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Abstract

The increasing complexity and geographical sep-
aration of design data, tools and teams has cre-
ated a need for a collaborative and distributed
design environment. In this paper we present
a framework that enables collaborative and dis-
tributed Web-based CAD, in which the designers
can collaborate on a design and efficiently utilize
existing design tools on the Internet. The frame-
work includes a Java-based hierarchical collabo-
rative schematic/block editor with interfaces to
distributed Web tools and cell libraries, infras-
tructure to store and manipulate design objects,
and protocols for tool communication, message
passing and collaboration.

1 Introduction

The design of future high-performance VLSI sys-
tems will require a collaborative and distributed
design methodology due to the diverse expertise
required at various levels of abstraction. The
emergence of “systems-on-a-chip”, with poten-
tially more than 100 million transistors on a sin-
gle chip, calls for a framework that facilitates
fast and efficient information flow. Since design-
ers are often separated geographically, a design
environment that allows collaboration among
the designers is also required. The high integra-
tion levels of future systems call for tools and
generators that allow exploration of the design
space irrespective of the geographical availabil-
ity of the design tools. All of these requirements
motivated us to build a collaborative and dis-
tributed framework where designers can cooper-
ate in accessing and utilizing diverse resources
from the desktop.

The advent of the Internet has opened new
vistas in this area, and the World Wide Web
has emerged as the most desirable platform for
distributed access to information [1, 2], enabling
the designer to access tools from any terminal on
the Internet. The limitations of server side only
computation on the Web have been alleviated
with the emergence of Java, a platform indepen-
dent programming language. The serialization
mechanisms and the platform independence of
Java support collaboration and allow the design-
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ers to use their favorite computing platform and
browser to run the tools. All of these factors
make the Web a universal platform for collabo-
rative micro-system design.

With Web-based CAD, the user gets seamless
access to the tools anywhere in the world with-
out the need of a powerful client machine. How-
ever, the issues of limited internet bandwidth
and secure communications still need to be ad-
dressed.

2 Related Work

The popularity of the internet and the Web has
lead to several distributed design efforts, some
of which are summarized below. Bentz et al.
have proposed an information based design en-
vironment [3], in which the users collect and
manage information in a uniform fashion, inde-
pendent of the abstraction levels or implementa-
tion platforms. Lidsky and Rabaey presented a
Web-based prototype tool, PowerPlay [4], which
helps in system level exploration of power con-
sumption. The WELD project at UC Berke-
ley [5], aims to construct a distributed CAD
environment enabling Internet-wide IC design.
The WELD group has developed a Java Ob-
ject Database Server supporting persistent ob-
ject class management. Boglilo et al. describe
PPP - A Gate-Level Power Simulator [6], which
provides a Web-based integrated environment
for synthesis and simulation of low-power CMOS
circuits. In addition, there have been efforts
to provide Web-based Interfaces to executable
CAD / CAM software.

A standalone utility, XMX [7], for sharing an
X Window system session on multiple X displays
has been developed at Brown University. XMX
acts as an intermediary between XClient and
XServer and though it leads to a collaborative
environment, it works only on X-based systems.
So, it is neither platform-indepedent nor Web-
based. Some other collaborative systems include
Xplexer [8], Xshare [9] and XTV [10]. Lavana et
al. use executable directed hypergraphs to de-
scribe collaborative design activities on the in-
ternet [11].

Although there are numerous instances of de-
sign tools being available over the Web, there
has been limited attention to designing a frame-
work which would allow designers to utilize the
different tools over the Web in a collaborative
fashion. In this paper we demonstrate how a
collaborative and distributed framework can be
built over the Web. This framework utilizes the
core Web technologies to support efficient com-



Pythia

Extract PowerPlay

DC-DC
simulator

Figure 1: Distributed Framework, WebTop

munication and data exchange between different
Web-based tools.

3 The Distributed Web-based CAD tool

A framework for distributed Web-based micro-
system design, WebTop, has been developed
with a hierarchical schematic/block editor, with
a simple GUI, for the design entry. The designer
can use the basic cells incorporated into WebTop
in their design, or cells created by another de-
signer can be downloaded and used. The tool
is Java-based and can be embedded in HTML
pages. The designer can extract the netlist from
the design so that the output conforms to the
input specification of various Web-tools. The
tool uses the CGI (Common Gateway Interface)
mechanisms to invoke remote tools. WebTop
has interfaces with several tools including Pythia
(a verilog RTL power estimator tool developed
at MIT), PowerPlay (a system level power ex-
ploration tool developed at U.C. Berkeley), and
WebSpice.

We have implemented a large application on
WebTop in order to demonstrate the useful-
ness of the distributed tool. As a driver ap-
plication, we entered the design of a single-
chip media-processor that includes an embedded
ARM core, a video compression module, with
more than 160K transistors, and power supply
circuits. The design has been validated using
a distributed simulation strategy. The remote
tools used in this process were Pythia, Pow-
erPlay and a DC-DC converter simulator tool
(developed at Stanford). The verilog netlist of
the decompression module can be extracted from
WebTop and submitted to Pythia to get a ver-
ilog power estimate. The PowerPlay netlist can
be extracted from WebTop and the results of
the behavioral level power estimate can be ob-
tained by submitting the netlist to PowerPlay.
The netlist to conform to the DC-DC simulator’s
input can be extracted and the simulation re-
sults can be seen after invoking the remote tool.
Thus, the design of a single chip media processor

has been validated using the distributed frame-
work, a simple web browser, and three different,
geographically separated, remote tools. A snap-
shot of WebTop with the library manager and
the Web-tools used is shown in Figure 1.

4 Collaborative Framework

A collaborative environment is essential for co-
ordinating the work of the designers working re-
motely on a project. The basis for such a frame-
work is presented in this section.

We extended the distributed Web-based CAD
tool, WebTop, into a collaborative framework,
CollabTop, whose architecture is described be-
low. The aim is to create an environment where
all the designers can see a consistent view of the
design in their edit windows.

In a typical session with WebTop, the designer
creates a schematic by adding new components
either from the primitive cells built into the tool
or from the existing cells in the library. The
designer proceeds to create another cell or to
submit the extracted netlist from the cell to a
Web-tool. During the design process, the de-
signer can download cells from the Web and use
them in the design. All these designer actions
generate events to be sent to other designers.

Session 1 Session 2
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Figure 2: Collaboration with several sessions

In order to make the framework collaborative,
the effect of all of the events caused by one de-
signer’s actions should be seen by all other de-
signers in the view of their editor. For practical
use of the tool, the designers should be able to
join other designers in sessions, and several ses-
sions should be able to run in parallel as shown
in Figure 2. The events in one session should not
affect the design in other sessions. Hereafter, we
assume that the designers are in the same ses-
sion, unless otherwise specified.

4.1 Client-Server Architecture

When a designer edits a schematic, several
events are generated. These events can either
be propagated to all other designers (peer-to-
peer) or sent to a central server which broad-
casts these events to all the designers (client-
server). CollabTop has been implemented using



the client-server model as it is easier to incor-
porate the higher level ideas such as synchro-
nization into the system using this model. The
client-server configuration is also less prone to
errors caused by network congestion as it uses
fewer channels than a peer-peer configuration.
Moreover, a client-server system can be scaled
later to support multicasting in the connections
from the server to the clients.

Designers can also enter sessions as a read-
only client. Events produced by such a client
are not broadcast, but the client is able to see a
consistent view of the copy being edited. This
feature is very useful in the design review phase,
where particular parts of the design can be high-
lighted and hierarchically edited by one or more
clients while the read-only client views it.

4.2 Implementation Decisions

The distributed tool, WebTop, was developed
as a Java applet, and uses the CGI mechanisms
to submit the extracted netlist to various web-
tools. The events that are generated because of
the actions of a designer prompt the applet to
take the necessary action. This architecture of
the system has to be changed to the client-server
model, shown in Figure 3.

Each client event gets passed on as a mes-
sage to the server, a stand-alone Java program,
which broadcasts them to all the clients, which
then take the corresponding action. The server
is a stand-alone Java program. Initially, each
designer client notifies the server of the designer
name and session name to join. The server can
be thought of as being composed of two com-
ponents: the NameServer and the CollabServer.
The NameServer takes care of all the messages
with the session names and the designer names
in the sessions. It also provides the designer
with the information on various designer clients
present in a session. The CollabServer takes care
of all other messages. The designer chooses a
session to enter when entering the framework.
Designs in different sessions are not affected by
each other’s events.

The messages that are passed between the
clients and the server hold the key to the tool.
These messages go from the the clients to the
server and vice-versa. There are a variety of
ways in which this message-passing can be im-
plemented using the object-web technologies.
Distributed object-oriented computing refers to
computing environments where programs can
make procedure calls to other address spaces,
possibly on other machines. Two such technolo-
gies are the Common Object Request Broker Ar-
chitecture(CORBA) and Java Remote Method
Invocation (RMI). Another way of implementing
this environment is to send messages as objects,
using the Java serialization mechanism and the
sockets to send and receive the messages. This
approach was used to implement the message-
passing. Our motivation for choosing this im-
plementation was that it leads to a cleaner ar-
chitecture and the resulting software follows the

intuitive flow of messages. In addition, the im-
plementation of several higher level issues, de-
scribed in later sections, will be simpler and
more intuitive.
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Figure 3: Client-Server Architecture

5 Higher Level Issues

For the simple framework described in the pre-
vious section to work, some higher level issues
need to be addressed. This includes the design of
the components of the messages that are passed,
dealing with the reliability of clients and recov-
ering from the failure of any of the clients. Also,
issues such as the reordering of messages at the
server end and locking some of the critical re-
sources need to be addressed. The motivation
and issues behind these concepts are described
below.

5.1 Synchronization

The framework, as explained so far, follows the
asynchronous model of computing; there is no
restriction on the timing of a client event. This
leads to the problem of the messages from indi-
vidual clients being reordered either at the server
or at the clients. It is crucial that the consistency
of the view in the edit window of different clients
in a collaborative session be maintained.

We model the channel between each client and
server as a reliable, First In First Out (FIFO),
directed communication channel. This matches
with the implementation using the Java sockets.
By the reliability of the channel we mean that
all messages sent by the client are received at
the server end of the channel.

At the server there is a thread dedicated to
each of the clients. It is this thread that receives
the messages from its client. The channel be-
tween the client and this thread is modeled as
a FIFO channel. We model the channels from
the server to the clients also as directed reli-
able FIFO channels. Hence, messages sent by
the server to the clients are received in the same
FIFO manner. However, when the server tries to
broadcast the messages we need a way of times-
tamping the messages, to maintain order among
the messages from different clients.



The concept of logical time cannot be ap-
plied here because it does not model the or-
dering of events at different nodes. Thus, we
need real time to do the time-stamping. We use
the Greenwich Mean Time on the correspond-
ing machines to model this. Though, this is
not accurate and it requires elaborate synchro-
nization algorithms to get this time to synchro-
nize, it stands as a good realistic implementa-
tion. The message packets received by the server
and clients are tuples of type (msg,t) where msg
is the message and ¢ is the time-stamp associated
with it. The ordering of message packets is:

(ml,tl) < (mg,tg) if ty <to

The server receives the message packets and puts
them into an ordered queue, based on their time-
stamps The server first broadcasts the message
that is the least in the ordering. The pseudo-
code for the broadcast routine of the server is
given below:

ServerRcvPacket (pkt) {
PutPacketInOrderedQueue (pkt) ;
if (QSize > MinQSize) {
// Get the pkt with min time-stamp
// from the ordered queue
pkt = GetPktFromQueue () ;
if (pkt != null) broadcast(pkt);

Time-stamping also helps in the synchroniza-
tion that occurs when a client designer joins a
session which is already in progress. The screen
shot of the editor and the status of the library
manager need to be sent to the new client by
the other clients. The new client sends a mes-
sage (“sync— < id >",t) to the server which is
then broadcast to all clients in that session. The
clients reply with (sync — reply,t) to the server
which then sends it to the new client. Thus, the
new client gets replies to its synchronize request
from each of the other clients in the same ses-
sion. The following analysis shows that all of
these replies have the same screen shot. So the
new client uses the first such message to con-
struct the starting view of its editor.

The server broadcasts from the queue in a crit-
ical section of the code and since the channels
from client to server are modeled as FIFO chan-
nels it maintains that all clients receive the syn-
chronize message in the same relative position in
the queue. Also, all the replies are similar be-
cause of the consistency constraint we have due
to the time-stamping. Hence, the new client can
use any one of the replies of the synchronize re-
quest and then can start taking actions as usual.

Suppose two clients have sent two different
snapshot views to the new client. Without loss
of generality, we can say that clientl received
at least one message before getting the sync-
request from the new client and the client2 re-
ceived the same message after receiving the sync-
request from the new client. However, the action

of broadcast is in the critical section in the server
and the thread doesn’t start broadcasting an-
other message till the present message is broad-
cast to all clients. This implies that the mes-
sages were sent in proper order at the server end
and they were rearranged in the channel. This
contradicts our assumption that the channels are
reliable FIFO channels. Hence, all clients should
receive these messages in the same order and the
new client should get the same snapshot from all
other clients.

Note that the new client might have an event
in its queue which was received before the sync—
reply, but whose action has been taken by the
client which sent the reply. In this case, the
new client should not take the corresponding ac-
tion. An example is shown in the Figure 4. The
message for synchronization request will be re-
ceived by the client 1 only after it has received
the wireMode and mouseEvt messages. But the
sync-reply given by the clientl is given after the
corresponding actions on messages 1 and 2 but
before message4. So the new client should queue
up messaged and take the corresponding action
after it takes the action on the sync—reply mes-
sage.
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Figure 4: Synchronization of the System

: Wire

The new client queues up all the events that
it received before receiving its synchronization
replies. It will take the corresponding action
on the events with time-stamps greater than
the synchronization-reply message in the start
queue, after finishing synchronizing the view.
The corresponding pseudo-code is given below:

ClientRcvPacket (pkt) {
if (SessionInProgress) {
if (pktIsSyncReplyMessage (pkt)) {
TakeSyncReplyAction(pkt) ;

TakeActionOnStartQueue (pkt.timeStamp) ;

// Take action on the packets in

// start queue with larger time-stamp.

}
else PutInStartQueue(pkt);
}
else TakeAction(pkt);
}

5.2 Failure Recovery

Recovery from the failure of any client is an-
other important issue in the collaborative envi-



ronment. We model the failure of the clients as
stopping failures rather than byzantine failures
because we are concerned with the sudden death
of clients and have modeled the channels as re-
liable. If the client program gracefully exits the
code, it sends an exit message to the server. The
server then deletes all of the resources used for
this client. If the client gets killed otherwise,
a server vulture which keeps track of the time
for which a client has not sent an event, sends
a message to that client. If no result is received
for that, it assumes that the client is killed and
takes the required action. The assumption that
the channel is reliable plays a crucial role here.

5.3 Resource Locking

The locking of critical resources is another be-
havior to be incorporated into the collaborative
environment. One such resource is the mouse
movements in wire mode. If this is not locked
and if more than one client uses the mouse at the
same time, they do not get the expected results.
Each session has a corresponding wireModeLock
in the server and it gets set automatically when-
ever a client sends a WireModeRequest message
when it is not already set. The lock gets released
when the same client sets to another mode. The
mouse movements from other clients are blocked
from being broadcast when the lock is held. The
locks are also released when the vulture finds
that the lock-holding client got killed.

On the whole, we are trying to simulate a
shared-memory system out of an asynchronous
network system. We try to achieve this using the
high level constraints, the mutual exclusion pro-
gramming paradigms, and the implementation
of some higher level ideas like time-stamping and
synchronization.

6 Implementation Details

The programming language used for the imple-
mentation is Java (Ver 1.1.6). The Java 1.1
observer-based event model is well suited for our
event message passing needs. A snapshot of the
tool with two users’ editors who are in the same
session is given in Figure 5. Multithreading in
Java is utilized in making the server run several
threads, one for each client to receive messages.
The synchronized statement of Java is used for
implementing the critical sections of the code for
mutual exclusion. The several events that are
passed as messages include the mouseEvents, the
cellSelect events, the extract events, and all of
the Ul events on the boxes involved in the editor.
The Java serialization mechanism is used after
an event object is constructed in order to pass
them over the network. All such message objects
are derived from a base node, sendObject. The
server just broadcasts these objects unless it is
of the type ChangeOfMode or a MouseEvent. In
that case it does the locking record maintenance
and broadcasts the message if the lock is held by
the sender and the wireMode is on or rejects the
message otherwise. The clients on receiving the

message put it in their queue. The message with
the least time-stamp is taken up for action. De-
pending on the type of message, it is delegated
to the corresponding collaborative message han-
dler method. The vulture is implemented as a
thread in the server which periodically checks on
the inactive clients. The tool is available for use
at hitp : //apsara.mit.edu/CollabT op.

7 Example Collaborative Flow

An example flow of events in the use of the col-
laborative framework is given in this section. In
this example, one designer joins the session when
the session is in progress, to demonstrate the
synchronization mechanism. The remote tool in-
voked in the example is Pythia.

The flow of events The Collaborative events

"A" starts the session
and starts editing the schematic

‘ "B" gets the consistent view ‘

I

‘ "A" and "B" edit the schematic

i
"B" downloads acell from a URL

"A" saves the design cell

"B" extracts the verilog netlist
from the design

"A" submitsit to Pythia

B sends the synchronization
request to A through the server

"B" receives the sync-reply

All edit events are collaborative.

A’sclient aso downloads it

B’sclient also savesit

A’s screen also shows up the
extract window

Both A and B seethe
results of Pythia

Figure 6: Example flow in CollabTop

Designer A starts the session and starts cre-
ating and editing the schematic in the editor
using the library cells in the tool. Designer B
joins the session and the synchronization mech-
anisms bring the consistent view of the design
and the saved cells in the library, if any, into
B’s editor. Then, A and B collaboratively edit
the design. In the process, B initiates down-
loading some WebTop cells from a URL. This
generates collaborative events and these cells ap-
pear in both A and B’s library managers. After
editing, a designer saves the cell in the library
which generates collaborative events to save it
on both sides. Then one designer extracts the
verilog netlist from the schematic which makes
the extract window with the netlist pop up on
their screens. A designer submits it to Pythia
and the results can be viewed by both. They
then store the design in CellServer and quit the
session. This flow is shown in Figure 6.
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Figure 5: Snapshot of CollabTop

8 Conclusion

A collaborative environment has been developed
from a distributed Web-based CAD tool. All of
the principles and ideas discussed have been in-
cluded in the implementation. Future work in-
cludes addressing the problem of single point of
failure at the server and adding the functionality
of client-side caching and saving of the files. For
now, since the Java applets can only save at the
host of origin, the designers must save the files
at the CellServer run at MIT.
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