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Abstract

Specs Oplimiz_alion Fingl
Analog synthesis tools have failed to migrate into mainstream use Engine Design
primarily because of difficulties in reconciling the simplified models Evaluated T Candidate
required for synthesis with the industrial-strength simulation Circuit Circuit
environments required for validation. AALSTROMsS a new approach Performance @ 1 Design
that synthesizes a circuit using the same simulation environment
created to validate the circuit. We introduce a novel genetic/ Performance
annealing optimizer, and leverage network parallelism to achieve I Evaluation I

efficient simulator-in-the-loop analog synthesis. Fig. 1 Abstract Model of Analog Synthesis Tools.
|. | NTRODUCTION formance goals. Aevaluation enginguantifies the quality of each
circuit candidate for the optimizer. Most research here focuses on
Mixed-signal designs are increasing in number as a large fractiontmide-offs between the optimizer (which wants to visit many circuit
new ICs require an interface to the external, continuous-valuedndidates) and the evaluator (which must itself trade accuracy for
world. The digital portion of these designs can be attacked with mosheed to allow sufficiently vigorous search). Much of this work is re-
ern cell-based tools for synthesis, mapping, and physical design. Taily an attempt to evade a harsh truth--that analog circuits are difficult
analog portion, however, is still routinely designed by handind time-consuming to evaluate properly. Even a small cell requires a
Although it is typically a small fraction of the overall design sizemix of ac, dc and transient analyses to correctly validate. In modern
(e.g, 10,000 to 20,000 analog transistors), the analog partition dfesign environments, there is enormous investment in simulators, de-
these designs is often the bottleneck because of the lack of autowmiae models, process characterization, and “cell sign-off” validation
tion tools. methodologies. Indeed, even the sequence of circuit analyses, models,

nd simulation test-jigs is treated as valuable IP. Given these facts, it

The situation appears to be worsening as we head into the era of - ; : ; _
tem-on-Chip (SoC) designs. To manage complexity and time-to-m%lﬁerhaps no surprise that analog synthesis strategies that rely on ex

. . : fic, nonstandard, or fast-but-incomplete evaluation engines have
ket, SoC designs require a high level of reuse, and cell-based techniqlesy hoorly in real design environments. To trust a synthesis result,
lend themselves well to a variety of strategies for capturing and reusitige st first trust the methods used to quantify the circuit's perfor-
digital intellectual property (IP). But these digital strategies are inapp

cable to analog designs, which rely for basic functionality on tight co ir]ancedurlng synthesis. Most prior work fails here.

trol of low-level device and circuit properties that vary from technology jyen the complexity of, investment in, and reliance on simulator-
to technology. The analog portions of these systems are still design@ghtric validation approaches for analog cells, we argue that for a syn-
by hand today. They are even routinely ported by hand as a given IC fissis strategy to have practical impacmitstuse a simulator-based
grates from one fabrication process to another. evaluation engine that islentical to that used to validate ordinary

A significant amount of research has been devoted to cell-level gpanual designs. This, however, poses significant challenges. For ex-
alog synthesis, which we define as the task of sizing and biasing agg‘-p'e' commercial circuit simulators are not designed to be invoked
vice-level circuit with 10 to 50 devices. However, as noted in [1], pre?):000 times in the inner loop of a numerical optimizer. And, of
vious approaches have failed to make the transition from researci£gy/rs€; the CPU time to visit and simulate this many solution candi-
practice. This is due primarily to the prohibitive effort needed to redates may be unacceptable.
oncile the simplified circuit models needed for synthesis with the “in- In thi devel ffici .
dustrial-strength” models needed for validation in a production envi-, " t |shpa|per we Ieve op ?]”e.w strr]ategy to sur?polr_t e 'C'eﬂt S'“?(U'
ronment. In digital design, the bit-level, gate-level and block-level algtor-in-the-loop ana Ogl synthesis. The approach relies on three key
stractions used in synthesis are faithful to the corresponding mod%a& First, wencapsulateommercial simulators so that their im-

. o PR g mentation idiosyncrasies are hidden from our search engine. Sec-
used for simulation-based validation. This is not the case for anal§ d, we use a novel combingenetic/annealing optimization algo-

rithm that is robust in finding workable circuits, and avoids the start-

Fig. 1 illustrates the basic architecture of most analog synthesig-point dependency problems of gradient and other down-hill
tools. Anoptimization engineisits candidate circuit designs and ad-search methods. Third, we exploétwork-level workstation parallel-
justs their parameters in an attempt to satisfy designer-specified pemto render the overall computation times tractable. Our new opti-
mization algorithm was designed to support transparent distribution
of both the search tasks and the circuit evaluation tasks across a net-
work.

synthesis.

We have implemented these ideas in a tool callegUgiTROM.
MAELSTROM has been successfully run on networks of 10 to 30 SUN
or IBM UNIX workstations, and currently runs Cadence Design Sys-
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views prior work. Section Il gives a complete formulation of the syn- The problem with all these synthesis approaches is that they use
thesis problem. Section IV offers experimental results on circuits. Fircuit evaluation engines different from the simulators and simula-

nally, Section V offers some concluding remarks. tion strategies that designers actually use to validate their circuits.
These engines trade off accuracy and completeness of evaluation for
II. REVIEW OF PRIOR APPROACHES speed. We argue that this is no longer an acceptable trade-off.
Referring again to Fig. 1, we can broadly categorize previous work IIl. S YNTHESIS FORMULATION

on analog synthesis by how it searches for solutions and how it eval-
uates each visited circuit candidate. See [3] for a more extensive durthis section, we present the full synthesis formulation afiM
vey. STROM Our circuit synthesis strategy relies on three key ideas: simu-
. . . tor encapsulation, a novel combined genetic/annealing global
Early work on synthesis used simple procedural techniques [4ptimizer, and scalable network parallelism. We describe these ideas

rendering circuits as explicit scripts of equations whose direct evaliaioy, peginning with a review of our basic synthesis-via-optimiza-
ation completed a design. Although fast, these techniques provedit, formulation.

be difficult to update, and rather inaccurate. Numerical search has
been used with equation-based evaluators [3], [6], [7], and even COR-Basic Optimization Formulation
binatorial search over different circuit topologies [8],[9], but equa-

tion-based approaches remain brittle in the face of technology changyye use the basic synthesis formulation froBLO[1], which we

es. Hierarchical systems [10], [11], [12], [13] introduced composieview here. We begin with a fixed circuit topology that we seek to
tional techniques to assemble equation-based subcircuits, but Hjfle and bias. We approach circuit synthesis using a constagtied
faced the same update/accuracy difficulties. Some of these systefigation formulation, but solve it in an unconstrained fashion. We
can manipulate circuit equations automatically to suit different stepgap the circuit design problem to the constrained optimization prob-
of the synthesis task [6]. Qualitative and fuzzy reasoning techniquen of (1), wherex is the set of independent variables—geometries of
[14], [15] have been tried to capture designer expertise, but with liemiconductor devices or values of passive circuit components—we
ited success. Equation-based synthesis offers fast circuit evaluatigish to change to determine circuit performant{e) is a set of ob-
and is thus well suited to aggressive search over solution candidajggtive functions that codify performance specifications the designer
However, it is often prohibitively expensive to create these mOd.e%;ishes to optimizes.g.power or bandwidth; ang(x) is a set of con-
indeed, often more expensive than manually designing the circuit. Afrajnt functions that codify specifications that must be beyond a spe-

so, the simplifications required in these closed-form analytical circW§fic goal, e.g, (gain > 60dB). Scalar weights;, balance competing
models necessarily limit their accuracy and completeness. Y "

objectives.
Symbolic analysis techniques, which have made significant strides K
of late[16],[17],[18],[7] offer an automated path to obtaining some of
these design equations. These techniques automatically derive re- minimiz§ w [0.(x) st g(x)<o0 (1)
duced-order symbolic models of the linear transfer function of a cir- X - =
cuit. The resulting symbolic forms can be obtained fairly quickly, of- i=1

fer good accuracy, and can thus serve as evaluation engigef§].

However, they are strictly limited to linear performance specifica- Formulation of the individual objectivé(x) and constrag(ix)

tions. Even a small analog cell may require a wide portfolio of dc, atinctions adapts ideas from [22]. The user is expected to progiofada

and transient simulations to validate it. Symbolic analysis is a valualue, and &advalue for each specification. These are used both to set
able but incomplete approach to circuit evaluation. constraint boundaries and to normalize the specification’s range. For

The synthesis systems most relevant to the ideas we develop in >%1mple, asingle Objecw?()—() is internally normalized as:

paper are ATRX/OBLX [1],[3] and the system from Seville [19]. In f
ASTRX/OBLX, we attacked the fundamental problem of tool usability } _ i()_() —gooq
with a compile-and-solve methodologys?Rx starts from a SPICE i(x) = baq —gooq
deck describing an unsized circuit and desired performance specifica-

tions. ASTRx compiles this deck into a custom C program that implerhis normalization process provides a natural way for the designer to
ments a numerical cost function whose minimum corresponds t0sgt the relative importance of competing specifications, and it pro-

good circuit solution for these constraintsL® uses simulated an- yjdes a straightforward way to normalize the range of values that must
nealing [20] to solve this function for a minimum. This custom-genye palanced in the cost function.

erated cost code evaluates circuit performance via model-order reduc-

tion [21] for linear, small-signal analysis, and user-supplied equations To support the genetic/annealing optimizer we shall introduce in
for nonlinear specifications. TRX/OBLX was able to synthesize a Section IlIC, we perform the standard conversion of this constrained
wide variety of cells, but was still limited to essentially linear perforeptimization problem to an unconstrained optimization problem with
mance specifications. [19] similarly uses annealing for search, but alese use of additional scalar weights. As a result, the goal becomes
tually runs a SPICE-class simulator in its annealer. However, this ta@inimization of a scalar cost functiog(x) , defined by (3).

appears to employ a simulator customized for synthesis, only evalu-

&)

ates a few thousand circuit candidates in a typical synthesis run (in k I

contrast, ®Lx evaluates 1bto 1P solutions), and has only been _ P -

demonstrated attacking problems with a small number of independent C(¥ = z w;fi(x) + z w;g;(x) ©)
design variables. =1 j=1

Finally, we also note that there are several cirgpitmizationat-
tacks that rely on simulator-based methaxg,([22]). For circuit op- The key to this formulation is that the minimum &{x) corre-
timization we assume a good initial circuit solution, and seek to insponds to the circuit design that best matches the given specifications.
prove it. This can be accomplished with gradient and sensitivity techhus, the synthesis task becomes two more concrete tasks: evaluating
niques requiring a modest number of circuit evaluations. In contrast(x) and searching for its minimum. Neither of these are simple. Our
in circuit synthesisve can assume nothing about our starting circuinajor contributions in this paper are an algorithm for global search
(indeed, we usually haveo initial solution). This scenario is much that is efficient enough to allow use of commercial circuit simulators
more difficult as a numerical problem, and requires a global seartthevaluateC(x) , and a methodology for encapsulating simulators to
strategy to avoid being trapped in poor local minima that happen to hiede unnecessary details from this search process. We treat the encap-
near the starting point. sulation methodology next.



B. Simulator Encapsulation for Simulation-Based Evaluation

\dd
Our overall goal is to be able to the use the simulation methods | Ms:jl I"rlm
trusted by designers--bdtiring analog cell synthesis. This means in- ] LI
voking a sequence of detailed circuit simulations for each evaluation we we|——{vs
of C(x) during numerical search. Although different SPICE-class
simulation engines share core mechanisms and offer similar input/ e
output formats, they remain highly idiosyncratic in many features. In vout- Vours
our experience, the mechanics of embedding a simulator inside a nu-ws " RS P -
merical optimizer are remarkably untidy. This is a real problem since w13 wis wi wia
we seek a strict separation of the circuit optimization and circuit eval- v
uation engines, and would like ultimately to be able to “plug in” dif- Fig. 2 Custom Folded Cascode OpAmp Circuit [24]
ferent simulators. We handle this problem using a technique we re”
to assimulator encapsulation Table 1. Simple Synthesis Result for Circuit of Fig. 2,
Simulator encapsulation hides the details of a particular simulat on a 55MHz I1BM Power2
behind an insulating layer of software. This software “wrapper” rer Manual Auto-Synthesis:
ders the simulator an object with a set of methods, similar to stand: Attribute Design Spec Result
object-oriented programming ideas. The simulator appears to the (CLoad (pF) 1.5 1.5
timization engine as an object with methods to invoke a simulation, y/qq (v) 5 5
change circuit parameters, to retrieve simulation results as a sim p~ <4in (dB) 71.2 > 71 91
vector of numbers, and so forth. Clearly one major function of this e UGF (MH2) 47 '8 ;48-. 55
capsulation is to hide varying data formats from the optimizer; this e ) ; o
gine need not concern itself with the details of how to invoke or inte Phase Margin (deg) A =77 83
pret an ac, dc, or transient analysis in the simulator. PSRR - Vss (dB) 92.6 293 119
PSRR - Vdd (dB) 72.3 272 92
A more subtle function of encapsulation is to insulate the optimizi output Swing (V) +1.4 14 +14
tion engine from “unfriendly” behavior in the simulator. Most simu- Settling Time (ns) j La 47

lators are designed either for batch-oriented operation, or for intere , . 2 .
tive schematicgupdate-then-simuIate operationp. In the latter, the tjp Active Area (10u%) 68.7 L 28
scales are optimized for humans--overheads of a few seconds per < Circuits Evaluated 17,100
ulation invocation are negligible. But inside a numerical optimize CPU (hours) 11

that seeks to run perhaps 50,000 simulations, these overheads — - —
magnified. Our ideal is a simulator which can be invoked once, ar® ' means maximize, while means minimize.

remaining live, can interpret quickly a stream of requests to modify s yather straightforward synthesis strategy yields a surprisingly
circuit values and resimulate. Few simulators approach this ideal. F%ﬁsonable result, albeit somewhat slowly. Fig. 3 shows a set of sam-

example, some insist on rechecking a licence manager key (possllﬁ.‘gd cross-sections from the cost-surface for this annealing-style syn-

located remotely on a network) for every new simulation request; o lesis formulation. At an intermediate point in the synthesis, we

opped the optimizer, and then iteratively stepped each independent
.%{iable over its range, while freezing all other variables. At each step

nt we evaluated the synthesis cost function using Spectre. Fig. 3
ows a few of these resulting cross-sections, suitably normalized for
omparison. The mix of gently sloping plateaus and jagged obstacles
pical of these landscapes. Annealing style algorithms are a good
ce here because of their hill-climbing abilities.

ers flush all internal state or drop myriad temporary files in the loc k
file system. Of course, the maximally difficult behavior exhibited b
a simulator is a crash, an occurrence far from rare even in commer
offerings. This is especially problematic in synthesis, since the op h
mization engine may often visit circuit candidates with highly nonz
physical parameter values, which occasionally cause simulator f
ure. Our encapsulation not only detects the crash but also restarts
reinitializes the simulator, all transparent to the optimizer. All thes
difficult behaviors can be hidden via appropriate encapsulation.
However, annealing algorithms have a reputation for slow execu-
C. Combined Genetic/Annealing Optimization: PRSA tion because of the large number of solution candidates that must be
visited. This is greatly exacerbated when we choose to fully simulate
As in 0BLX [1], we again favor global, stochastic search algorithms
for the optimization engine because of their empirical robustness in theygp,
face of highly nonlinear, nonconvex cost functions. Howeveppirx Cost al
we made an explicit trade-off to use a customized, highly tuned, very of |
fast circuit evaluator to permit search over a large number of solution ] w
candidates. When we replace this custom evaluator with commercial 0 0.z 0.4 06 i} 1var X,
circuit simulation, we are faced with a 10X to 100X increase in CPU Norm.

time. The central question we address in this section is how to retain th€ost 2 1
virtues of global, stochastic search, but deal with the runtime implica- ? 1

tions of simulator-in-the-loop optimization. a 0z 0a 0f i var. x,
Before we describe our new optimizer, it is worth justifying our gggtn'g %

choice of stochastic optimization. Given a good implementation of 2| _

simulator encapsulation, we can replace the custom circuit evaluation 1 . . . ; Var. x

used in @Lx with full, detailed simulation. We have rewritten the Norm a 0.z 04 0b 0.8 [

core annealing engine oBOx in the form of a new, component-based Cost af |

optimization library called ANEAL++ [23]. ANNEAL++ offers a range 5 W

of annealing cooling schedules, move selection techniques, and dy- ] . . : .

namic updates on cost function weights, based on the ideas in [3]. As 0 0z 0.4 06 0.5 jvar Xq

an experiment, we encapsulated the Cadence Spectre circuit simulator

and used it with ANEAL++ to resynthesize the custom folded-cas- ' . ) . .

code opamp from [24]. The circuit has 32 devices and 27 designable _Fig- 3 Four 1-dimensional normalized cross-sections of the
variables; the circuit appears in Fig. 2, results appear in Table 1. cost-surface for a typical simulation-based synthesis problem



each solution candidate. There are three broad avenues of solution
here: For all parallel PRSA node®;, (i =1 to n)
(A) Set annealer temperature T = hot
1. Less search:attempt to sample the cost function at fewer points. (B) Generate random initial circuit solution,,
This is essentially the approach taken by [19], which uses an un- (C) Repeat until equilibrium:
usual, truncated annealing schedule with some of the character ofa  (c1) Send current circuit solutiox,
random multistart approach. However, in our experience, wider to other randomly selected PRSA node

search always yields better solutions and a more robust tool. (C2) Receive migrants from other PRSA nodes

(C3) Apply perturbation or crossover to genenal'géw frJolg1I
o L

2. Parallel circuit evaluation: each visited circuit candidate usually (C4) Evaluatex"eW
-Pi

requires more than one circuit simulation to evaluate it. We can eas-
ily distribute these over a network to parallel workstations. Indeed,
our implementation supports this simple parallelism. For example,

(C5)AC = COStQ(;eW )= Costky,, )
o X
if we resynthesize the opamp of Fig. 2, but distribute the 5 simula-

tions required to evaluate each circuit across 3 IBM workstations, (Ce)IfAC <0

the 11 hour sequential time drops to 192 minutes. This is a useful ReplaceX_. withx"€W  with probability 1.

form of parallelism to exploit, but it is strictly limited. (C7) Else ! Pi

Replacexp, wit"®"  with probabilitg 14T

3. Parallel circuit search: what we really seek is a technique to allow Pi

multiple, concurrent points of the cost landscape to be searched in (D) If not frozen, lower T, goto (C)

parallel, but synchronized in some manner that guarantees conver-

gence to a final circuit or set of circuits of similar quality. Fig. 4 Pseudo-code for optimization in one PRSA-node.

Unfortunately, annealinger sedoes not easily support parallel
search. An annealing-based optimizer generates a serial stream of ;;r ated solution with the solution on the top of its queue. This is the
posed circuit perturbations, and relies on statistics from previous cir- crossover(mating) operation from eneti?: al oriﬁhms which ran-
cuits to adjust its control parameters. To parallelize search itself, an | bi gth pf t f gerent | ? into inal
obvious set of methods to consider here are the genetic algorithmsﬂgvn\?gffgorr?n Ir;%?uticsn eatures of ty solutions Into a single,
[25], whose population-based evolution models distribute over paral- pring :
lel machines more naturally. However, we do not wish to abandon theecause circuit solution candidates are simply vectors of real num-
direct hill-climbing of annealing, which has empirically performedhers for us (e.g., MOSFET lengths and widths), crossover is simple to
well in this task. Goldberg [26] suggests a solution heaeallel re-  implement. We use a so-calleigie-point crossover scheme. Given

combinative simulated annealilQBRSA) two parent so|uti0n9_( = [Xl’ X2, ’Xn] ang = [yl, yz’ ’yn] ,

d@ecombination: the annealer camcombineits previously gener-

PRSA, which has its roots in genetic algorithms, can be regardeg combine by randomly selectingl [1,n] and generate the off-
as a strategy for synchronizing a population of annealers as they spring:
operatively search a cost surface. The idea is conceptually simple.
Suppose in a serial annealer we would expect to visit 10,000 circuit S = [X Xpr oo XYy 4 1Yy 4 200 Yl 4
candidates. To distribute this over 10 CPUs, we begin by creating 10 . . N
separat®RSA-nodesach of which simply runs a standard annealin seudo-code for the algorithm in each PRSA-node appears in Fig. 4.
optimization (ANNEAL++ in our case) but with a schedule truncated 10 |, practice, we find that PRSA works extremely well to synchro-
10,000/10=1000 visited circuits. Obviously, the solution found by;,e parallel annealers. In particular, good solutions found by one

each of these 10 independent nodes will be very poor. To synchroniggye” quickly diffuse through the population, and drive annealers

these nodes, we regard each annealer itself as one element of a lafgglk in unpromising local minima toward better global solutions.
population of evolving solutions, and allow annealers to exchange

I h i h t . did gjg 5. illustrates this synchronization effect by plotting the annealing

iﬂiiss%m?igg te:?hszxﬁseé;grurz{n?joizlgecnoenrﬁmgi (?a?eeswit(;apes!uft‘t?qq 6(s'jt value as a function of circuits visited in each of 10 parallel PRSA
' i L es during a sample circuit synthesis. Each PRSA-node visits

subset of the other PRSA-nodes. Each PRSA-node maintains a qu J P Y

for these shared results, which represent samples of the cost sur

hly 2000 circuit candidates; the population of annealers visits
. d . - 000, each evaluated via Spectre simulation. The curves demon-
visited byotherannealers in the population. When generating a ne¥a¢
circuit candidate, each annealer makes one of two choices:

e empirically how each annealing process is coordinated into
searching for circuits of similar cost at similar times in the run.

1. Perturbation: the annealer can simply select its previously gener- Finally, we note that parallel circuit evaluation and parallel PRSA
ated solution angerturbits element values. This Is the traditionalsearch are othogonal: we can do both. Each PRSA node can manage
mechanism by which an annealer evolves a solution. a set of independent evaluation nodes to perform the multiple simula-

Cost Cost

Averaged over 10
parallel PRSA nodes

Circuits visited ‘ ‘ i ‘ : : ‘ : : : ; /

Fig. 5 Synchronized search behavior, cost versus circuits visited, for 10 parallel PRSA nodes.

0 200 400 600 800 1000 1200 1400 1600, 1800 20
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Pool of Table 2. MAELSTROM Synthesis Result for Custom

PRSA
Nodes Evalulation Slave Opamp Circuit of Fig. 2
Nodes
Manual Auto-Synthesis:
Evaluation Attribute Design Spec. Result
Nod
aster Nodg Cload (pF) 125 125
- Vvdd (V) 5 5
Spectre .
DC Gain (dB) 71.2 >71: 110
5 UGF (MHz) 47.8 >48: 70
: Phase Margin (deg) 77.4 2 77. 84
PSRR - Vss (dB) 92.6 293 131
@ PSRR - Vdd (dB) 72.3 >72: 108
Output Swing (V) +14 +1.4: +1.45
Fig. 6 Network architecture for MAELSTROM using DSTRIBUTED PRSA Settling Time (ns) - L 29
Active Area (16u?) 68.7 ¥ 23
tions necessary to evaluate each solution candidate. We discuss th Circuits Evaluated 70,000
the next section. We believe the capability to distribute both circL CPU Time (minutes) 219

evaluations and the optimization process itself is a significant cont

bution of this work. bias currents. Each of the variables had a broad (yet reasonable) range:

D. Network Architecture: Distributed Search and Evaluation all variables had a design range of at least one order of magnitude,
many have ranges of two orders of magnitude. The processiis 1.2

Our implementation distributes all computation over a pool dEMOS. Note not only that we meet all specifications, but this result is
workstations. At the lowest level, we manage concurrency and intéignificantly better than the earlier sequential synthesis shown in
processor communication using the publicly available PVM library @ble 1. The improved runtime is due to the large-scale parallelism;
[27]. We have implemented on top of this a general framework for of€ improved solution is a result of allowing more search. The run in
timization called DSTRIBUTEDPRSA. Fig. 6 shows a topological able 1 searched only 17,000 circuits, we allowed this run to search
overview of DSTRIBUTEDPRSA. This library coordinates the interac- 70,000 circuits.

tion of the three concurrent tasks that comprise our synthesis tool: This result was obtained in 219 minutes across 15 140Mhz SUN
1. PRSA Node:We use AINEAL++ to implement a PRSA computa- Ultra-1 workstations. The run consisted of 10 PRSA nodes, 1 evalua-
tional node, as discussed in the previous section. THERBUT-  tion master, and 15 evaluation slaves. (Note that physical CPUs actu-
EDPRSA library implements a mechanism that allows each PRS#ly share search, control, and evaluation tasks concurrently.) Each
node to send its current solution to another randomly select®®RSA node examined approximately 7000 candidate solutions across
PRSA node for use in crossover. In turn, each PRSA node keepthi@ duration of the run. Evaluating each candidate solution required 5
small FIFO queue of recently received circuit solution candidateseparate Spectre circuit simulations.
This transfer of state information is a peer-to-peer transaction be- )
tween the PRSA nodes and does not involve the evaluation masBrBasic Folded Cascode Op-amp

2. Evaluation Master: Eachevaluation masteschedules evaluation  Fig. 7 shows a basic fully differential folded cascode circuit, again
requests from some number of PRSA nodes across a pool of evalbe sized in a 11am CMOS process. This is illustrative of the sort

uation slaves. The cost calculation for each candidate circuit solu- »
tion may require several Spectre simulation analyses. Each of by e
these analyses can be performed in parallel on different machines. o H
Thus, each evaluation master has one or more slaves for each anal- M |<I
ysis type. Currently, evaluation slaves are assigned to machines =
statically, based upon a configuration file. In the future, the evalu- 1
ation master will dynamically reassign evaluation slaves across a vous hrlles -
pool of available workstations. The goal of this mechanism is to BT
dynamically detect available processor time and to utilize it to !
expedite the synthesis process. o s 3 at
3. Evaluation Slave: An evaluation slaveises the simulator encap- Fig. 7 Basic Folded Cascode Circuit

sulation library to perform one or more simulation analyses,

the slaves actually invoke the necessary circuit simulation tast .

with the encapsulation library serving as the interface to the sim  Table 3. MAELSTROM Result for Basic Folded Cascode Opamp
lator. If there are insufficient machines, one machine can be us Circuitin Fig. 7

to run multiple evaluation slaves. Auto-Synthesis:
Attribute Spec. Result
IV. EXPERIMENTAL RESULTS CLoad (pF) 1
vdd (V) 5

We have implemented these ideas in a tool callexEUgiTROM,

which currently runs on networks of SUN Solaris and IBM AIX DC Gain (dB) =70: 714
nodes. In this section we present three results to demonstrate both UGF (MHz) =10 24.3

feasibility and efficiency of our synthesis strategy. Phase Margin (deg) 260 69

PSRR - Vss (dB) >40: 111

A. Custom Opamp Circuit PSRR - Vdd (dB) > 40: 132
We have resynthesized the custom opamp [24] shown originally OUtp.Ut Sv.vmg ) 135 ) £137
Fig. 2, but now using the fully distributed version oABISTROM. Settling Time (ns) <100 : 50

Active Area (16u?) <68 : 11

Table 2 shows the desired specifications and the final synthesis res Clive
obtained with our tool. The optimization task had 27 independe Circuits Evaluated 60,000
variables that specified all device dimensions, capacitor sizes, & CPU (minutes) 152




sibility of a particular circuit topology, and support for evaluation
across manufacturing corners [28].
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