
Behavioral Synthesis of Analog Systems using Two-Layered Design Space Exploration�

Alex Doboli, Adrian Nunez-Aldana, Nagu Dhanwada, Sree Ganesan, and Ranga Vemuri
Laboratory for Digital Design Environments, Department of ECECS,

University of Cincinnati, Cincinnati, OH 45221
fadoboli, anunez, nagu, sganesan, rangag@ececs.uc.edu

Abstract

This paper presents a novel approach for synthesis of analog sys-
tems from behavioral VHDL-AMS specifications. We implemented
this approach in the VASE behavioral-synthesis tool. The synthe-
sis process produces a netlist of electronic components that are
selected from a component library and sized such that the overall
area is minimized and the rest of the performance constraints such
as power, slew-rate, bandwidth, etc. are met. The gap between
system level specifications and implementations is bridged using a
hierarchically-organized, design-space exploration methodology.
Our methodology performs a two-layered synthesis, the first being
architecture generation, and the other component synthesis and
constraint transformation. For architecture generation we sug-
gest a branch-and-bound algorithm, while component synthesis and
constraint transformation use a Genetic Algorithm based heuristic
method. Crucial to the success of our exploration methodology
is a fast and accurate performance estimation engine that embeds
technology process parameters, SPICE models for basic circuits
and performance composition equations. We present a telecom-
munication application as an example to illustrate our synthesis
methodology, and show that constraint-satisfying designs can be
synthesized in a short time and with a reduced designer effort.

1 Introduction

The complex task of synthesizing analog and mixed analog-digital
systems is typically approached using a hierarchically organized
top-down design paradigm, across successive levels of abstraction
[5] [11]. In the most general case, such a synthesis environment
starts from specifications and design/performance constraints at the
system-level, moves down to the circuit-level, and finally considers
the layout-level. Recent research on analog synthesis exclusively
targets circuit-synthesis and layout generation, which are design
activities at lower levels of abstraction. Circuit synthesis [14] [19]
[20] assumes a known circuit-topology, and searches for physi-
cal dimensions of transistors, so that circuit-level performance at-
tributes, i.e. bandwidth, slew-rate, power, are optimized. Layout
tools [6] perform cell placement and routing, with respect to phys-
ical constraints, i.e. parasitics, cross-talk, latch-up. However, for
achieving automated analog-system synthesis or mixed-signal syn-
thesis, bridging the gap between system and circuit level designs
becomes of crucial importance. Traditionally, this task is known as
High Level Synthesis (HLS).

�This work is sponsored by USAF, Air Force Research Laboratory, WPAFB under
contract number F33615-96-C-1911

Library
Component

Analog

Behavioral Description of Analog Systems

High-Level Analog Synthesis Environment

Sized Sized Netlist of Components

Architecture
Generator

Constraint
Transformation

&
Component Synthesis

Performance
Estimator

Analog

EXPLORATION ESTIMATION

Figure 1: Exploration and estimation based approach in VASE
for analog behavioral synthesis

The goal of HLS is the inferring of all required design elements,
so that circuit synthesis can follow next. Three main synthesis
tasks accomplish this goal: architecture (system topology) gener-
ation, component synthesis, and constraint transformation (from
system-level to component-level). System-level design decisions
such as selecting a particular system topology have a great impact
on the overall performance characteristics but their quality is diffi-
cult to estimate, unless the design is completed until the physical
layout stage. A straightforward synthesis approach would consider
a flat, physical-level representation of the system, but this is un-
realistic and cumbersome due to the immense design space to be
explored. Thus, the essential challenge for any realistic synthesis
tool is to make an effective compromise between the importance of
the system-level design decisions and the large number of solution
points which have to be analyzed. Basically, a HLS tool relies on
two aspects for tackling this trade-off: (1) an effective mechanism
for design space exploration and (2) a fast and accurate method
for estimating the quality of the visited solution points. Moreover a
practical approach for design space exploration requires a procedure
for design space pruning that enables discarding of poor solutions
early in the search, and a systematic way of structuring and visiting
the design space for biasing the search, aided by analog knowledge,
towards good solutions.

This paper presents the VASE (VHDL-AMS Synthesis Environ-
ment) methodology for synthesis of analog systems from VHDL-
AMS [1] behavioral specifications. The result of the synthesis pro-
cess is a sized net-list of electronic circuits such that the ASIC area is
minimized and the rest of the system-level performance constraints,
such as power, bandwidth, etc., are satisfied. VASE attempts to
achieve this goal by performing a two-layered, optimization-based,
design-space exploration, as depicted in Fig 1.

The top-most exploration step is the Architecture Generator,
which generates alternate system topologies from the input speci-
fication. The Constraint Transformation and Component Synthesis
step considers each system topology and obtains the constituent
components, their topologies and their respective design/performance

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

constraints. For architecture generation, we suggest an optimal
branch-and-bound [15] algorithm that enumerates all distinct al-
ternatives for system topologies. This methodology is motivated
by the fact that the system topology has a decisive impact on the
overall performance, and also that the number of distinct alterna-
tives tends to be small. Besides branch-and-bound permits effective
design-space pruning by means of its bounding rules. Since their
designated solution-spaces are inherently much larger, component
constraint transformation and component synthesis rely on a Ge-
netic Algorithm (GA) based heuristic method [13].

Critical to the success of our exploration-based synthesis method-
ology is the accuracy of analog performance estimation. We use
an Analog Performance Estimator (APE) to provide fast and ac-
curate estimates of analog system performance at various levels of
abstraction. The APE is a hierarchical analog estimation engine
that contains performance models of analog components (SPICE
models for basic circuits and performance composition equations
at other levels of abstraction). We present the APE and how it is
employed in the constraint transformation and component synthesis
step, and in ranking the quality of the explored solutions.

The paper is organized as seven sections. Section 2 presents the
related work, and highlights the contributions of this paper. Then,
we discuss our analog synthesis approach in Section 3. Section
4 introduces the analog performance estimator that guides the ex-
ploration algorithm. In Section 5, the algorithms for architecture
generation and component synthesis are described. Section 6 mo-
tivates the effectiveness of our synthesis flow by means of a case
study. Finally, we provide our concluding remarks.

2 Related Work

Most of the research on analog-circuit synthesis performs either
solution-space exploration [4] or constraint transformation [2] [16]
as they tend to regard the two steps as being unrelated. Opti-
mization based circuit synthesis assumes a known circuit-topology
and searches for the transistor dimensions that optimize perfor-
mance attributes. The developed tools start by producing circuit-
performance models that relate performance attributes to design
parameters. Various methods are suggested for this task. Simpli-
fied symbolic equations are calculated for performance parameters
in [14]. [20] includes the Kirchhoff’s laws into the cost function
for the optimization algorithm and [17] relies on the square-law
equations of the CMOS op amps. Next, the performance model
is used by an optimization algorithm, i.e. simulated annealing,
non-linear or geometric programming to find values for the phys-
ical design parameters. Finally, the quality of a solution point
is evaluated through different simulation methods, i.e. symbolic
simulation [14], general-purpose simulators (i.e.SPICE) [19], or
approximate simulation [20]. Research that concentrates on con-
straint transformation is very limited. [2] suggests a semi-analytical
approach that uses the circuit transfer function to relate performance
attributes to the design parameters and parasitic effects. [16] uses
interval analysis for circuit synthesis, defined as the task of parti-
tioning design constraints together with a partitioning of a circuit
into smaller blocks. Common to all mentioned approaches is the
focus on circuit-level synthesis, without addressing system-level
aspects. Second, they discuss either solution-space exploration or
constraint transformation, although both tasks are compulsory in a
complete synthesis tool.

In this paper, we propose an automated method for conduct-
ing high level synthesis at the analog system level. To the best
of our knowledge, this is the first attempt to develop a complete
methodology for analog synthesis from behavioral, system-level
specifications. The main contributions of this paper are:

� We present a novel system-level synthesis approach that starts

PORT (
QUANTITY line: IN real; -- IS voltage
QUANTITY local: IN real; -- IS voltage
QUANTITY earph: OUT real;

-- IS voltage
-- limited
-- drives 270 O at 285 mV peak

BEGIN

c1 <= ’1’;
ELSE

c1 <= ’0’;
END IF;

END PROCESS;

PROCESS (line’ABOVE(Vth)) IS

IF (line’ABOVE(Vth) = TRUE) THEN

ENTITY telephone IS

END ENTITY;
)

SIGNAL c1: bit;
QUANTITY rvar: real;

ARCHITECTURE behavioral OF telephone IS

 earph == (Aline * line + Alocal * local) * rvar;

ELSE

END USE;
rvar == r1c + r2c;

rvar == r1c;

END ARCHITECTURE;

 IF (c1=’1’) USE

Figure 2: VHDL-AMS specification for the receiver module

from behavioral specifications and performs architecture gen-
eration, constraint transformation, and component synthesis.

� We discuss a branch-and-bound algorithm for system-level
architecture generation. As opposed to other optimal meth-
ods, such as non-linear programming, branch-and-bound of-
fers an improved potential for solution-space pruning. Space
pruning is crucial for early discarding of infeasible solutions.

� We propose a genetic algorithm for component constraint
transformation and component synthesis. Constraint trans-
formation is also described as an exploration problem, an
alternative approach to the analytical methods. Analytical
methods are elegant and exact but require extensive analog
expertise and tend to be complex even for simpler cases [4].

� The quality of the explored solutions is evaluated through
fast and accurate analog performance estimation, instead of
the traditional simulation approach [19] [20]. Inside an ex-
ploration loop, obtaining reasonably accurate performance
values quickly is far more important than calculating them
with a high accuracy.

3 The Synthesis Approach

With a motivating example, this section details our methods for
architecture generation, constraint transformation, and component
synthesis and presents the order which ties them into a meaning-
ful synthesis-flow. Also, we discuss our notation for describing
implementation-independent, behavioral specifications of analog
systems.

For explaining the VASE synthesis-flow, we use an analog tele-
phone set as an illustrative example. A more detailed description of
the telephone set is provided in Section 6. The telephone consists
of a transmitter and receiver modules. The transmitter amplifies
the incoming audio signal from the caller, and also matches the
impedance of the line. The function of the receiver is to provide an
audible output signal to the earphone of the telephone set. It am-
plifies incoming signals transmitted from the calling part and those
produced locally by its own microphone amplifier and transmitter
module. Besides, it automatically compensates losses introduced
by different telephone line lengths.

Implementation-independent, behavioral specifications essen-
tially describe the system functionality, and they are expressed in
VHDL-AMS [1], in our synthesis environment. We identified a
VHDL-AMS subset for synthesis, and we specified several real-
life-inspired examples with our VHDL-AMS subset [8]. In the
process, we learned that a declarative notation is needed for ex-
pressing properties of signals and ports. It is very common that
ports must have a limited input/output impedance, which is a prop-
erty of the system, and not a functional aspect described as an
operational block. These annotations are essential in guiding the
synthesis process. Figure 2 presents the annotated VHDL-AMS
code for a simplified version of the receiver module (without the
DTMF signal).

*Aline

*Alocal

+ *rvar

line
--voltage

local
--voltage

Branch-and-bound
Algorithm

search and prunning
for solution-space
Analog Knowledge

Component
Library

--at 285mv peak
--drives 270 Ohm
--limited

earph

Architecture Generator

Topology1 Topology4Topology3Topology2

VHIF Specification for the Receiver Module

Analog

Figure 3: Architecture generation

We developed a compiler [10] that translates VHDL-AMS spec-
ifications into their equivalent VHIF representations, and these are
the inputs for our synthesis environment. VHIF is a hierarchical
intermediate format [9] that algorithmically represents continuous-
time behavior as signal-flow graphs, that most naturally represent a
system description at the level of components. Besides, the VHIF
representation is designed to ensure that all its constituent elements
can be implemented with components from an analog library [3].
Signal-flow graphs provide exact knowledge about the flow and
processing of signals in a system. The output of each block in
the graph depends only on its input signals and the functionality
(operation) of the block. The top-most part of Figure 3 depicts the
signal-flow graph obtained for the receiver module after compiling
the input VHDL-AMS behavioral specification.

The Architecture Generator maps a VHIF representation, into
netlists of circuits at the component level, which is the highest
level of abstraction for system-level designs [12]. For producing
all possible mappings, the branch and bound algorithm relies on
VHIF representations for all components in the library [3]. The
analog library contains topologies for some of the most commonly
used analog circuits: operational amplifiers, filters, converters, etc.
Besides the VHIF representations, the library also stores the con-
straints for input/output signals, impedances, etc. under which a
circuit realizes its expected function. During the exploration, the
algorithm also prunes the solution space and discards some infea-
sible solutions, without doing component synthesis and constraint
transformation (eg. topologies with many opamps are immediately
rejected by using knowledge about the minimum area of an opamp).
Also, analog knowledge and common-sense rules can bias the ex-
ploration process towards better architectures. The exploration first
considers topologies with a reduced number of op amps, as they
tend to have a smaller area. Such "rules of thumb" do not influ-
ence the final topology, but they can increase the effectiveness of
pruning, if they provide a good solution. Figure 3 illustrates the
architecture generation step for the receiver module. Four differ-
ent system-level topologies are generated for the signal flow graph
representing the receiver module. The quality of each topology is
estimated by instantiating components from the library and evalu-
ating their performance using the APE.

For all components in an architecture produced by the Archi-
tecture Generator, the Constraint Transformation and Component
Synthesis step fixes real circuit topologies and approximate tran-
sistor sizes, and then estimates the resulting performance. Con-
currently, this step also transforms system-level constraints (i.e.
area, power, gain, bandwidth) onto component design parameters
(bias current, gain-w/l ratio, etc). Figure 4 exemplifies this step for
Topology 2 (the topology with minimum number of opamps) for
the receiver module. The main features of this step are a GA based
search engine, a component characterization method, and an analog

System-Level
Constraints

Characterization
Module

Topology2

Analog Performance
Estimator

 -
 +

 -

+

Constraint Transformation & Component Synthesis

GAs for Constraint
Transformation and

Component Synthesis
Library

Analog Compon.

Net-list of electronic components

op amp2op amp1

area:350 squ

type:2 stage
gain: 54
ugf:66 Khz

type:2 stage

bw:1Mhz
gain:44

area:138 squ

Figure 4: Constraint transformation

performance estimator. Both component characterization and con-
straint transformation are based on a directed interval representation
of the relationships between design and performance parameters.

4 Analog Performance Estimation

The analog performance estimator [18] accepts design parameters
(bias current etc) of an analog circuit along with it’s topology and
determines the performance parameters (area, UGF, slew rate, etc)
of the circuit with the anticipated sizes of the circuit elements. The
APE is structured hierarchically, and contains technology process
parameters, SPICE models of the circuit elements, and performance
composition equations for determining the performance of the cir-
cuit at different levels of abstraction. These levels include basic
circuit elements (MOS transistors, resistors, capacitors), simple ana-
log circuits (current mirrors, differential amplifiers etc), operational
amplifiers in various configurations and analog library cells.

The estimation and sizing are performed bottom up starting
from the transistor level through to the system level. At each level
in the hierarchy, the current design parameters are obtained from
the parent level and are further decomposed into the parameters for
the sub-components. This eventually leads to the rough sizing of
the transistors and generation of the performance estimates. The
estimation at different levels in the APE is as following:

� CMOS transistor level : is the lowest level in the hierarchy
of APE. The transistor is sized based on its DC operating point
and the fabrication process parameters. In a CMOS transis-
tor level, the parameters specify the electrical and process
characteristics of the devices. Using these parameters and
the transistor SPICE models, the large signal and small sig-
nal models of a CMOS transistor, capacitor and diode can be
evaluated.

� Basic Circuit Level : The elements in this level include DC-
bias voltages, current sources, gain amplifiers, output buffers,
differential amplifiers, and differential-single ended convert-
ers. This level contains several topologies for each compo-
nent, e.g. a current source can be implemented as a Cascode
or a Wilson topology. APE contains a set of symbolic equa-
tions which relate the performance of the components to the
circuit topology. The small signal characteristics of the tran-
sistors and the symbolic equations of the circuit are used to
estimate the performance parameters of this circuit. For in-
stance, the typical performance parameters estimated for a
differential amplifier are Adm, CMRR, gate area, UGF, Zout,
DCpower and slew rate.

Table 1 compares the APE estimations and SPICE simulation
results of some basic components after being sized according

Topology Gate Area UGF DC Power Gain CMRR Current
�

2
MHz mW dB �A

est sim est sim est sim est sim est sim est sim
CurrMirr 165.7 165.6 - - .5 .56 - - - - 100 97.9
Wilson 383.3 383.1 - - .5 .58 - - - - 100 106

GainNMOS 101 101 15.7 15.2 .6 .82 -8.5 -8.0 - - - -
GainCMOS 101 101 26.7 30.3 .62 .8 -19.0 -16.9 - - - -

GainCMOSH 101 101 8.3 8.7 .23 .22 -5.1 -5.3 - - - -
Follower 123.4 123.4 - - .5 .64 .8 .81 - - 100 128

DiffNMOS 47.2 45.8 6.0 6.5 .5 .49 -10 -10.2 78 78.5 1 1.02
DiffCMOS 15.8 15.8 4.4 4.6 .5 .49 1000 1055 128 - 1 1.02

Note 1: - not applicable for the topology

Table 1: Estimation vs SPICE simulation for basic circuits

to user-specified requirements in terms of voltage for DC
voltage sources, current for current sources, gain for gain
stages etc. This table shows that the models used in the APE
are reasonably accurate. 1

� Operational Amplifiers : This level consists of topologies of
operational amplifiers. Each stage in the operational amplifier
is composed of basic circuit elements. The performance of
the operational amplifier is evaluated using the attributes of
these basic circuit elements. For example, the UGF of the
operational amplifier is computed as a function of gain and
UGF of the differential amplifier and the gain stage, and the
compensator capacitor.

Table 2 compares the performance estimation and SPICE
simulation results of several operational amplifiers after being
sized. In each case, Adm and UGF values were specified by
the user along with the specification of an opamp topology.
Again these results show that the opamp models used in APE
are reasonably accurate.

� Analog Module Level : This library of analog modules
forms the fourth level in the APE. Each of the modules are
built using the operational amplifiers, elements from the ba-
sic circuit level, transistors, resistors and capacitors. This
level consists of elements like inverting/non-inverting am-
plifiers, integrators, adders, sample-and-hold circuits, A-D,
D-A converters, etc. The performance of these components
is estimated using the operational amplifier attributes and the
equations relating the ideal behavior of the component with
the non-ideal characteristics of the operational amplifier.

� System Level : At this level, the APE estimates the perfor-
mance of a system comprised of blocks in one of the basic
configurations (cascaded, split, join) given the performances
of the individual blocks in the system. The netlist is repre-
sented as a signal flow graph, where each node is an estimated
element from the analog module level. APE evaluates the per-
formance of the signal flow graph using the Mason’s rule.

Above this is a wrapper that accepts an arbitrary system level
net-list, partitions it into basic configurations and generates a perfor-
mance estimator specific to the given system netlist. The APE also
has built into it some rules that detect the cases where transistors
in the design go out of saturation, or when some basic conditions
governing the functionality of the circuit have been violated.

The APE, through several examples, has been proven to be fast
and accurate. Components at the analog module level are estimated
in tenths of seconds with maximum estimation error of 10% when
compared with SPICE. This makes APE suitable for use within our
exploration-based methodology.

1Estimated area deviates slightly from the area of the simulated circuit due to the
fact the estimated transistor sizes may contain fractional dimensions not permitted by
the layout design rules. These sizes are rounded up to the nearest dimension allowed
by the design rules before performing simulations. All area numbers denote active
transistor areas, with no routing taken into account.

Ckt Power Adm UGF Ibias Zout Gate Area CMRR SR
mW MHz �A Kohm �

2
dB V=�S

est sim est sim est sim est sim est sim est sim est sim est sim
OA1 .29 .28 206 223 1.3 2.1 1 .9 1 .9 4885.7 4884.4 129.7 135.3 0.1 0.1
OA2 .17 .19 374 380 8.0 13.7 2 1.9 1 .9 2379.6 2376.2 141.8 157.4 0.2 0.2
OA3 .15 .16 167 170 12.4 9.8 1.5 1.4 2 1.8 1010.8 1010.8 133.8 125.1 .15 .16
OA4 .24 .29 514 489 2.6 4.0 1 1.1 - - 696.9 696.9 98.6 100.8 4.5 4.3
Note 1: OA1, OA2, OA3 topology: Wilson, DiffCMOS, Output Buffer. OA4 topology: Mirror, DiffCMOS

Table 2: Estimation vs SPICE simulation of opamp’s

5 Design Space Exploration

This section presents the design-space exploration phase of our be-
havioral synthesis methodology. The exploration phase consists of
two distinct parts: (1) architecture generation and (2) constraint
transformation and component synthesis. The goal of the explo-
ration phase is to map a set of VHIF signal-flow graphs for a system
into a net-list of sized components such that all performance con-
straints are satisfied and the total ASIC area is minimized.

5.1 Architecture Generator

The algorithm for architecture generation contemplates different
component-level mappings for a VHIF representation, while at-
tempting to achieve its goal of minimizing the ASIC area. At the
level of the system topology, the goal of area minimization is ad-
dressed by analyzing two possibilities of hardware sharing: (1)
between blocks in different signal paths, and (2) between blocks of
the same signal-flow path. Blocks in distinct signal paths can share
the same component, if they have identical inputs, and perform the
same operation. Blocks of the same signal-flow path can share a
component, if the component implements the overall functionality
of the blocks. Any optimal algorithm must analyze all possible
mappings, as the two sharing options can conflict each other. Al-
though the problem of architecture generation is NP-hard [15], we
decided to solve it optimally by using a branch-and-bound algo-
rithm [15]. VHIF representations for real-life examples tend to be
of small or medium size, so that it is practical to map them opti-
mally. Besides, an optimal algorithm can be used as a reference for
designing future mapping heuristics.

The algorithm for the Architecture Generator is depicted in
Figure 5. It maps the signal-flow graph denoted by variable signal-
flow into the minimum area net-list indicated by variable net-list.
Variable opamp nr represents the number of op amps in a partial
mapping. As branch-and-bound is a popular algorithm [15], we
show only the three elements, that are specific to our problem:

� Branching rule: marked with 3 in Figure 5, describes how
distinct mapping solutions are produced for a partial solution-
point. It distinguishes all VHIF block-structures, pointed by
variable sub-graph, with cur block as their output block, and
which are directly mappable to library components [3]. Be-
sides, the branching rule contemplates two kinds of transfor-
mations, in a signal-flow graph. Functional transformations
replace a particular block structure with a distinct, but seman-
tically equivalent structure, i.e. for improving bandwidth, an
op amp is replaced by a chain of two op amps with lower
gains [12], or two non-inverting amplifiers are substituted
for/by two inverting amplifiers [12], etc. Transformations
pertaining to circuit interfacing introduce additional circuits,
i.e. follower circuits [12], or various input/output stages
[12], etc., for diminishing loading/coupling effects among
interconnected components.

� Bounding rule: marked with 2 in Figure 5, eliminates a
partial solution, if it finds that the minimum area, which can
result, is greater than the area of the best solution found so

procedure mapping (signal-flow, cur block, op amp nr) is
3forall sub-graph 2 signal-flow, that have cur block as output block and are

mappable to one library-component;

in decreasing order of the number of blocks in sub-graph do
if sharing is possible and library-component for sub-graph exists in net-list then

make interconnections for sub-graph in net-list;

if signal-flow was completely mapped then
� call GA for constraint transformation & component synthesis, and

save solution if it is best so far;

else
signal = select an input signal of sub-graph;

mapping (signal-flow, block 2 signal-flow with output signal, opamp nr);

end if
end if
2if (opamp nr + nr of opamps for sub-graph) * MinArea< current best then

allocate hardw. component for sub-graph, and add it to net-list;

if signal-flow was completely mapped then
� call GA for constraint transformation & component synthesis, and

save solution if it is best so far;

else
signal = select an input signal of sub-graph;

mapping (signal-flow, block 2 signal-flow with output signal,

opamp nr + nr of opamps for sub-graph);

end if
end if

end for
end procedure

Figure 5: Algorithm for architecture generation

far (variable current best). The minimum area for a partial
mapping is estimated using value MinArea, the minimum
area of an op amp (with transistors sized to the minimum
dimensions).

� Sequencing rule: is a heuristic rule, which decides the order in
which branching alternatives are traversed. A good sequenc-
ing rule can dramatically improve the speed of the overall
algorithm, as the bounding rule becomes very efficient, if a
high-quality solution is found early. Our sequencing rule first
considers branching alternatives, which map a higher num-
ber of blocks to one library component, in its attempt to find
early a mapping with less op amps. Besides, the algorithm
first analyzes the case, where blocks in sub-graph share ex-
isting components in the net-list, and then maps sub-graph to
its dedicated hardware component.

The algorithm calls (marked with � in Figure 5) the GA for the
constraint transformation and component synthesis, which calcu-
late approximate performance attributes (power, UGF, slew rate)
and hardware area by instantiating op amps with precise circuit
topologies, and sizing their transistors. Component selection and
constraint transformation is discussed in the next subsection.

5.2 Constraint Transformation and Component Synthesis

The aim of the Constraint Transformation and Component Syn-
thesis step is to instantiate circuit topologies, and compute com-
ponent design parameters (which correspond to a sizing solution)
that satisfy the overall system level constraints. A straightforward
approach would simultaneously explore circuit topologies and de-
sign parameters, and estimate (using the APE) their impact on
the system-level performance. However, through experiments we
learned that this approach results in unacceptably long exploration
times. Also the quality of the search was not very good. There-
fore, we adopted a hierarchical exploration method, that is depicted
in Figure 6. The top-most GA distributes the system-level perfor-
mance constraints onto component performance constraints for the

Analog
Performance

Estimator

Component Level
Characterization

Table
Generator

System Net-List System Constraints

Search

Engine

.comp #1 comp #n

Characterization
Module

Design Parameter Ranges
 +
Component Topologies

Characterization
Information

Characterization
Information

System Level
Characterization

Table
Generator GA

Comp Syn
IGA nIGA 1

Comp Syn

Sys Const
Trans

Figure 6: Constraint transformation and component synthesis

components. Next, the lower GAs instantiate circuit topologies and
find circuit design parameters, so that the previously determined
circuit-level performance constraints are met.

System-Level Constraint Transformation We describe the
system constraint transformation as a constraint satisfaction prob-
lem that computes performance values for the components such
that system constraints are satisfied. Also the method has to guar-
antee that the resulting parameter values are realistic for the circuits
present in our component library. Our constraint transformation
procedure includes (1) a system characterization table for guaran-
teeing the feasibility of the produced performance values and (2) a
GA-based search engine for design space exploration. Besides, the
method relies on performance composition equations of the APE to
relate circuit performance attributes to system performance values.

System characterization tables provide to the GA-based search
engine the analog knowledge required for guaranteeing that certain
circuit performance attributes are realistic for the existing library
components. For example the system level table of an opamp in
a cascaded system of opamps, would give information about how
the performance parameters of the opamp (power, UGF, etc) affect
the overall system performance (area, power, band width etc). The
tables are organized based on the concept of directed intervals [7].
Each entry consists of a system performance interval, component
performance interval, and a direction attribute that gives the way in
which the system performance changes with the component perfor-
mance increasing in it’s range. The tables are dynamically created
by calling a Characterization Table Generator. Basically, the char-
acterization method samples the design parameter and component
performance space at different points to generate information about
the space that could be used by the search engine. Although dy-
namic in nature, the characterization method takes only a small
amount of time and does not involve moving through the entire
search space.

The system constraint transformation GA accepts a system net-
list produced by the Architecture Generator, system constraints and
the system characterization table, and computes component perfor-
mance values that satisfy the system constraints. After initializa-
tion, the GA repeats the steps of selection, crossover, mutation and
replacement till convergence is reached. The selection step picks
the two best solutions from this set. This step makes use of a cost
function to evaluate the solution quality. The crossover operator
combines two solution to produce a new solution, while mutation
operator perturbs the selected solution. Finally, the replacement
method replaces the two worst solutions with the newly generated
solution. Once the convergence condition has been reached the
solution, the solution with best cost function value represents a
solution to constraint transformation problem.

The cost function and the GA operators that are specific to our
constraint transformation problem are discussed next.

Design Parameters Topology Information

Ibias Adm gainw_l zout dcgain res curr_src diff_amp gain_amp buffer

Figure 7: Solution Representation for comp syn GA

The cost function to be minimized is

1

N
�

NX
i=1

Wi:Fi

where N represents the number of specifications, Wi is the weight
associated with that performance specification and Fi is defined as:

Fi =

�
0 if Pi est satisfies Pi constraint

Pi est�Pi constraint
Pi constraint

otherwise

Pi est is the value for the performance parameter in the current
solution, and Pi constraint is the user specified constraint on that
performance parameter. Such a cost function is typical of GAs that
handle multiple constraints. During the evolution process, there
might be infeasible solutions generated. i.e the design parameters
might be assigned values that might lead to a circuit that does not
work. Such conditions are detected during performance estimation
of the individual components, and the resulting infeasible solu-
tions are removed from the current population by imposing a heavy
penalty on them.

Besides the traditional GA operators [13], non-uniform muta-
tion, uniform crossover and uniform selection, our GA for constraint
transformation also uses a set of Directed Interval based Operators
(DIO). These operators to some extent act as local optimization
methods, and help in intelligently focusing the search process, once
a promising region has been discovered. Therefore, in our GA
we start out with the traditional operators of non-uniform mutation
and uniform crossover [13], and after some evolution we switch
to the DIOs. Also, DIOs are exclusively defined using the system
characterization tables, which embed analog knowledge about the
components in the library. Thus by their nature, these operators im-
plicitly guarantee that the resulting circuit performance constraints
are also realizable with the existing components.

We defined two types of DIOs: mutation and crossover. Muta-
tion compares the resulting performance parameters with the user
defined constraints to identify those performance constraints that are
being violated in the current solution. Then, the characterization
table information is used to select which component performance
parameter is to be changed and in what direction. Similar to the
mutation operator, crossover individually evaluates the two parents,
and identifies the constraints that are violated. The system char-
acterization table is looked up, and the component performance
parameters that correspond to the satisfied performance constraints

* -14dB

* -40dB

max:6dB
*rvar

line

DTMF

*40dB
microphone

DTMF

Receiver Gain control--voltage

* 1

--voltage

--voltage

+

VHIF Representation for the Transmitter Module

+

--drives 600 Ohm

+

--at 285mv peak
--drives 270 Ohm
--limited

earph

--voltage
local

--voltage

VHIF Representation for the Receiver Module
line

Figure 8: Signal-flow graph of a telephone system

Block Specifications

Echo Cancel BW = 300Hz-3600Hz, Tx attenuation = -14dB
Dialing Attn BW = 300Hz-3600Hz, DTMF attenuation = -40dB

Receiver Gain BW = 300Hz-3600Hz, Rx Gain = 6dB
Rx Zout BW = 300Hz-3600Hz, Zout = 270 Ω

Current-Voltage 20mA< input Current< 40mA
Transmit Gain BW = 300Hz-3600Hz, Tx Gain = 40dB
DTMF Gain BW = 300Hz-3600Hz, Gain = 0dB

Tx Zout BW = 300Hz-3600Hz, Zout = 600 Ω

Table 3: Telephone system specification

are combined together to form one child. The remaining parameters
are combined together to form the second child.

Component Synthesis The component synthesis GA (see Fig-
ure 6) is almost identical to the constraint transformation GA. The
role of the component synthesis GA is to compute component design
parameter values and select component topologies that satisfy the
performance constraints generated by the constraint transformation
GA. The cost function and DIOs are the same as the one used in the
constraint transformation GA, but for component performance val-
ues being used instead of system performances. However, it uses
static component characterization tables [7], that are produced only
once for each component.

The specific solution representation used by the component syn-
thesis GA is depicted in Figure 7. This has two parts, the first
representing the component design parameter values, and the sec-
ond topology information. Each value in the topology part of the
representation indicates the type of topology to be selected from
library. Also, each component may have more than one entry in the
topology part of the array if that component has sub-components
having different topologies.

6 Experiments

This section presents a design example, an analog telephone set,
synthesized using our methodology. We have shown that a realistic
constraint-satisfying system can be successfully synthesized by our
methodology with minimum designer effort in a reasonable amount
of time. The importance of design space exploration as well as con-
straint transformation and component synthesis is also illustrated
by the example.

The telephone should work in a reduced audio bandwidth (300
Hz to 3600 Hz). The transmitter amplifies the incoming audio signal
from the caller. The communication is full duplex, sent in two wires.
Two-to-four wire transformation is performed by the receiver. The
receiver reconstructs an incoming signal by subtracting the local
transmitted signal (voice and dial tone) from the line. The incoming
signal is amplified and reproduced in a telephone speaker. The
receiver gain is automatically controlled by the quality of the line,
which is quantized by the dc current level of the line. The output
impedance of the transmitter is matched to the intrinsic impedance.
Table 3 shows the telephone system constraints.

The telephone system was synthesized using the methodology
presented in this paper. First, the behavioral VHDL-AMS specifi-
cations (see Section 3) were compiled to produce the VHIF signal
flow graph. Figure 8 shows the signal flow graph of the system.
The architecture generator’s branch and bound algorithm produced
several alternative mappings for the signal flow graph. For each
mapping, constraint transformation and component synthesis then
created several topologies. Figure 9 shows four different topologies
generated for the receiver and two for the transmitter.

Each of the topologies is then evaluated in order to determine the
best topology. Table 4 shows the evaluation results for the receiver
and transmitter topologies. It is seen that each sized circuit meets
the design constraints. Also, note the reasonable execution times to

-
+ -

+DTMF
Local Tx

Line

-
+ -

+
-
+

DTMF

Line
Local Tx -

+
-
+

Line
Local Tx

DTMF

-
+ -

+

Tx

DTMF

-
+

DTMF
Tx

-
+

-
+ -

+
Local Tx

Line

DTMF

Tx - Top B

Rx - Top CRx - Top B

Tx - Top ARx - Top D

Rx - Top A

Figure 9: Receiver and Transmitter topologies

Parameter Rx-Top A Rx-Top B Rx-Top C Rx-Top D Tx- Top A Tx-Top B

DC Gain (dB) 5.7 5.6 5.5 5.9 40 39.7
UGF (KHz) 18.3 17.0 12.7 52.8 912.3 671.6
F3dB (KHz) 11.2 10.8 8.0 31.6 9.3 10.7

Area (�2) 96,695 120,047 96,070 119,400 107,500 44,955
Power (mW) 1.96 2.92 1.96 2.92 0.963 1.96

CPU Time (sec) 670.59 1021.67 702.16 1065.73 363.57 639.02

Table 4: Evaluation of the topologies

size and evaluate the topologies. The global system objectives are
silicon area and power consumption; hence the receiver topology
Rx-Top C and transmitter topology Tx-Top B are selected.

The final designs produced were then simulated using HSPICE
to verify their performance. Figure 10 shows the HSPICE simu-
lation results of the transmitter and receiver. The top-left one is
the simulated input line, which carries a transmitted (500 Hz), re-
ceived (2 KHz) and dialing tone signals. The output of the receiver,
shown on the top-right, eliminates the transmitted and dialing tone
signals and amplifies the calling part (2 KHz). The figures on the
bottom left and right show the frequency response of the receiver
and transmitter respectively.

A second set of experiments were performed on the telephone
system, this time a band-width constraint being added to the goal
of minimizing area. Our synthesis methodology selected Rx-Top
D for the receiver in this case. This illustrates why the architecture
generation step is so important in exploring various mappings. For
instance, in this case, Rx-Top A is an obvious mapping; it has two
components and smaller area. On the other hand, Rx-Top D has
three components; it compromises area for better bandwidth.

7 Conclusions and Future Work

This paper presents a novel methodology for analog-system synthe-
sis from behavioral VHDL-AMS specifications. We implemented
this methodology in the VASE behavioral-synthesis tool. The syn-
thesis process produces a sized net-list of electronic circuits such
that overall ASIC area is minimized and other imposed system-level

SymbolWave

D0:A0:v(3)

Type

Transient

Design

D0: /afs/eng/users/ece/grad/anunez/SUN/DAC/top1

V
ol

ta
ge

s
(li

n)

2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56

2.58

2.6

Time (lin) (TIME)
0 200u 400u 600u 800u 1m 1.2m 1.4m 1.6m 1.8m 2m 2.2m 2.4m 2.6m 2.8m 3m

Panel 2

SymbolWave

D0:A0:v(7)

Type

Transient

Design

D0: /afs/eng/users/ece/grad/anunez/SUN/DAC/top1

V
ol

ta
ge

s
(li

n)

2.49

2.492

2.494

2.496

2.498

2.5

2.502

2.504

2.506

2.508

2.51

2.512

2.514

2.516

2.518

2.52

2.522

2.524

2.526

2.528

2.53

Time (lin) (TIME)
0 200u 400u 600u 800u 1m 1.2m 1.4m 1.6m 1.8m 2m 2.2m 2.4m 2.6m 2.8m 3m

* toplogy 1: receiver

SymbolWave

D0:A1:vm(7)

Type

AC

Design

D0: /afs/eng/users/ece/grad/anunez/SUN/DAC/top1

V
ol

ts
 M

ag
 (

lin
)

400m

600m

800m

1

1.2

1.4

1.6

1.8

2

Time (log) (TIME)
10 100 1k 10k

Panel 4

SymbolWave

D0:A1:vm(6)

Type

AC

Design

D0: /afs/eng/users/ece/grad/anunez/SUN/DAC/tx1

V
ol

ts
 M

ag
 (

lin
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Frequency (log) (HERTZ)
10 100 1k 10k 100k

Panel 4

Figure 10: Receiver and Transmitter HSPICE simulations

performance constraints, such as power, bandwidth, are satisfied.
The gap between system-level specifications and implementations
is bridged through design-space exploration, which performs three
synthesis tasks: architecture generation, constraint transformation
and component synthesis. Crucial to the exploration algorithms
is a fast and accurate analog performance estimation engine. The
application of our synthesis methodology for a telecommunication
application shows that realistic designs can be synthesized in short
time and with reduced designer-effort.

Despite the good quality of our synthesis results, there are sev-
eral directions for future work that may improve or extend the pre-
sented work. Possible improvements can address both the analog
knowledge and the exploration algorithms used by our tool. The
analog performance estimator can be extended to consider more
performance attributes, such as noise, or provide more accurate es-
timations. However, if the inaccuracy of our synthesis process is
not within acceptable tolerance, our solution may be used as the
initial starting solution for more precise circuit-level synthesis tools
such ASTRX/OBLX [20]. Also, we are aware that because of its
time-complexity, the architecture generation algorithm we propose
might fail for larger designs. Ongoing work attempts to replace the
branch-and-bound method by a more time-effective exploration
heuristic.

References

[1] “IEEE Standard VHDL Language Reference Manual (Integrated with VHDL-
AMS changes)”, IEEE Std.1076.1.

[2] B.G. Arsintescu, E. Charbon, E. Malavasi, U. Choudhury, W.H. Kao, “General AC
Constraint Transformation for Analog ICs”, Proc. of the 35th Design Automation
Conference, pp.38-43, 1998.

[3] P. Campisi, “A CMOS Analog Cell Library for Analog Synthesis Systems”,Master
of Science Thesis, University of Cincinnati, 1998.

[4] L.R. Carley, G. Gielen, R. Rutenbar, W. Sansen, “Synthesis Tools for Mixed-
Signal ICs: Progress on Frontend and Backend Strategies”, Proc. of the 33rd
Design Automation Conference, pp.298-303, 1996.

[5] H. Chang et al, “A Top-Down Constraint Driven Methodology for Analog Inte-
grated Circuits”, Kluwer Academic, 1997.

[6] J. M. Cohn et al, “KOAN/ANAGRAM II: New Tools for Device-Level Analog
Placement and Routing”, IEEE JSSC, Vol.26, Nr.3, March 1991.

[7] N.R. Dhanwada, A. Nunez, R. Vemuri, “Hierarchical Constraint Transformation
using Directed Interval Search for Analog Synthesis” , Proceedings of DATE’99,
pp.328-335, 1999.

[8] A. Doboli, R. Vemuri, “The Definition of a VHDL-AMS Subset for Behavioral
Synthesis of Analog Systems”, IEEE/VIUF BMAS’98, 1998.

[9] A. Doboli, A. Nunez-Aldana, N. Dhanwada, R. Vemuri, “VHIF - A Hierarchical
Representation for Behavioral Synthesis of Analog Systems from VHDL-AMS”,
Technical Report, DDEL, University of Cincinnati, April 1998.

[10] A. Doboli, R. Vemuri, “A VHDL-AMS Compiler and Architecture Generator for
Behavioral Synthesis of Analog Systems”, Proceedings of DATE’99, pp.338-345,
1999.

[11] S. Donnay et al, “Using Top-Down CAD Tools for Mixed Analog/Digital ASICs:
a Practical Design Case”, Analog Integrated Circuits and Signal Processing,
pp.101-117, 1996.

[12] S. Franco, “Design with Operational Amplifiers and Analog Integrated Circuits”,
McGraw Hill, 1988.

[13] M. Gen, R. Cheng, “Genetic Algorithms and Engineering Design”, John Wiley
& Sons, 1997.

[14] G. Gielen, H. Walscharts, W. Sansen, “Analog Circuit Design Optimization
Based on Symbolic Simulation and Simulated Annealing”, IEEE Trans on Solid-
State Circuits, Vol.25, No.3, pp.707-713, June 1990.

[15] E. Horowitz, S. Sahni, “Fundamentals of Computer Algorithms”, Computer
Science Press, 1985.

[16] D. Leenaerts, “Application of Interval Analysis for Circuit Design”, IEEE Trans-
actions of Circuits and Systems, Vol.37, No.6, pp.803-807, June 1990.

[17] M.del Mar Hershenson,S.Boyd,T.Lee,“CMOSOperational Amplifier Design and
Optimization via Geometric Programming”,Proc. 1st Int’l Workshop on Design of
Mixed-Mode Integrated Circuits and Applications, 1997.

[18] A. Nunez and R. Vemuri, “An Analog Performance Estimator for Improving
the Effectiveness of CMOS Analog System Circuit Synthesis”, Proceedings of
DATE’99, pp.406-411, 1999.

[19] W. Nye, D. Riley, A. Sangiovanni-Vincentelli, A. Tits, “DELIGHT.SPICE: an
optimization-based system for the design of integrated circuits”, IEEE Transaction
on CAD, vol.7, No.4, pp.501-519, April 1988.

[20] E. Ochotta, R. Rutenbar, R. Carley, “ASTRX/OBLX: Tools for Rapid Synthe-

sis of High-Performance Analog Circuits”, Proc. of the 31st ACM/IEEE Design

Automation Conference, pp.24-30, 1994.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

