
it
s.

m
of
er,
e
to
ing
er
n-
ns
e

es
nd

d is
in

d in
4.

sor
re.
bus.
ur

le
.
VC
t 8-
ons
be
ne
ins
e
d a
of

SOFTWARE ENVIRONMENT FOR A MULTIPROCESSOR DSP
Asawaree Kalavade

Networked Multimedia Research Dept.
Bell Labs, Lucent Technologies

Murray Hill, NJ 07974
kalavade@research.bell-labs.com

Joe Othmer, Bryan Ackland, K. J. Singh
DSP and VLSI Systems Research, Dept.

Bell Labs, Lucent Technologies
Holmdel, NJ 07733

{othmer,bda,kj}@lucent.com
1. ABSTRACT
In this paper, we describe the software environ-
ment for Daytona, a single-chip, bus-based,
shared-memory, multiprocessor DSP. The soft-
ware environment is designed around a layered
architecture. Tools at the lower layer are
designed to deliver maximum performance and
include a compiler, debugger, simulator, and
profiler. Tools at the higher layer focus on
improving the programmability of the system
and include a run-time kernel and parallelizing
tools. The run-time kernel includes a low-over-
head, preemptive, dynamic scheduler with mul-
tiprocessor support that guarantees real-time
performance to admitted tasks.

1.1 Keywords
Multiprocessor DSP, media processor, software environment, run-
time kernel, RTOS

2. INTRODUCTION
In the past few years we have seen an increasing demand on the
performance offered by digital signal processors (DSP’s), due to the
surge in complex multimedia and communications applications. To
support the computation demands posed by these applications, we
have designed and implemented a DSP calledDaytona [1].
Daytona addresses the performance challenge by exploiting
parallelism at two levels: processor- and instruction-level.
Specifically, Daytona employs a bus-based, shared memory,
multiprocessor architecture, where each processor itself is
augmented with a SIMD accelerator.
Daytona is a reasonably powerful architecture — a four-processor
chip, running at 100 MHz is capable of delivering 9.6 GOPS of
peak performance in a 8-bit mode and 4.8 GOPS in a 16-bit mode.
Harnessing the large compute power offered by such a chip is a
challenge. We believe that the key to exploiting this power lies in
the software environment. The software environment should allow
applications to be developed at different levels of granularity
without compromising performance. It should also isolate the
application programmer from the nuts and bolts of the hardware by
capturing architecture-specific details within the tools.
We have designed and implemented a software environment for
Daytona that attempts to address these challenges. Our approach is

to adopt a “layered” software architecture. At the lower layer,
provides tools for developing and debugging application module
Application modulesform the core routines, or kernels, of DSP
applications and are primarily hand-coded to achieve maximu
performance. The tools at the lower layer focus on easing the job
the DSP programmer. These include a simulator, debugg
compiler, and profiler. At the higher layer, the softwar
environment provides tools to put together these modules
generate complete applications. The emphasis here is on improv
the programmability of the system. The components of this lay
include a run-time kernel as well as parallelizing tools. The ru
time kernel is designed to manage multiple concurrent applicatio
and comprises a low-overhead, prioritized, preemptive, run-tim
scheduler with multiprocessor support. The scheduler do
admission control, dynamically maps tasks to processors, a
guarantees real-time performance to admitted tasks.
This paper describes the details of the software environment an
organized as follows. The hardware architecture is summarized
Section 2.1. The design of the software environment is discusse
Section 3. The tools at the lower layer are described in Section
The run-time kernel is described in some detail in Section 5.

2.1 Daytona architecture
Daytona is a shared-memory, bus-based, multiproces
architecture. Figure 1 shows a block diagram of the architectu
Multiple processing elements (PE’s) are connected via a shared
While different flavors of PE’s can be supported, we focus o
attention on a particular PE, calledFirebird. Each Firebird PE
consists of a SPARC core, a SIMD (single instruction multip
data) vector coprocessor (VC), and a reconfigurable local memory
The SPARC core executes SPARC V8 integer operations. The
has a 64 bit datapath that can perform vector operations on eigh
bit components and four 16-bit components; a subset of operati
is also supported on two 32-bit components. The result can
either a scalar or in one of the vector formats. One SPARC and o
VC instruction can be issued simultaneously. Each PE also conta
8 KB of a reconfigurable local memory. The local memory can b
used as any combination of instruction cache, data cache, an
user-managed buffer. The actual partitioning into the three types

Reconfigurable

SPARC
VC

Memory Controller

External Memory

Local Memory

Host IO

PCI, ISA, ...

Firebird processing element (PE0) Daytona chip

Figure 1. Daytona architecture

Transaction Manager

Auxiliary IO

audio i/o, T1, ..

Hardware
Debug
System

JTAG

Bus Interface
Firebird

Memory and

processing

element (PE3)

 I/O subsystem

...

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00
_

be
el
as

ere
e

ent
nd

ent
be

at
llel
nt
to
e.
ata
he
C
ode
and
es.
the

is
ion
es
ap
3%
memory can be done dynamically through software control. The
architecture incorporates a 128-bit wide on-chip split transaction
bus (ST bus). The ST bus implements cache coherency through
snooping, is pipelined, and supports split transactions to maximize
throughput. The PE’s can also transfer data to/from the shared
memory via DMA (direct memory access). A transaction manager
handles the I/O and memory requests. A JTAG-based hardware
debug logic has been added to each processor for debugging. The
rest of this document focuses on the software environment for
Daytona.

3. SOFTWARE ENVIRONMENT
There are several challenges in developing the software
environment for Daytona. These are specifically attributed to the
need to run multiple, real-time, high-performance applications on
one or more PE’s. Let us consider the challenges posed by these
factors in more detail.
Performancevs. Programmability: Programming a DSP typically
involves trade-off between performance and user programmability.
To achieve high performance, the trend in the DSP community is
to hand-craft applications. However, dynamically changing
application sets, the need for flexibility and upgradeability, and
rapidly shrinking time-to-market intervals call for the use of
sophisticated high-level tools. To achieve an efficient trade-off, our
approach is to allow application programs to be developed at two
layers. We call this a “layered” software architecture (Figure 2)
Slim real-timesupportfor multiple dynamicapplications: Daytona
is expected to support multiple simultaneous applications.
Additionally, these applications may have to be dynamically
invoked. For instance, consider a modem pool where multiple
modem applications are dynamically run and stopped at user
request. Another example is a settop box application where audio,
video, and graphics applications run simultaneously. Different
combinations of these applications need to be run, depending on
the user activity. In both these cases, mechanisms are needed that
enable these applications to efficiently share resources without
affecting their performance. Further, applications often tend to
have real-time constraints. To support these requirements, we have
designed a dynamic scheduling environment.
The factors listed above have been the driving force behind the
architecture of the software environment. The components of the
software environment and the application design methodology are
summarized in Figure 3. The software design methodology begins
with the application writer developing the algorithm with the aid of
high-level software design environments (1). Once the algorithm is
finalized and the modules of the application are identified and
designed, the next step is to develop the code for the modules (2).
Module development tools such as a compiler and debugger are
used to implement the modules. Once modules are available in the
form of a module library, applications are put together. Depending
on the class of applications, either a static or a dynamic scheduling
environment is used to put together applications. In the dynamic
scheduling environment (4), applications are specified as a set of
modules and are compiled with the run-time kernel. The kernel
sequences these applications and also manages external requests to

start and end applications. Performance estimation tools can
used to select the appropriate scheduling policy within the kern
(5). For static application sets, static scheduling tools such
Ptolemy can be used (6).

4. MODULE DEVELOPMENT TOOLS

4.1 PE Compiler
Recall that the PE consists of the SPARC core and the VC, wh
the VC is a SIMD vector array that operates in parallel with th
SPARC. The VC supports several data formatting and alignm
modes. The formatting modes, such as rounding, scaling, a
saturation are handled through a format register. The alignm
modes, also controlled by an alignment register, allow data to
aligned at different boundaries.
While it is desirable to have a complete parallelizing compiler th
maps instructions onto the SPARC and VC and extracts para
instructions for the SIMD coprocessor, designing such an efficie
compiler is non-trivial. We have taken an intermediate approach
the compiler. The programmer writes code in a C-like languag
The language has been expanded to support VC-specific d
types, including 8, 16, and 32 bit vectors and a 64 bit scalar. T
compiler parses the source code to identify SPARC and V
statements. It then does a statement-wise translation of the c
into assembly code. The compiler analyzes the VC data types
appropriately sets the format and alignment register attribut
Instruction scheduling and code generation are also handled by
compiler. The PE compiler uses the superscalar mode ofgcc to
schedule instructions in parallel to the VC and the SPARC. Th
required specifying VC-specific dependencies and operat
latencies. The PE compiler is fairly efficient. Table 1 compar
hand-crafted assembly code to compiled code for a 64-t
convolution routine on 64 data samples. The compiled code is 2

Tools Applications

Applications

DSP Modules
Compiler

Debugger
Assembler

Dynamic scheduler
Parallelizing tools

Figure 2. Layered Architecture

Run-timeSimulator

Performance
Estimators

kernel

code size execution time

hand-crafted assembly for PE 176 Bytes 1113 cycles

compiled code 216 Bytes 1271 cycles

Table 1: Hand-crafted code vs. compiled code

ALGORITHM DESIGN ENVIRONMENT
Ptolemy/ SPW/ COSSAP/Matlab

1

MODULE DEVELOPMENT ENVIRONMENT2

SIMULATION &
3

module librarydynamic application set
static applications

Simulator / Debugger
Profiling tools

STATIC SCHEDULING6

Figure 3. Software Design Methodology and Tools

 PERFORMANCE

Compiler & Assembler

Parallelizing tools

Evaluate schedulers
Select scheduling policy
Set application priorities

 ESTIMATION DEBUGGING

 ENVIRONMENT

DYNAMIC SCHEDULING

Run-time kernel
low-overhead, prioritized
preemptive, multiprocessor
guarantees performance

ENVIRONMENT

4

5

te/
can
on

tize
t

ffer
r a
in
rs
er
ler
n
to

ort
ises
text
to

ive
ach
e a
an
a
ing

line
or
to
be

ned
is
has

t”
sks.

ve)

is
ng
ew
hat
y).
arate
his
eir

-a.
er
E’s.
bigger and 14% slower than hand-crafted code. The limitation in
this approach is the statement-wise translation. However, this is a
reasonable compromise between performance and
programmability. While the programmer identifies SIMD
parallelism in the application, the tedious tasks of managing the
format and alignment registers, instruction scheduling, and code
generation are managed by the compiler.

4.2 Simulator and Debugger
Two simulators have been developed for Daytona: a cycle-accurate
VHDL simulator and an instruction-level C++ simulator. For a
10PE simulation on a Sparc10, the speeds of the VHDL and C++
simulators are 10 Hz and 10,000 Hz respectively. The C++
simulator is functionally accurate and has a cycle-accuracy within
10% of that of the VHDL simulator. (It does not capture some of
the details of the memory latencies.) The C++ simulator is
typically used for all application development; the VHDL
simulation is used for final performance analysis.
A Tcl/Tk-based GUI has been developed for the C++ simulator.
This provides basic debugging support for the simulator. Features
supported include: disassemble code, set multiple breakpoints,
view/edit SPARC and VC registers on any PE, view/dump
memory, view Icache performance, single step, dump simulation
trace, etc. Figure 4 shows a screen dump of the current debugging
environment.

4.3 Profiler
Several profiling aids are included within the software
environment. A call-graph profiling tooldprof (similar to gnu
gprof) gathers statistics on the number of calls and share of CPU
time for each external symbol for each processor. Severalperl
scripts have also been written to analyze the trace output for
instrumenting memory access behavior. These profiling tools have
been very useful in detecting architecture as well as algorithm
bottlenecks.
The Daytona application development environment also contains
the standard gnu software development utilities. They are:
addr2line, ar, as, c++filt, gasp, ld, nm, objcopy, objdump, ranlib,
size, strings, strip, ddis.
The tools provided in the module development environment are
functionally comparable to those provided by today’s single
processor DSP vendors, while also supporting multiprocessor
software development.

5. RUN-TIME KERNEL
The run-time kernel is the key part of the dynamic scheduling
environment. It is responsible for managing the operation of
multiple tasks that share the processors. The requirements of the

run-time kernel are summarized as follows: (1) dynamically crea
delete/reactivate tasks (2) map a new task to a processor that
sustain its performance requirements (3) sequence the tasks
each processor such that real-time constraints are met (4) priori
tasks (5) interrupt (preempt) a low priority task. An importan
constraint is that the kernel should be compact and should o
minimal overhead. The advantage of such a generic kernel ove
customized application-specific kernel (which is frequently used
high-performance DSP applications) is that application write
need not be aware of the interaction of their applications with oth
applications that may be concurrently running. Once the schedu
is provided with information about the applications (executio
times and timing constraints), it provides real-time guarantees
all admitted applications.
We have designed a run-time kernel with multiprocessor supp
for Daytona that satisfies these requirements. The kernel compr
the scheduler, interrupt handlers, and routines to manage con
switches. Before we go into the details, we digress briefly
discuss the task, which is the basic schedulable entity.
Tasks : We are concerned with applications that perform repetit
computations and a deadline constraint is associated with e
iteration (e.g. modem transmitter, speech encoder). We defin
task as one iteration of the computation associated with
application. A task is characterized by its execution time and
deadline. For example, an audio encoding task involves process
160 samples per iteration and this has to be done within a dead
of 20ms. The execution time of a task is the total time required f
completing the execution of the task. Our current approach is
assume worst-case execution time when deadlines are to
guaranteed. Estimation of execution time of a task can be obtai
by profiling each task independently. The deadline (D) of a task
the interval since the task becomes ready, before which the task
to finish execution of the current iteration.
System architecture of the run-time kernel: The system
architecture is shown in Figure 5. External interrupts from a “hos
are assumed to provide requests to create/delete/re-activate ta
A create(delete)request corresponds to the request to add(remo
a task to the system. Are-activaterequest indicates that data for
the next iteration of a task is available. Multiprocessor support
achieved in the scheduler through a two-level scheduli
paradigm. Admission control and processor assignment for n
tasks is handled through a centralized control scheduler t
resides on a control processor (PE0, without loss of generalit
Task scheduling on each processor is managed through a sep
prioritized task scheduler that runs on each processor. T
scheduler is responsible for ensuring that all tasks meet th
deadlines.
The operation of the kernel on PE0 is summarized in Figure 6
Figure 6-b summarizes the operation of the kernel on oth
processors. Note that the task scheduler is the same on all P

Figure 4. Screen dump of the debugger and simulator.

(a) control window

(b)
disassembled code

(c)
SPARC registers on PE0

with pull-down menus Host

task info

interrupt

PE0

task_scheduler()

Memory Mapped I/O space

create task delete task
function()
exec. time
deadline
priority

PE1

task_scheduler()

re-activate task
ID

 ID

task array

task 0 (PE0, ...}
task 1 (PE1, ...)

Figure 5. Run-time Kernel: System Architecture

control_scheduler()
interrupt

e
ber
the
the
ool
er
the
in

ave
s.
g

a
SP
[4]
o

ion

he
g

ted
y is
are
e,

ent
ate
ign

he
)

nd
od
ng
ad
to

on
is

at
ny

,
ghé
This scheduler is responsible for sequencing the tasks on the
corresponding processor such that each task meets its deadline.
Recall that other PE’s get interrupted only by PE0. On an interrupt
from PE0, control is transferred to the ISR. The ISR just reads the
create/delete/reactivate information provided by PE0 and returns
control to the task scheduler.
The decision to use a centralized scheme for admission control and
processor selection was made to simplify handling of the external
interrupts. It also makes the task scheduler associated with the
other PE’s simpler and smaller. The disadvantage of such a two-
tiered approach is the increased latency.
Scheduler: The scheduler is the central element of the dynamic
scheduling environment. The scheduler is prioritized, preemptive,
multitasking, and supports multiprocessor operation. In order to
guarantee deadlines, we have implemented an earliest deadline
first (EDF) scheduler. In the EDF scheduling algorithm, the
scheduler dynamically assigns priorities to tasks according to the
deadlines of theircurrent requests. A task is assigned the highest
priority if the deadline of its current request is the nearest, and is
assigned the lowest priority if the deadline of its current request is
the farthest. At any instant, the ready task with the highest priority
is set to run. The priority of a task changes dynamically, depending
on its deadline with respect to deadlines of other tasks in the
system. Under the EDF scheduling policy, admitted tasks are
guaranteed their deadlines. Admission check is done by solving
the inequalityΣ(ei/Di) ≤ 1, over all tasksi currently in the system
plus the new task requested. Here,ei is the execution time of taski
andDi is the deadline of taski [2]. In other words, a new task is
admitted into the system only if its load can be sustained, which is
equivalent to checking if the above inequality holds. If tasks are
admitted according to this admission criterion, they are guaranteed
to satisfy their deadline constraints as long as they operate in a
preemptive mode.
Performance: The kernel is reasonably compact: the size of the
kernel resident on PE0 is 3144 Bytes while that on other PE’s is.
2676 Bytes. The data size required to store the state and status bits

for each task is 608 Bytes/task.
Thetask switch timeincludes the overhead of the scheduler and th
context switch. The scheduling overhead depends on the num
of tasks in the system as well as the number of tasks on
particular processor. The context switch overhead depends on
number of windows to be saved. For a representative modem p
application with 5 tasks/processor and 2 register windows p
modem application, the scheduler overhead is 800 cycles and
interrupt handler takes about 200 cycles. The typical overhead is
the order of 1200 cycles (12µ s at 100 MHz, 0.12% overhead for a
typical 10ms task).
The interrupt latency, which is the maximum time interrupts are
disabled and represents the maximum time an interrupt may h
to wait before it is serviced by the PE, is typically 800 cycle
Finally, the typical latency of passing an interrupt request arrivin
at PE0 to other PE’s is 160 cycles.
RelatedWork : The features of the run-time scheduler for Dayton
are a superset of the features supported by other commercial D
operating systems [3] such as SPOX (Spectron Microsystems)
and Virtuoso (Eonic Systems) [5]. The Daytona kernel als
provides multiprocessor scheduling support, does admiss
control, and provides real-time performance guarantees.
Implementationissues: We have designed techniques into t
kernel to minimize context switch overhead by identifyin
conditions that do not need save/restore.
Limitations: The kernel is not completely preemptable since nes
interrupts are not supported. However, since the interrupt latenc
reasonably low, this may be acceptable. Finally, due to hardw
limitations, the kernel does not support dynamic linking of cod
memory management, and security.

6. CONCLUSIONS
There are several challenges in designing the software environm
for a multiprocessor DSP. In this paper we described a candid
environment. The key challenges arise due to the need to des
high-performance applications rapidly. Our experiences with t
tools for developing real applications indicate the following: (a
Module designers spend most of their time minimizing code a
data usage and execution time. To simplify this process, go
profiling and simulation tools are needed. (b) Dynamic scheduli
tools are far more important than static schedulers. A low-overhe
run-time kernel that gives real-time guarantees is required
reduce the time to market for sophisticated dynamic applicati
mixes. The software environment described in the paper
currently being used by application designers.

7. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the entire Daytona team
Bell Labs. Specifically, we acknowledge: S. Chandra, B. Den
(TLW Inc.), A. Kulkarni (summer intern 1997), M. Moturi, C.
Nicol, J. O’Neill, E. Sackinger, A. Sharma, P. A. Subrahmanyam
J. Sweet, and J. Williams. The authors also acknowledge P. Mo
for his constructive feedback on the paper.

8. REFERENCES
[1] B. Ackland et al. “A Single-Chip 1.6 Billion 16-b MAC/s

Multiprocessor DSP”,Proc. CICC’99, May 1999.
[2] C.L. Liu, J. W. Layland, “Scheduling Algorithms for Multi-

programming in a Hard-Real-Time Environment”,Journal of
the ACM, vol. 20, no. 1, Jan, 1993, pp. 46-61.

[3] DSP FAQ: What DSP operating systems are available?http://
www.bdti.com/faq/7.htm

[4] Spectron Mircrosystems.http://www.spectron.com
[5] Eonic Systems.http://www.eonic.comFigure 6. Kernel (a) On control PE (b) On other PE’s

initialize

task list empty?

select taskN

Y

system reset

Task Scheduler
run task

done

interrupt

ISR

Intr. from PE0

read Create/Delete/Reactivate info provided by PE0

(b)

initialize

task list empty?

select task

run task
done

interrupt

ISR

create
schedulability test

add task info
delete

delete task info

[create/delete/re-activate]
N

Y

re-activate task
task = ready

Task Scheduler

system reset

interrupt task’s PE

intr. task’s PEinterrupt task’s PE

reactivate

delete

create

(a)

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

