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Abstract

In this survey paper we describe the combina-

tion of: discretized integral formulations, sparsi-

�cation techniques, and krylov-subspace based

model-order reduction that has led to robust

tools for automatic generation of macromodels

that represent the distributed RLC e�ects in 3-

D interconnect. A few computational results are

presented, mostly to point out the problems yet

to be addressed.

1 Introduction

Until very recently, processor designers who worried
about interconnect inductance have been dismissed as
alarmists. There were a small number of clock distri-
bution experts who were well aware of inductive e�ects,
but these experts failed to change the prevailing view
because of their small population and the proprietary
nature of their work. The recent use of on-chip ground
planes to minimize inductance has made it clear that
inductive e�ects have a serious impact on processor de-
sign [1].

Developers of computer-aided design tools which
handle inductive e�ects were undetered by the lack of
designer enthusiam for such capabilities. Instead, tools
were developed for modeling the distributed RLC e�ects
in interconnect. These tools begin with 3-D structures
generated from a layout description, and produce low-
order systems of equations suitable for use in a circuit-
level simulation.

In this survey paper we describe, in limited technical
detail, the combination of algorithms that makes pos-
sible the automatic generation of circuit models from
3-D distributed RLC analysis. In the next section we
describe the system of equations generated by the com-
monly
||||||||||||||||||||||

used discretized integral formulations for the RLC prob-
lem, and then in section three we present some of the
ideas behind the fast algorithms used to solve these
equations. In section four we describe a little about
the Krylov-subspace based model order reduction tech-
niques. In section �ve we present some of the problems
that these recent developments have uncovered.

2 Discretized Integral Formula-
tion

On-chip interconnect can be treated quasistatically,
in which case the integral formulation of the Laplace
transformed Maxwell's equations can be represented as
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where s is the Laplace frequency, D is the interior of all
conductors, r is a position in the interior. The interior
current density, J , satis�es

r � J(r; s) = 0 (2)

and the scalar potential � satis�es
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where S is the surface of all conductors and n �Js(r
0; s)

is the normal current density on the surface.
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Figure 1: Discretization of a short conductor. The
volume is discretized into current carrying parallel �l-
aments along the length and the surface is discretized
into panels shaded in gray.

At su�cently high frequencies, or for su�ciently thin
conductors, (1), (2) and (3) can be simpli�ed to involve
only currents and potentials on the conductor surfaces.
Such analyses are often referred to as \21

2
-D" analyses

in layered media, or skin-depth approximations for gen-
eral 3-D geometries. Since the skin depth of aluminum
is of the order of microns at one gigahertz, such approx-
imations should be checked.

Figure 2: Discretization of conductor into current
carrying �laments and charge carrying panels. Rectan-
gles are �laments, shaded squares are panels.

In order to generate a well-conditioned discretized
system, it has often been observed that the curl-free
and divergence-free parts of the current should be rep-
resented seperately [2, 3, 4]. As a simple way of seeing
how this is accomplished is to consider using a PEEC
discretization [5], in which conductor volumes are sliced
into thin �laments and conductor surfaces are broken
into panels (see Figure 1). When viewed as intercon-
nected current-carrying elements, as in Figure 2, it is
possible to introduce mesh currents which either pass
through loops of �laments; or enter through one panel,
pass through a single �lament, and leave through a sec-
ond panel. Since the mesh currents always enter and
then leave a node, they represent divergence free cur-
rent. Let MT be the matrix which, when multiplied by
the mesh currents, yields the �lament currents. Also,

let Ap denote the panel incidence matrix. Then,
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where Lm = MLMT is the dense mesh inductance ma-
trix, Rm = MRMT is the sparse mesh resistance ma-
trix, P is the electrostatic potential coe�cient matrix,
and R and L are de�ned as the block matrices of (4) [6].

3 Sparsi�cation Techniques

If direct factorization is used to solve (4) for the ad-
mittance at a given frequency, then since Lm and P
are dense, the memory required to store the matrix will
grow like n2 and the matrix solve time will increase
like n3. If instead, a preconditioned Krylov-subspace
method is used to solve for the admittance, then it is
possible to reduce the solve time to order n2 but the
memory requirement will not decrease.

In order to develop algorithms which reduce mem-
ory and cpu time use, it is essential not to form the
matrix explicitly. Instead, one can exploit the fact that
Krylov-subspace methods for solving systems of equa-
tions only require matrix-vector products and not an
explicit representation of the matrix. For example, note
that for P in (4), computing Pq is equivalent to com-
puting n potentials due to n sources. The potentials
can be computed approximately in nearly order n op-
erations by using an implicitly de�ned sparse represen-
tation of P [7, 8, 9]. Several researchers simultaneously
observed the power of combining discretized integral for-
mulations, Krylov-subspace methods, and implicit spar-
si�cation [10, 11].

Early general 3-D codes using sparsi�cation were ap-
plied to capacitance extraction, and were based on the
fast multipole algorithm [12, 13]. The approach has
been used to compute inductance [14], and the basic
algorithms have been improved by incorporating bet-
ter adaptivity, higher-order elements and improved e�-
ciency for high accuracy [15, 16, 17]. In addition, much
recent work has focussed on allowing for more general
Greens functions like those associated with layered me-
dia. There is the panel clustering idea [11], a multigrid
style method [18], projection to a uniform grid combined
with the FFT [9, 19] a technique based on the singular-
value decomposition [4], and approaches based on using
wavelet-like methods [20, 21, 22].

4 Model-Order reduction

The now-standard approach to e�cient circuit-
interconnect simulation is to represent the intercon-
nect with moment-matching based reduced order mod-
els [23, 24, 25, 26]. Accurate computation of such
models can be accomplished using bi-orthogonalization
algorithms like Pad�e via Lanczos (PVL) [27, 28], or
with methods based on orthogonalized Krylov subspace
methods [29, 30, 31].



To generate a guaranteed passive reduced order
model for (4) that matches the �rst q moments of the
transfer function, one can use the PRIMA approach [31].
The �rst step of the approach is to use an Arnoldi algo-
rithm to generate a set of q + 1 orthogonal vectors, Vq,
that span the Krylov subspace

Vq 2 span
�
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D; :::;Aq�1
D
	

(5)

where A = R
�1
L, and D = R

�1
B. Then the

reduced-order model is

s~L ~x = � ~R ~x + ~B Vt (6)
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T
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T
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T
q C.

5 Problems

Although the combination of integral formulations,
sparsi�cation and model-order reduction makes simula-
tion of RLC e�ects in 3-D interconnect tractable, there
are still a number of challenges. In the subsections be-
low we describe three such challenges: handling the non-
ideal semiconductor substrate, picking expansion points
for model-order reduction, and handling the massively
coupled problem.

Figure 3: three dimensional discretization of the
semiconductor substrate.

5.1 Substrate Discretization

One of the di�culties in using the discretized in-
tegral formulation in (4) for on-chip inductance com-
putations is handling the far from perfectly conduct-
ing semiconductor substrate. Since current penetrates
some tens of microns into the substrate [32], the sub-
strate must be discretized as shown in Figure 3. This
substrate discretization creates an enormous number of
�laments, slowing even the fastest of sparsi�cation tech-
niques. For this reason, there has been renewed interest
in developing purely surface formulations [33].
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Figure 4: The response of the transmission line.

5.2 Multipoint Approximations

Model order reduction using s = 0 as an expansion
point can become quite ine�cient. To demonstrate this,
the formulation and model-order reduction was applied
to a 1 cm long transmission line example. The line was
divided into 40 sections along its length, each section
was divided into a 9 �lament bundle, and each node
had 12 panels leading to a 1704 element circuit. The line
was shorted at the far end and the admittance was com-
puted using both the full model and a 21st order reduced
model. As Figure 4 shows, the reduced order model cap-
tures only a few resonances. This phenomenon can be
explained by examining the pole locations of the orig-
inal and reduced-order models, as shown in Figure 5.
As is clear from the �gure, the model-order reduction
is \fooled" by inconsequential poles on the real axis.
The most fruitful approach to addressing this problem
is to use multipoint matching schemes [24, 34], which
can be passivity preserving [35]. Although it is easy
to select good expansion points for a given senario, the
techniques for automatic expansion point selection are
still far from optimal.
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Figure 5: The poles of the transmission line.

5.3 Massively Coupled Problems

Interconnect problems with a small number of ter-
minals can be handled using block model-order reduc-



tion methods, even though the reduced models represent
the terminal interactions in a dense way. In an RF de-
sign, like the one in Figure 6, there may be electromag-
netic coupling between each of thousands of intercon-
nect lines. Representing those millions of interactions
directly is computationally intractable.

Figure 5: The layout of an RF Front End.

6 Conclusions

In this paper we briey reviewed recent work on
combining discretized integral formulations, sparsi�ca-
tion techniques, and krylov-subspace based model-order
reduction. We then described a few of the problems
these new methods have uncovered.

This work was supported by the DARPA composite
CAD program, the DARPA muri program, and grants
from the Semiconductor Research Corporation.

References

[1] B. Gieseke, et al. "A 600Mhz Superscalar RISC Mi-
croprocessor with Out-ofOrder Exectution" ISSCC
97, pp. 176-177 San Francisco, 1997.

[2] M. Kamon, M. Tsuk, C. Smithhisler, J. White,
\E�cient Techniques for Inductance Extraction of
Complex 3-D Geometries," Proc. Int. Conf. on
Computer-Aided Design, Santa Clara, California,
November 1992, pp. 438-442.**

[3] S. M. Rao, D. R. Wilton, and A. W. Glisson.
Electromagnetic scattering by surfaces of arbitrary
shape. IEEE Trans. Antennas Propagat., AP-
30(3):409{418, May 1997.

[4] S. Kapur and J. Zhao,"A fast method of moments
solver for e�cient parameter extraction of MCMs"
Design Automation Conference, 1997 pp. 141{146.

[5] A. E. Ruehli, \Equivalent circuit models for
three-dimensional multiconductor systems", IEEE
Transactions on Microwave Theory and Tech-
niques, vol. 22, no. 3, pp. 216{221, March 1974.

[6] M. Kamon, N. Marques, L. M. Silveira and J.
White, \Automatic generation of Accurate Cir-
cuit Models of 3-D Interconnect", IEEE Transac-
tions on Components, Packaging, and Manufactur-
ing Technology { Part B: Advanced Packaging, Au-
gust, 1998, vol. 21, no. 3, pp. 225-240

[7] J. Barnes and P. Hut. A hierarchical O(N logN )
force-calculation algorithm. Nature, 324:446{449,
1986.

[8] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. J. Comput. Phys., 73:325{348,
1987.

[9] R. W. Hockney and J. W. Eastwood, Computer
simulation using particles. New York: Adam
Hilger, 1988.

[10] V. Rokhlin, \Rapid solution of integral equation
of classical potential theory," J. Comput. Phys.,
vol. 60, pp. 187{207, 1985.

[11] W. Hackbusch and Z. P. Nowak, \On the Fast
Matrix Multiplication in the Boundary Element
Method by Panel Clustering," Numer. Math. 54,
pp. 463-491, 1989.

[12] K. Nabors, J. White, \A Fast Multipole Algorithm
for Capacitance Extraction of Complex 3-D Ge-
ometries" Proc. Custom Int. Circuits Conf., San
Diego, California, May 1989, p21.7.1-21.7.4.**

[13] K. Nabors and J. White, \Fastcap: A multipole
accelerated 3-D capacitance extraction program,"
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 10, pp. 1447{
1459, November 1991.

[14] M. Kamon, M. J. Tsuk, and J. White, \FastHenry,
A Multipole-Accelerated 3-D Inductance Extrac-
tion Program," Proceedings of the 30th Design Au-
tomation Conference, Dallas, June 1993.**

[15] M. Bachtold, J.G. Korvink, H. Baltes, \The Adap-
tive, Multipole-Accelerated BEM for the Compu-
tation of Electrostatic Forces," Proc. CAD for
MEMS, Zurich, 1997, pp. 14.

[16] K. Nabors, F. T. Korsmeyer, F. T. Leighton, and
J. White. Preconditioned, adaptive, multipole-
accelerated iterative methods for three-dimensional
�rst-kind integral equations of potential theory.
SIAM J. Sci. Statist. Comput., 15(3):713{735,
1994.

[17] L. Greengard, V. Rokhlin, \A New Version of the
Fast Multipole Method for the Laplace Equation
in Three Dimensions," Acta Numerica, 1997, pp.
229-269.

[18] A. Brandt and A. A. Lubrecht, \Multilevel matrix
multiplication and fast solution of integral equa-
tions," J. Comp. Phys., vol. 90, pp. 348{370, 1990.

[19] J. R. Phillips and J. K. White, \E�cient capac-
itance extraction of 3D structures using general-
ized pre-corrected FFT methods," in Proceedings
IEEE 3rd topical meeting on electrical performance
of electronic packaging, November 1994.



[20] G. Beylkin, R. Coifman, and V. Rokhlin. Fast
wavelet transforms and numerical algorithms.
Comm. Pure Appl. Math., XLIV:141{183, 1991.

[21] W. Shi, J. Liu, N. Kakani, and T. Yu, A Fast Hier-
archical Algorithm for 3-D Capacitance Extraction
Proceeding of the 29th Design Automation Confer-
ence, San Francisco, CA, June, 1997, pp. 212-217.

[22] J. Tausch and J. White \Precondition and Fast
Summation Techniques for First-Kind Boundary
Integral Equations" Third IMACS International
Symposion on Iterative Methods in Scienti�c Com-
putation, Jackson Hole WY, Jul 9-12, 1997

[23] L. T.Pillage and R. A. Rohrer. Asymptotic Wave-
form Evaluation for Timing Analysis. IEEE Trans.
CAD, 9(4):352{366, April 1990.

[24] Eli Chiprout and Michael Nakhla. Generalized
Moment-Matching Methods for Transient Analysis
of Interconnect Networks. In 29th ACM/IEEE De-
sign Automation Conference, pages 201{206, Ana-
heim, California, June 1992.

[25] J. E. Bracken, V. Raghavan, and R. A. Rohrer.
Interconnect Simulation with Asymptotic Wave-
form Evaluation. IEEE Trans. Circuits Syst.,
39(11):869{878, November 1992

[26] J. R. Phillips, E. Chiprout, and D. D. Ling, "E�-
cient full-wave electromagnetic analysis via model-
order reduction of fast integral transforms," Pro-
ceedings of the 33rd Design Automation Confer-
ence, Las Vegas, NV, June 1996.

[27] Peter Feldmann and Roland W. Freund, \E�-
cient linear circuit analysis by Pad�e approximation
via the Lanczos process", in EURO-DAC'94 with
EURO-VHDL'94, September 1994.

[28] K. Gallivan, E. Grimme, and P. Van Dooren.
Asymptotic Waveform Evaluation via a Lanczos

Method. Applied Mathematics Letters, 7(5):75{80,
1994

[29] L. Miguel Silveira, M. Kamon and J. White,
\E�cient Reduced-Order Modeling of Frequency-
Dependent Coupling Inductances associated with
3-D Interconnect Structures", Proceedings of the
32nd Design Automation Conference, pp. 376{380,
San Francisco, CA, June, 1995.**

[30] J. E. Bracken. Passive modeling of linear intercon-
nect networks. IEEE Trans. on Circuits and Sys-
tems, (Part I: Fundamental Theory and Applica-
tions), to appear

[31] A. Odabasioglu, M. Celik, and L. Pileggi. PRIMA:
Passive Reduced-Order Interconnect Macromodel-
ing Algorithm. IEEE Conference on Computer-
Aided Design, San Jose, CA, 1997

[32] Y. Massoud and J. White, \Simulation and Mod-
eling of the E�ect of Substrate Conductivity on
Coupling Inductance," Proc. Int. Electron Devices
Meeting, Washington D.C., December 1995.**

[33] J. Wang, J. Tausch, and J. White, \A Wide Fre-
quency Range Surface Integral Formulation for 3-D
Inductance and Resistance Extraction," To appear
International Conference on Modeling and Simula-
tion of Microsystems, Semiconductors, Sensors and
Actuators, San Juan, April 1999

[34] K. Gallivan, E. Grimme, and P. Van Dooren,
\Multi-point Pad�e approximants of large-scale sys-
tems via a two-sided rational Krylov algorithm",
in 33rd IEEE Conference on Decision and Control,
Lake Buena Vista, FL, December 1994.

[35] IbrahimM. Elfadel and D. D. Ling, \A block ratio-
nal Arnoldi algorithm for multipoint passive model-
order reduction of multiport RLC networks", in In-
ternational Conference on Computer Aided-Design,
San Jose, California, November 1997.


	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index


