “Sequential Circuit Verification Using Symbolic Model
Checking,”Proc. DAC, pp. 46-51, 1990.

[7] J. R. Burch, E. M. Clarke, and D. E. Long, “Representing Cir-
cuits More Efficiently in Symbolic Model Checking,”Proc.
DAC, pp. 403-407, 1991.

[8] T. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, and R. K.
Brayton, “Heuristic Minimization of BDDs Using Don’t
Cares,”Proc. DAC, pp. 225-231, 1994.

[9] Y. Hong, P. A. Beerel, J. R. Burch, and K. L. McMillan, “Safe
BDD Minimization Using Don’t Cares,”Proc. DAC, pp.208-
213, 1997.

[10] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier and C.
Pixely, “Efficient Formal Design Verification: Data Structure
+ Algorithms”, Technical Report UCB/ERL M94, University
of California, Berkeley, Oct., 1994.

Circuit
TR Size # Current State Vars

VIS SSM (restrict only) VIS SSM (restrict only)

s1423 20,039 12,277 (12,277) 237 235 (235)

s3271 14,305 11,654 (11,654) 252 247 (247)

s3330 18,099 19,353 (17,797) 167 162 (167)

s4863 125,206 35,001 (35,344) 508 395 (417)

s5378 43,987 19,141 (18,131) 397 347 (377)

Table 2: Comparison of TRs used in each traversal
method.

Circuit #Level # States
Traversal Time

VIS SSM (restrict only)

s1423 11 7.991e11 27,020 22,424 (22,420)

s3271 7 4.129e22 5,873 5,269 (5,273)

17* 1.318e31 space out 13,070 (13,065)

s3330 9* 7.278e17 18,002 10,134 (16,811)

s4863 5* 2.191e19 50,201 7,120 (8,387)

s5378 4 2.393e13 17,802 7,900 (8,371)

6 2.470e20 space out 10,040 (11,020)

7 1.165e21 space out 19,040 (space out)

Table 3: Exact traversal results comparison. (* indicates
complete traversal)

[11] R. K. Brayton et. al., “VIS: A System for Verification and
Synthesis,”Proc. Int’l Conference on CAV, pp. 428-432, July,
1996.

[12] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi,
“Algorithms for Approximate FSM Traversal,”Proc. DAC,
pp. 25-30, 1993.

[13] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi, “Tear-
ing Based Automatic Abstraction for CTL Model Checking,”
Proc. ICCAD, pp.76-81, 1996.

[14] S. G. Govindaraju, D. L. Dill, A. J. Hu, and M. A. Horowitz,
“Approximate Reachability with BDDs Using Overlapping
Projections”,Proc. DAC, pp. 451-456,1998.

[15] H. Savoj, R. K. Brayton, and H. J. Touati, “Extracting Local
Don’t Cares for Network Optimization,” inProc. ICCAD, pp.
514-517, 1991.

[16] D. Brand, R. A. Bergamaschi, and L. Stok, “Be Careful with
Don’t Cares,”Proc. ICCAD, pp. 83-86, 1995.

[17] K. Ravi and F. Somenzi, “High-Density Reachability Analy-
sis,” Proc. ICCAD, pp. 154-158, 1995.

[18] G. Cabodi, P. Camurati, and S. Quer, “Improved Reachability
Analysis of Large Finite State Machines,”Proc. ICCAD, pp.
354 - 360, 1996.

[19] A. Narayan, A. J. Isles, J. Jain, R. K. Brayton, and A. Sangio-
vanni-Vincentelli, “Reachability Analysis Using Partitioned-
ROBDDs”,Proc. ICCAD, pp. 388-393, 1997.

[20] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer, “Disjunc-
tive Partitioning and Partial Iterative Squaring,”Proc. DAC,
pp. 728-733, 1997.

[21] D. E. Long, A Binary Decision Diagram (BDD) Package,
June 1993, Manual Page.

[22] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi,
“A Structural Approach to State Decomposition for Approxi-
mate Reachability Analysis,”Proc. ICCAD, pp. 236-239,
1994.

[23] Y. Hong and Peter A. Beerel, “Symbolic Reachability Analsy-
ing of Large Finite State Machines Using Don’t Cares,”
IWLS98, 1998.

[24] I. Moon, J. Jang, G. Hachtel, F. Somenzi, J. Yuan, C. Pixley,
“Approximate Reachability Analysis Don’t Cares for CTL
Model Checking,”Proc. ICCAD, pp. 351-358, 1998.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

