
Circuit Complexity Reduction
for Symbolic Analysis of Analog Integrated Circuits

Walter Daems Georges Gielen Willy Sansen
Katholieke Universiteit Leuven, Department of Electrical Engineering, ESAT-MICAS

Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium
daems@esat.kuleuven.ac.be gielen@esat.kuleuven.ac.be sansen@esat.kuleuven.ac.be

Abstract
This paper presents a method to reduce the complexity of a linear
or linearized (small-signal) analog circuit. The reduction technique,
based on quality-error ranking, can be used as a standard reduction
engine that ensures the validity of the resulting network model in a
specific (set of) design point(s) within a given frequency range and
a given magnitude and phase error. It can also be used as an analysis
engine to extract symbolic expressions for poles and zeroes. The
reduction technique is driven by analysis of the signal flow graph
associated with the network model. Experimental results show the
effectiveness of the approach.

1 Introduction
Symbolic analysis of analog electronic circuits is to generate sym-
bolic expressions for the parameters that describe the performance
of the circuit [1], [2], [3], [4]. The aim of linear symbolic analy-
sis is to obtain expressions relating linear network performance pa-
rameters with both the frequency and the vector of small-signal val-
uesxq retained as symbols. These expressions typically are ratios
of polynomials in the Laplace variables, with as coefficients sums
of products of small-signal elementsxq of the design point vector
X D [x1x2 : : : xq : : : xQ]T 1 as illustrated in equation (1).N and M
are the number of edges respectively in a denominator and numer-
ator spanning tree. These expressions indicate which parameters to
change in order to achieve a wanted performance.

H.s/ D
PM

pD0

�
s p
PK p

kD1

Q
M xq

�
PN

iD0

�
si
PLi

lD1

Q
N xq

� (1)

However, symbolic analysis by hand has proven to be very error
prone and limited to fairly small circuits [5]. The automation of this
straight analysis task alleviated the former problem, but not the latter
one. Indeed, the expressions resulting from symbolic analysis tools
tend to be very lengthy. In order to keep the obtained expressions
useful for interpretation as well as manipulation, symbolic approx-
imation is mandatory: one trades accuracy for simplicity. Such ap-

W. Daems and G. Gielen are respectively research assistant and
research associate of the Fund for Scientific Research, Vlaanderen.

1The variables contained in the design vector are not necessarily
independent.

Simplification After Generation

Post Processing

Expression Generation

Simplification During Generation

Network Description

Simplification Before Generation

Simplified Network Description

Symbolic Network Function

Symbolic Network Function

Interpretable Result

Figure 1. Approximation steps during the symbolic analysis of
analog electronic circuits

proximation is based upon the order of magnitude of the symbolic
circuit parameters in a specific part of the design space.
The approximation can occur before, during and after the generation
of the symbolic expression [6]. This has been depicted in Fig. 1. The
simplification after generation (SAG) technique historically was de-
veloped first and merely pruned the insignificant terms from the ob-
tained exact expression [3], [7]. As this method became — due to
memory and time constraints — infeasible for practical large circuit
sizes, simplification during generation (SDG) techniques were de-
veloped that overcame the size limitation [6], [8]. About at the same
time simplification before generation (SBG) techniques were devel-
oped to overcome the same limitations [9], [10]. Most likely both
techniques are combined in order to obtain acceptable results.
However, the strictly “mathematical” nature of the approximation,
pruning terms of the coefficient subexpressions or generating their
dominant terms only, did not change: it destroys the factorability
of the result and as a consequence the interpretability of the expres-
sions. The extraction of insightful information like poles, zeroes and
gain levels, thus becomes extremely difficult for higher-order poly-
nomials and works only in case of widely spread poles and zeroes.
Since simplification before generation (SBG) techniques directly op-
erate on the circuit’s network model using network transformations,
the approximation inherently is less “mathematical”: one expects the
factorability to be less violated.
In fact, the key problem lies in the format of the generated expres-
sions. It is observed that, in general, each pole or zero of a network
is determined by only a small portion of the network’s elements.
These elements are often topologically very localized. More specif-
ically, they are gathered in one or two signal paths or loops of the
network. Casting the entire performance characteristic into a flat
expression ruins all information concerning the topological localiza-
tion of poles and zeroes. Mathematically extracting expressions for
poles and zeroes from a flat expression, even when it has not been

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

simplified, is almost an impossible thing to do. Factorization tech-
niques have been developed in computer algebra, but are not fully
satisfactory.
The method presented in this paper, allows being used in a standard
symbolic analysis scheme as outlined in Fig. 1 and thus helps over-
coming the time and memory constraints mentioned before. How-
ever, it also allows a localization analysis of poles and zeroes of a
linear network model by avoiding the destructive casting into a flat
expression by directly taking advantage of the topology of the cir-
cuit.
In section 2 we will describe how to translate a linear electrical net-
work into an equivalent signal flow graph. In section 3 we will define
the notion of network reduction. Section 4.1 will describe the fun-
damentals of the network reduction technique. How to order these
network transformations will be discussed in section 4.4. The fun-
damentals on which this ordering is based will be explained in sec-
tions 4.2 and 4.3. Next, in section 5 we will discuss the localization
of poles and zeroes. The prototype tool that implements this concept
will be described in section 6. The experimental results obtained
using this prototype tool will be presented in section 7. Finally, con-
clusions will be drawn in section 8.

2 Signal flow graph model of a network
The transformation of a linearized electrical network model in a
(connected, directed) signal flow graph can be performed in numer-
ous ways [11], [12]. The key decision to be made is the set of ver-
tices and thus the signal entities to build the graph on. To avoid
confusion, we will denote network nodes as nodes and graph nodes
as vertices. As a starting point, assume using two vertices corre-
sponding to each network node: one representing the node voltage
(the so called voltage vertex) and the other representing the node
voltage multiplied by the sum of all self-admittances attached to the
node (the so called current vertex). Building a signal flow graph on
this principle can be accomplished by replacing all network elements
using the conversion table of Fig. 2. Voltage vertices have been in-
dicated in black, current vertices in grey. The vertices to be merged
are indicated by a dashed line in-between them. After straight ap-
plication of this substitution, parallel graph edges can be lumped
together into meta-edges by summing the admittance values. In this
manner every meta-edge holds one ore more edges, partitioned using
their frequency dependence, which can be proportional tos1, s0 or
s�1. We will denote such a partition as a meta-edge’s order partition.
As a final step the graph still needs some rearrangement in order to
ensure validity and avoid redundancy, but we won’t discuss this in
detail here.
The signal flow graph defined that way is closely related to the Coates
flow graph built on the modified nodal admittance matrix [12]. This
type of graph closely resembles a designer’s way of thinking, for it
clearly indicates where voltages generate currents and vice versa. As
an illustrative example, consider the graph representation in Fig. 4 of
the single transistor amplifier depicted in Fig 3. The transistor model
used has been indicated on Fig. 3 by the inset. Notice how in this
case meta-edges from voltage vertices to current vertices generate
open-loop poles and meta-edges from current vertices to voltage ver-
tices generate open-loop zeroes. In general, closed loop poles/zeroes
originate either by these open-loop poles/zeroes or by the interaction
of signals at summing vertices. Summing vertices are vertices with
a meta-edge in-adjacency larger than one.

3 Network reduction
Let’s first state a definition of what network model reduction is in
the scope of symbolic analysis:
Reduction of a network modelN is applying a sequence ofST net-
work model transformationsTi in order to obtain a network model

N 0 that exhibits a reduced complexity at the price of some error on
the performance.
Formally:

N 0 D

STK
iD1

Ti

!
.N/ D �

TST � � � � � T2 � T1

�
.N/ (2)

The definition contains three important notions: (1) network model
transformation, (2) model complexity and (3) model performance
error. They will be discussed in the next three sections (4.1-4.3).
The subsequent section (4.4) will be devoted to a problem hidden
somewhat deeper in the definition: the ordering of the transforma-
tion sequence.

4 Network model transformations
4.1 Definition
A network transformation can be defined as an operation that maps
the original model to a new model relating the same input and output
variables.
Let’s call the set of candidate transformations� :

� D fT j T is a network model transformationg (3)

When describing the network model as a signal flow graph, we can
distinguish different useful graph transformation categories. We will
illustrate these sets using the graph of Fig. 4.

a

(va -vb)G

(va -vb)A

va

idvb

icia

ib

vc

vd

va vb

ibia

va

vb

ic

id

vc

vd

ia

ib

iava

vb ib id

vc

vd

iava

vb ib vd

vc ic

id

ic

a

Z

1 1

d

c

b

Y
b

d

b

ca

Ti

d

ca

i

Zi

a

i

d

c

b

b

-G

Y

-G

G

G

1/Y 1/Y

Y

A

1-A

1

-T

T

Figure 2. Network element to signal flow graph conversion table

Rin

RL

CL

vout(t)

vin(t)

VDD

T1

pig picva

gx

xc

gmva

go

muc
b

e

c

e

n1

n2

Figure 3. Schematic of the single transistor amplifier

Gin
vin(t)

+gxGin
+scx

+GLgo

+s(cmu+CL)

1

vout(t)

1

+s(cmu+cpi)
inG +gpi

1

gx m-g +scmu

scx

scx

scmu
n1.i n1.v n1’.i n1’.v n2.i n2.v

Figure 4. Signal flow graph of the single transistor amplifier

� Removal of signal paths: by removing an incoming meta-edge
of a summing vertex one or more signal paths are removed from the
graph. We will label this set�RSP.
E.g. removing the meta-edge going from vertexn1:v to n2:i corre-
sponds to removing a forward path from the graph.
� Open-loop root removal: by removing one of the extreme order
partitions of a meta edge, one or two open-loop roots are removed
from the graph. We will label this set�RR.
E.g. removing the capacitive order partition of the meta-edge from
vertexn10:v to n2:i , removes the open-loop zero!z D gm=cmu.
� Vertex-pair contraction : this means shorting the voltage vertices
and the current vertices associated with two nodes. We will label this
set�VPC.
E.g. contracting vertexn10:v with n1:v andn10:i with n1:i which
corresponds to shorting the transistor’s base resistancerx .
� Subgraph substitution: this means replacing a part of the graph
by another graph without violating the topological integrity (i.e. con-
nectedness of the graph). We will label this set�SS.
E.g. replacing the subgraph between nodesn1:i and n2:v by an
impedance edge with value 1=scx .
Of course removing signal paths, removing open-loop roots and ver-
tex pair shorting can be regarded as subgraph substitution, but we
explicitly exclude these substitutions from�SS.

4.2 Network model performance error
When applying network model transformations, the performance of
the transformed network model will deviate from the original model’s
performance. We’d like to keep this deviation as small as possible,
i.e. we’d like the model to reflect the original performance within a
user specified accuracy.
When considering a vectorP of performance parameterspi .N; X/,
we define the model performance errorEP as the weighted norm of
the performance deviation vector1P:

EP.N; T; X/ D k1PkW (4)

with 1P D P.N 0; X/� P.N; X/ (5)

and in whichW represents the norm weight vector. When consider-
ing the performance error with respect to the original network model
we denote it as the absolute performance error. When considering
it relative to the performance of the network model obtained by the
previous network model transformation, we denote it as the relative
error and replace the1 by a �. Notice the dependence of the per-
formance error on the design pointX . This dependency introduces
an additional problem. While we can assess the performance error
in the design point, extrapolation outside the design point is very
dangerous. We could revert to using ranges on the symbolic param-
eters to estimate the performance error, but this approach leads to
very conservative results. Usually an in between solution is chosen,
taking multiple design points that are more or less representative for
the region under study, gathering their performances into one perfor-
mance vector.

4.3 Network model complexity
In our approach all networks are modeled as signal flow graphs.
Therefore, the problem of quantifying a network model’s complex-
ity is reduced to quantifying the complexity of a graph. In general a
diversity of graph properties can be considered to contribute to the
graph’s complexity: the number of nodes, the number of edges com-
bined with their type (which may yield different complexity contri-
butions), the cardinality of the in- and out-adjacencies of the ver-
tices, the number of paths, the number of loops, etc. All of these
are valid complexity contributors, but how should we combine them
into one overall complexity figure?
We’ve been guided by a simple observation: a graph’s complexity
originates from two sources: (1) the number of closed loop roots
(poles and zeroes) present in the graph, and (2) the graph’s con-
nectivity. Indeed, when considering network functions of the form
of equation (1), the larger the number of closed loop poles and ze-
roes, the higher the net order (the difference between the exponent of
the highest and the lowest power ofs) of the numerator and the de-
nominator polynomial will be. The larger the connectedness of the
graph, the more spanning trees will be common to voltage and cur-
rent graph, and hence the more terms within one coefficient ofs will
be generated [6]. We will model the connectedness of the graph con-
veniently as the total number of forward paths and feedback loops.
One link is still missing to fully explain the chosen complexity func-
tion: how do closed loop poles and zeroes, that are not straight visi-
ble on a graph, correspond to open-loop poles and zeroes. Two cases
occur: (1) a closed loop root can originate directly (or after shifting)
from an open-loop root if the open-loop root occurs in a dominant
path or feedback loop of the graph; (2) a closed loop root can also
occur when at a certain frequency, one signal path takes over from
another. One could consider the origin of such a root to be the sum-
ming point that brings both signal paths together. When this takeover
occurs in a loop with signals at the summing point that are nearly in
phase together with a loop gain larger than one, complex conjugate
roots can occur. In a sense one could state that every summing point
is a candidate for the generation of as much closed loop roots as
there are meta-edges that are entering the vertex (i.e. the cardinality
of the in-adjacency of meta-edges to the vertex) minus one.
In view of the above, we define as complexity function of a network
graph:

C.N/ D n fol C nsum| {z }
candidate roots

C nfwp C nfbl| {z }
connectedness

(6)

with� n fol : number of open-loop roots
� nsum : number of summing points
� nfwp : number of forward paths
� nfbl : number of feedback loops

One might argue that counting the number of candidate roots as
representative for the closed loop roots is a huge overestimation
and partly overlaps with the estimation for the connectedness of the
graph. However the more summing points are eliminated also the
more certainty arises concerning where to locate these closed loop
roots and therefore this choice is not as strange at it seems. Yet, as
we will see later in the outline of the algorithm, we’ve taken this
criticism into account.
Some remarks concerning the calculation of this complexity num-
ber: the terms needed for the calculation of the number of candidate
roots can be obtained readily by graph inspection; the number of
forward paths can easily be found by a depth-first search through
the graph. One problem however arises. Initially, i.e. before any
simplification, the traversal of this graph for realistic circuits is un-
feasible in acceptable time limits. Indeed, this is the key problem
of symbolic analysis: the exponential relationship between the com-
plexity and the number of nodes! Therefore complexity calculations

can only be carried out after a presimplification of the graph. This
presimplification consists of an error controlled contraction of bias
circuitry vertices with the ground vertex using a small fraction (typ-
ically 1/10 000) of the user specified error.

4.4 Network transformation ranking
The key question that hasn’t been answered yet, is how to order all
possible network model transformations. The components for this
trade-off have been described in the previous sections. The idea is to
prefer network model transformations that offer a low performance
error to complexity reduction ratio. We therefore define a ranking
function RP

RP

�
N; Tj ; X

� D
�
EP

�
N; Tj ; X

��
�

�
QP

�
N; Tj

��1��
(7)

to order the possible transformations with the transformation quality
QP defined as:

QP

�
N; Tj

� D C .N/ � C
�
Tj .N/

�
(8)

and 0� � � 1. The parameter� is just a tuning parameter that
can shift the ranking from quality concerned (� D 0) to error con-
cerned (� D 1). According to the method to calculate the perfor-
mance error, we can distinguish relative ranking and absolute rank-
ing. We will only consider network transformations exhibiting a pos-
itive ranking function and we will favor transformations with lower
ranking values. In the SBG techniques reported up till now as known
to the authors [9], [10], no quality measure was ever taken into ac-
count for the ranking of the transformations. The advantage of this
new approach is twofold: (1) less transformations have to be ap-
plied to achieve the same level of simplification, for a simplification
with a high error impact that contains several low impact simplifica-
tions can now have a lower ranking than the low impact simplifica-
tions themselves; (2) one can now steer the simplification towards a
specific simplification goal, e.g. a low number of summing points,
which can be helpful when localizing poles and zeroes. Especially
steering the simplification in the direction of simple graph topolo-
gies, results in easier graph decomposition. We will return to this
topic in sections 5 and 7.

5 Localization of poles and zeroes
The observation that a pole or a zero is only determined by elements
that are active in its frequency neighborhood, leads us to the concept
of root clustering. The idea is to split the error specification — that
specifies a maximum magnitude and phase error within some fre-
quency range — into separate subspecifications each valid in some
part of the total error specification range. Roots that differ less than
a user specified difference" f are put in the same root subset. These
subsets form a partition on the set containing all roots. Consider hav-
ing Q subsets (numberedq D [1 : Q]) of nq roots,!q;i each, with
i 2 [1 : nq]. Let the sets as well as the roots in the sets be ordered
from low to high. The borders of the cluster ranges [fq;lo; fq;hi] are
now defined as:

!q;lo D
(

0 if q D 1
p
!q�1;nq�1!q;1 if q D [2 : Q]

(9)

!q;hi D
(p

!q;nq!qC1;1 if q D [1 : Q � 1]

C1 if q D Q
(10)

Intersecting these cluster ranges with the original error specification
results in the wanted subrange specifications. Analyzing the network
model in these restricted areas is very beneficial for the simplicity
of the resulting model. In case of widely spread poles or zeroes, it
allows their full extraction by reducing the netto order of the network
model to 1.

1. Transform circuit into linear network modelN
2. Lump linear network modelN
3. Transform network modelN to signal flow graph modelG
4. Calculate reference performance
5. Perform root clustering
6. Split error specification using the root clusters
7. While graph not analyzable

7.1. error controlled prereduction of the graphG
8. Analyze topology ofG
9. for all subspecifications

9.1. create subgraphsG j

9.2. for� in �VPC, �RSP, �RR, �SS

9.2.1. for8Ti 2 � : calculate relative ranking values
9.2.2. perform ranking
9.2.3. executeTi .G j / while error not exceeded

9.3. Analyze topology ofG j (pole/zero localization)

Figure 5. Circuit complexity reduction algorithm

In the subranges where more than one root is active, a closer inspec-
tion is needed. The process of root detection takes two steps.
The first step is the root identification. As mentioned before, two
kinds of internal roots can occur, open-loop roots and roots origi-
nating from summing points. For the former ones the identification
can be done by simple inspection of the meta-edges order partitions.
For the latter ones, we revert to graph decomposition. This decom-
position is guided by the topological analysis made during the cir-
cuit reduction. Cuts can be made at complementary vertices (i.e.
the first vertex’s topological in-adjacency equals the second vertex’s
topological out-adjacency and vice versa) if the edges between these
vertices are not involved in any other path not occurring in the topo-
logical in-adjacency of the start vertex.2 The subgraph from the ver-
tex coming earlier in the graph’s topology to the vertex later in the
graph’s topology can then be analyzed separately. Subgraphs with
smaller lengths3 are analyzed first. By this evolving analysis starting
from small enclosed subgraphs to the larger enclosing subgraphs, we
can detect the occurrence of poles and zeroes at summing points by
comparison and intersection of the incoming signal levels at these
summing points.
The second step is root observability checking. By comparing the
signals at the root’ frequency at the downstream summing points,
we can check if the root can propagate itself to become visible at the
output.
Using the above procedure a large number of poles and zeroes can be
detected and localized. We will illustrate this procedure in section 7.

6 Circuit reduction prototype
A circuit reduction prototype tool has been built. The prototype im-
plemented in C++ allows circuit reduction according to the princi-
ples described in previous sections using error control in a single
design point. The prototype is however ready for future extensions,
like a transition from a quality concerned ranking to an error con-
cerned one, multiple design point error control, etc. It consists of
about 10 000 lines of code. The outline of the algorithm can be found
in Fig. 5. As one clearly can see, all transformations are not com-
peting simultaneously in the ranking process. Instead we partitioned
all possible transformations as indicated in section 4.1 and apply
them in sequence. This partitioning avoids an unfair competition
between transformations that remove open-loop roots and transfor-
mations that simplify the overall topology for the latter will cause a

2The notion of valid graph cuts can be extended to multiple in-
put/output subgraphs.

3The length of a graph is the minimal number of edges to be tra-
versed to reach the end vertex from the start vertex.

VSSVSS

M2b

M3bM3a

M1a M1b

n2a

n3

n2b

nin_p nin_m

n5n4a n4b

M2a

M6

M7M4a

M5a M5b

M4b

nvdd

nvss

n1

nout

nvb1

nvb3

nvb2

Figure 6. The operational transconductance amplifier (OTA)

gbc

va vb

cdb

cgs csb
ro

gm gmb vb

rd

rs

gdc

G B
va

D

S

Figure 7. The MOST small-signal model

decrease in all terms of equation (6), while the former only acts on
the first term.

7 Experimental results
In order to illustrate the effectiveness and usefulness of the presented
method, we will present the results from the analysis of the voltage
gain of the operational transconductance amplifier of Fig. 6 using
the circuit reduction prototype tool.
The MIETEC C07 process was chosen as target technology and we
used the small-signal MOST model of Fig. 7 in combination with
the MOS level 3 model to calculate the small-signal values. In order
to allow a proper biasing without disturbing the open-loop analysis,
a test harness has been used as shown in Fig. 8.
We specified an error of�3dB and�5o in a frequency range from
10Hz to 10GHz. The reference performance has been plotted in
Fig. 9.
Execution time of the entire simplification step using the prototype
tool amounts to 75 s on a Sun UltraSparc 30 running at 250MHz.
Memory consumption only amounts to 8 MByte. The results in
terms of complexity can be found in table I. The first data row in-
dicates the initial complexity after an error controlled prereduction
step. In a first run, we disabled the frequency splitting feature. This
results in the second line labeled “whole range”. In a second run,
we enabled the frequency splitting feature resulting in three sub-
ranges. For the subrange around the unity gain frequency is very
important concerning phase margin, we added an intermediate sub-
range around that frequency. The resulting complexity figures are

VDDVDD

VSS

VDD

VSS

0.5 vin

-0.5 vin
vint

Ivb1

Ivb3Ivb2

VDD

VSS

2.5V

2.5V
vout

RFB

FBC

int refout

CLRL

in

nin_p

nin_n

nout

nvdd

nvss

nvb1

nvb2 nvb3

refin
out

Figure 8. The test setup used to analyze the OTA

subrange 4subrange 3subrange 2subrange 1

p0f z1f
p1f

80
60
40
20

0
-20
-40
-60
-80

1e+071e+061e+051e+041e+031e+0210 1e+08

P
ha

se
 [d

eg
re

e]
-150
-100

-50
0

50
100
150
200

Frequency [Hz]
1e+101e+091e+081e+071e+061e+05

-200

1e+09 1e+10

M
ag

ni
tu

de
 [d

B
]

1e+041e+031e+0210

Figure 9. Bode plot of the OTA voltage gain with indication of
the analyzed poles and zero and indication of the frequency sub-
ranges

indicated on the next lines. As one can see very fine results are ob-
tained for subranges 1, 2 and 4. The results for subrange 3 are not
so impressive. However, this result should not surprise us, for this
cluster contains 17 closed loop roots enclosed in one and a half fre-
quency decade! We might consider loosening the error specification
for that cluster or use root clustering in the complex plane instead of
on the imaginary axis.
Figs. 10(a) and 10(b) clearly illustrate the informative value of the
graphs generated. The first graph indicates the elements that deter-
mine the dominant pole. We clearly can locate the three dominant
loops at low frequencies: the current mirror loop in the lower branch,
and the two cascode loops in the upper branch. We also can assess
the reason for the occurence of the dominant pole: the single fre-
quency elementcout starts pulling the low frequency gain down by
lowering the loop gain in the two cascode loops. We also can directly
extract a symbolic expression for the low frequency gain incorporat-

n fol nsum nfwp nfbl C.N/

Initial � 42 � 36 � 702 � 1190 � 1970

whole range 15 13 23 12 63

subrange 1
10Hz-175kHz

1 4 2 3 10

subrange 2
175kHz-42MHz

1 4 2 3 10

subrange 3
42MHz-1GHz

13 12 24 13 62

subrange 4
1GHz-10GHz

2 0 1 0 3

Table I. Comparison of complexity figures

gmM1b

1 1

gout+scout
-gmM3b

gn2a

1

gn4b

1

gn2b_nout

n2a_n3g

goM2b

nin_p.v

one.v

nin_n.v n2b.i n2b.v

nout.i
nout.v

0.v

n4b.in4b.v

n3.v
n3.i

n2a.vn2a.i

1.v

mM1ag

-0.5

0.5

1

gn2b

1

1

gn3

gn4b_nout

goM4b

gn3_n2a

(a)

gmM1b

1 1

gout+scout
-gmM3b

gn2a

1

gn4b

1

gn2b_nout

mM1ag

goM2b

gn3_n2a

nin_p.v

one.v

nin_n.v n2b.i n2b.v

nout.i
nout.v

0.v

n4b.in4b.v

n3.v
n3.i

n2a.vn2a.i

1.v

-0.5

0.5

1

gn2b

1

gn4b_nout

scn3

1

goM4b

n2a_n3g

(b)

gn2a D gmM2aC gmbM2aC goM2aC goM1aC goM3a

gn2b D gmM2bC gmbM2bC goM2bC goM1bC goM3b

gn3 D goM2aC goM5a

cn3 D cgdM2aC cdbM2aC cgbM3aC cgsM3aC cgsM3bC cgdM3bC cgbM3bC cdbM5a

gn4b D gmM5bC goM5bC goM4b

gn2a n3 D gmM2aC gmbM2aC goM2a

gn3 n2a D gmM3aC goM2a

gn2b nout D gmM2bC gmbM2bC goM2b

gn4b nout D gmM4bC gmbM4bC goM4b

gout D gL C goM5bC goM2b

cout D cL C cdbM2C cgdM2bC cdbM5bC cgdM5b

Figure 10. Graph resulting from the analysis of (a) the frequency
range from 10Hz to 175kHz and (b) the frequency range from
175kHz to 42MHz

ing the dominant pole.

AVLF D
1

2

�
gmM1agmM3b

gmM3aC goM2a
C gmM1b

�
1

Gx

�
1

1C scout=Gx

�
(11)

with Gx D
gn2b noutgoM2bgn4bC gn4b noutgoM4bgn2b

gn2b noutgn4b
(12)

In equation (12) we can clearly find as summing terms the paral-
lel action of the two cascode loops. The second graph indicates the
elements that determine the first non dominant pole/zero pair. Com-
pared with the first graph, no open-loop poles or zeroes have been
added. Only the transfer fromn3:i to n3:v has changed from con-
ductive to capacitive. For in this graph more than one closed-loop
root is active, we revert to graph decomposition. We find two valid
subgraphs: (1) between vertexn2a:i andn3:v and (2) betweenn2b:i
and nout:v. We already analyzed the latter in the previous para-
graph. Analysis of the signal levels at the summing pointn2a:i of
the former learns us that a pole is generated because the loop gain of
this (current mirror) loop drops below 0dB (the gain bandwidth of

the loop). This pole is observable at the output for it occurs in one of
two equidominant forward paths at summing pointn2b:i . A corre-
lated topological zero occurs at summing pointn2b:i corresponding
to the fact that the gain only can drop to 1/2 of the total gain. The
results of this analysis thus become:

fp1 D 1

2�

gn2a n3gn2 n2a

gn2acn3
(13)

fz1 D 2 fp1 (14)

These expressions correspond to the frequencies indicated on Fig. 9.

8 Conclusions
In this paper, we presented a method to reduce the complexity of
linear or linearized analog circuits taking into account the circuit’s
graph complexity. This approach allows short circuit reduction times
and allows generation of instructive signal flow graphs describing
the circuit’s behavior in a very effective way. The graphs can be
efficiently analyzed using graph decomposition techniques leading
to an insight in the localization of closed-loop poles and zeroes. This
way the painful nature of flat symbolic analysis techniques, resulting
in long uninterpretable expressions, is avoided.

Acknowledgments
The authors would like to acknowledge the support by the European
Union within the ESPRIT project 21812 “AMADEUS”.

References
[1] G.E. Alderson and P.M. Lin, “Computer generation of sym-

bolic network functions: A new theory and implementation”,
IEEE Trans. on Circuit Theory, vol. 20, no. (1), pp. 48–56,
January 1973.

[2] S.J. Seda, G.R. Degrauwe, and W. Fichtner, “A symbolic
analysis tool for analog circuit design automation”, inProc.
IEEE/ACM ICCAD, Santa Clara, 1988, pp. 488–491.

[3] G. Gielen, H. Walscharts, and W. Sansen, “ISAAC: a sym-
bolic simulator for analog integrated circuits”,IEEE J. Solid-
State Circuits, vol. 24, no. 6, pp. 1587–1597, Dec. 1989.

[4] F.V. Fernández, A. Rodr´ıguez-Vázquez, J.-L. Huertas, and
G. Gielen,Symbolic Analysis Techniques: applications to ana-
log design, IEEE Press, 1997.

[5] C.A. Desoer and E.S. Kuh,Basic Circuit Theory, McGraw-
Hill, California, 1969.

[6] P. Wambacq, F.V. Fern´andez, G. Gielen, W. Sansen, and
A. Rodrı́guez-Vázquez, “Efficient symbolic computation of
approximated small-signal characteristics”,IEEE J. Solid-
State Circuits, vol. 30, no. 3, pp. 327–330, Mar. 1995.

[7] F.V. Fernández, A. Rodr´ıguez-Vázquez, and J.-L. Huertas, “In-
teractive ac modeling and characterization of analog circuits
via symbolic analysis”,Kluwer J. Analog Integrated Circuits
and Signal Processing, vol. 1, pp. 183–208, Nov. 1991.

[8] Q. Yu and C. Sechen, “Efficient approximation of symbolic
network functions using matroid intersection algorithms”, in
Proc. 3rd Workshop on Symbolic Methods and Applications to
Circuit Design, Sevilla, Oct. 1994, pp. 261–227.

[9] Q. Yu and C. Sechen, “Approximate symbolic analysis of large
analog integrated circuits”, inProc. IEEE/ACM ICCAD, 1994,
pp. 664–671.

[10] R. Sommer, E. Hennig, G. Dr¨oge, and E.-H. Horneber,
“Equation-based symbolic approximation by matrix reduction
with quantitative error prediction”,Alta Frequenza - Rivista Di
Elettronica, vol. 5, no. 6, pp. 317–325, Nov. 1993.

[11] S. Mason, “Feedback theory — some properties of signal flow
graphs”, inProc. IRE, Sept. 1953, pp. 1144–1156.

[12] C.L. Coates, “Flow-graph solutions of linear algebraic equa-
tions”, in IRE Trans. Circuit Theory, June 1959, vol. 6, pp.
170–187.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

