Constraint Driven Code Selection for Fixed-Point DSPs

Steven Bashford, Rainer Leupérs

Dept. of Computer Science 12
University of Dortmund, Germany
email: bashford@Is12.cs.uni-dortmund.de

Abstract— Fixed-point DSPs are a class of embedded pro- embedded software (as compared to ASIC hardware), such
cessors with highly irregular architectures. This irregu- as reusability and portability. Our overall goal is to elimi-
larity makes it difficult to generate high-quality machine nate this bottleneck by providing better code generation tech-
code from programming languages such as C. In this pa- niques for high-level language compilers, which take the pe-
per we present a novel constraint driven approach to code culiarities of fixed-point DSPs intaccount.

selection for irregular processor architectures, which pro- The poor quality of compiler-generated code for fixed-point
vides a twofold improvement of earlier work. First, it DSPsis primarily caused by the irregular architecture of such
handles complete data flow graphs instead of trees andprocessors, which in turn is a consequence of the demand for
thereby generates better code in presence of commonyery efficient processors in the DSP area. By "irregularity” of
subexpressions. Second, the presented technique is nothe processor architecture we denote the following features:
restricted to computation of a single solution, but it gen- Special-purpose registersay not be orthogonallgccessible
erates alternative solutions. This feature enables the tight py a|l functional units, but may be connected to the inputs and
coupling of different code generation phases, resulting in outputs of specific functional units. There may dfeined
better exploitation of instruction-level parallelism. EXx- operationswhere the most important example in DSPs is the
perimental results indicate that our technique is capable MAC (multiply-accumulate) instruction. Furthermore, fixed-
of generating machine code that competes well with hand- point DSPs typically showestricted instruction-level paral-
written assembly code. lelism i.e., they do permit the parallel execution of several
instructions per instruction cycle, but unlike in VLIW ma-
chines, the permissible combinations of parallel instructions
are quite restricted.

Today, many embedded systems employ programmable this contribution we focus on the task obde selection
cessors as their core components. The machine code rh.fixed-point DSPs or, more generally, for processor ar-
ning on embedded processors frequently must meet tightt€ctures with irregular data paths. Code selection is con-
speed and size constraints. This is due to the presencd@f1€d With mapping an intermediate representation (IR) of
real-time requirements and limited silicon area for progratl® sourcrefprogT(am to machine instructions of tﬂe target pro-
memories. These requirements frequently prevent the usé:ﬁ?sof- This task can be viewed as "covering” the IR by ma-
high-level language compilers for embedded software devE{l!Ne instruction patterns. Most current code selection tech-
opment, since compilers usually cause an overhead in cqti@U€s are based dree coveringand operate on data flow
quality as compared to hand-written assembly code. tree (DFT) based IRs of basic blocks. However, tree cover-
In this paper, we consider fixed-point DSPs as a specific clgg n %en_errgll pr;(nduces S‘flbOpt'mal ‘?OVﬁrSffOV bafsg: b|0f(|3kS.
of embedded processors. In particular for this type of proc _ncz;:] asic DIOCKs ger;]era yappeaI(In the orm? ata r?W
sors compilers tend to produce an intolerably large overhedl@Phs (DFGS), DFGs have to be splitinto DFTs (fig. 1). This
in code size and performance [16]. As a consequence, ip@erformed by cutting DFGs at nodes representing multiple
largest part of fixed-point DSP software is still written manu{S€s Of values (common subexpressions, CSEs).

1 Introduction

ally in assembly languages. This implies a bottleneck in sys- @

tem development and also reduces some of the advantages of ®\ (o) %

t

*The authors acknowledge the support by the DFG and HP EESof O 9, lj‘>
° o E Memory
O

O Oy

O

Figure 1:Splitting a DFG into DFTs

As we will discuss later, the tree-based approach has draw-
backs particularly for irregular architectures and leads to infe-
rior code quality. In this contribution we therefore propose a
Permission to make digital/hardcopy of all or part of this work for persond or Novel code selection technique, which generalizes code selec-
classroom use is granted without fee provided that copies are not made or distributed tion for irregu|ar processor architectures from DFTs to DFGs,
for profit or commercia advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or afee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

thereby producing more efficient machine code. This code B mezMEl my = Mib]
selection technique is capable of covering complete DFGs by

machine instructions and is based on the paradigm of con- ? B e

straint logic programming (CLP). ° mrmemy
The paper is structured as follows: The next section pro-

vides a discussion of the limitations of DFT covering based o *my

code selection for fixed-point DSPs and also mentions re- Mg = me

af := mr+ay

lated work. Section 3 shortly sketches concepts of constraint
logic programming. In section 4 a model for representing
alternative DFG covers and the DFG covering approach it-
self are presented. Section 5 describes several applications of
the DFG covering technique in a compiler and provides ex-
perimental results indicating the code quality improvements
achieved.

costs=6 ar := mr+af

c) mx := M[a] my := M[b]

ar ;= ar+ay

Costs=9

2 Motivation and related work =t s e

costs=5 mr :=mr + mx*my

Throughout this paper we will represent processor opera-
tions by register transfers (RTs), that reflect the operations .) :
performed and the storage resource (SR) locations for the Figure 3:DFT vs. DFT covering

operands and the result. In fig. 2 a partial data path of an Angas ; ; h iabl

log Devices ADSP-210x together with a subset of its RTs ar{%srﬁgn?é??gﬁggqﬂgeég% égg]evé ﬂfg%g@gigﬁq rgaRpped
shown. For instance, in Rlr := ax-+aythe first and second 1, 15 memory and each use loadsack into SRay. If code
operand must reside in SBsanday, respectively. The result ggjaction was done for the complete DFG, then the overall

is stored in SRar. In the following, we caliar thedefinition - cqqt5 of the cover (i.e. the number of instructions required to
of the RT andax, ay its uses We sayuse, when referring to jmpjement the DFG) could be reduced from 9 to 6 (fig. 3 b).
operand number Note, that not only the location of the definition and the uses
of the CSE change, but also the complete covering of the sec-
; ond DFT (exploiting commutativity of operators). Fig. 3 c)
2.1 Drawbacks of DFT covering shows the additional optimization effect achieved by allow-

Most of today’s code selection approaches are based on #ig CSES to occur as sub-operations in chained operations,
covering or tree parsing. Covering consists of mapping DRfhich again decreases the costs by one instruction.

nodes to available RTs. DFT edges may be mapped to RTs

denoting pure transfer (move) operations, required for rout-

ing data between the functional units (FUs). An example of@further drawback of approaches based on tree covering is
cover is shown in fig. 3 a. Tree covering is typically based Qfat instruction-level parallelisnfILP) cannot be taken into
tree pattern matchingombined withdynamic programming account during covering. Fig. 4 shows two covers with the
Tree pattern matchers are used to determine the set of alteg2ane costs, but only the second cover can be mapped to par-
tive covers for a DFT. Dynamic programming serves to selegliel code for the ADSP-210x: Parallel transfer operations
the optimal cover from the alternatives. Such code generatgre only feasible if one operand is moved from menmbty

can be generated automatically by tools like iburg [3], whidhx and the second one fromto my. Therefore, it is obvi-
require a formal description of the target instruction set givgjusly favorable to keep alternative covers of the same costs
as a tree grammar. for the scheduling phase, during which the most appropriate
For applying tree covering, DFGs have to be splitinto DFTdternative may be selected.

(fig. 1), where uses of CSEs are represented as variable nodes

mr:=dfa] my:=d[b] mx :=d[a] my :=p[b]

with the same identifier. Tree covering requires that these
variable nodes are mapped to a certain fixed SR (typically the
memory) in advance. @ @
. mr :=mr*my mr := mx*my
ar:=ar+ay
:: ; :;iaafy Cycles=3 Cycles=2
ar:=ax + af mr :=d[a]
my = dpb] e =memy|]
af :=ar+ay mr ;= mr*my
af :==ar+ar
af ;== ax +ay .
ar=axtat Figure 4:Impact of covers on ILP
mr:=mr*my

mr:=mr * mf

mr := mr +/- mr*my

In the following, we discuss related work, which is based

i i . on either tree covering or a phase-coupled approach to DFG
Figure 2:Partial ADSP-210x data path with RTs code generation.

2.2 Approaches based on tree covering ar:=arvay
In the CBC and RECORD compilers [2, 7], processor models s el

are mapped to iburg [3] specifications, from which code gen- ey DUt
erators are automatically generated. In [1] DFGs are trans- afizaxvay | FRstyaseol D forafl
formed into DFTs by pruning edges of CSEs based on the af:zaxal | domainvariables (j5 (! [ay o]

"RTG criterion”, leading to larger DFTs. Covering is then
performed with help of the code generator generator olive (an Figure 5:Representation of multiple RTs by a FRT
extension of iburg). However, the RTG criterion only holds
for a very specific class of fixed-point DSPs. In contrast #/aking of constraints is performed automatically by the sys-
these approaches our technique enables optimal DFG cwm, e.g. if the domains of a variables are altered. As an
ering (instead of DFTSs), simultaneously taking into accourkample we consider the variablésandY, both associated
routing costs of CSEs and allowing CSEs to be mappedwith the domain{1, .., 10}. If we now impose the constraint
chained operations. X <Y, the domain oK is reduced td 1, .., 9}, because there

is no legal assignment of meeting the constraint, X is

. set to 10. As there is no feasible solutiorYif= 1, the do-
2.3 Approaches based on phase coupling main of Y is reduced to{2, .., 10}. A setting ofX to 5 leads

Several approaches are based on the paradigm of coupff rEt’.d“Cti?Q OTY\I(S dgmla!n tO.{GB“’ 13}' caused ﬁy ';hetre_-
different code generation phases (including code selectiofi§"va!o"n Of < Y. 50 vnag IS 'aselz on search stra eglesf
S0 as to maximize code quality. In [15, 4, 5, 9] optimal cody M€ans o consr;t_rat;n.mgt e variab e? to certain membefrs 0
is generated for DFGs, taking into account register allocati ir domains, which is denoted &eling Given a set o

and instruction scheduling. Code generation phases are ff#iaplesV, a certain labeling strategy defines an order for
scribed in the form of constraints (generally linear equatiofgversing the variables and a strategy for selecting members
m the domains. The constraints guide the labeling of vari-

and inequations). The complete solution space is explorééB] Constraint y ' ina th h
while all constraints are considered simultaneously. Genf'€S: Lonstraint propagation SErves 1or pruning the searc

ally only basic blocks of very limited size and a restrictegPac€ in éach labeling step by reducing the domains of unla-

set of architectures can be handled by this approach. Otfi§ied variables and leads to an early detection of the infeasi-
phase coupling approaches are based on heuristics and gLty of @ pa,[t"";l Iabeltlng.tAr_ly Ia_beltmé; wh(;clh do?ets ”t?t thEEt ‘
pone the final selection of a certain RT to register allocatiof'c 9'VEN SEL Of constraints IS rejected and 'eads 1o backirack-
and/or scheduling [12, 13, 6, 8]. In each step during regi' Ig. ECLiIPSe provides several predefined labeling strategies,
ter allocation or instruction scheduling, resources are stric zt also enables user defined labeling strategies. .
bound. -Or optimization problems, there are predefined generic op-
In contrast to these approaches, the presented techniqudi@ization procedures based on branch and bound strate-
lows to choose between optimal and heuristic (for largies. Given a set of variabfy, the optimization proce-
DFGs) DFG covering. More important, our technique dodlires expect a labeling stratefy) and an objective func-
not generate only a single DFG cover, but retains alternati@n cost(V) defining the cost€. Solving the optimization
DFG covers for later code generation phases. Alternatives Bféblem is performed by calling one of the predefined opti-

kept as long as possible, leaving much freedom for decisigi&ation procedures in the form oftimize! (V), costV)).
during the scheduling phase. Each time a new minimal solutid@ is found, a new con-

straintC < C' is added and search is continued, triggered by
the backtracking mechanism of ECLiPSe. Given an appro-
i i i priate design of the model, the efficiency for finding solu-
3 Constraint |OgIC programming tions basically depends on the labeling strategy, which may

Our approach is implemented in tienstraint logic pro- P€ SPecified by the user.

gramming(CLP [10]) language ECLiPSg14]. The model-

ing technique of our covering approach is basedamstraint .

satisfaction problem§CSPs). CSPs are represented by a ét Generation of DFG covers

of variables and a set of constraints, describing dependencies] o]]
between the variables. Variables are associated with certAimessential pointin our code selection methodology is a new
domains (i.e., sets of values), therefore also catlethain representation of DFG covers and the computation of the set
variables A CSP solutionis a mapping of each variable t6f all alternative covers of a DFG by means of a set of domain
a certain member of its domain, which meets all constrain¥riables and constraints. We will first introduce our model
The goal is to find one valid solution or an optimal solutioff alternative DFG covers, then describe the generation of
according to an objective function. all alternative covers, and conclude this section with runtime
A basic technique used in CLP systemgdistraint propa- results.

gation Constraints locally check the feasibility of the do-

mains, and they also eliminate infeasible members of dg- .

mains. In ECLiPSe, constraints act like agents in the back-1 Model of alternative DFG covers

ground and may be either in a woken or suspended Sta1‘8'represent alternative DFG covers, the resources of all RTs

1ECLiPSe is based on PROLOG and comes along with a set ofdomamgtChmg a node in the DFG are combined téaetorized

together with dedicated constraints, solvers, and search and optimizatien
strategies. 2This may also be any data structifgcontaining domain variables.

D=utu2 machine instruction types FRT which matches the operati@p associates domains and
constraints with the input variables ofatch Since con-
straints are handled internally by the CLP system, they are
not passed as an argumentrb@tch The internal machine
model also provides constraints to ensure the existence of
constraints transfer paths between definitions and uses of values. The
D=xY)=>C=0 | yps | M=o interface predicates* (D,U,C) holds if there exists a path
D= T<uyp from a definitionD to a useJ, and also comprises the depen-
dencies between locatios U and transfer cost§. On the
Figure 6:Representation of FRTs ADSP-210x, there is no transfer path fronmf to any other
: : SR. We denote such SRs dsadlock SRsFurthermore, lo-
RT (FRT). The resulting FRT is represented by a set of dgating a definition to a VSR always requires to also locate

main variables, representing alternative resource sets. In g, to th VSR. Th D i
5 RTs of the"+" operation of the ADSP-210x and a SU%D u;v;sf 2) Ue:sa;;nfe):/\ (SD _ *&5*\(() :}JUC!i&(%e)ssed by
n bl bl .

set of the domain variables of the resulting FRT are sho
(a domain{vy, .., vy} is associated with variable§ by writ- .
ing X :: [va,...,W]). The set of possible RTs is now giverd.2 The FRT covering process
by the possibilities of combining the resources. Restricti%

on combining certain resources are expressed in the for . ; . ;
constraints. 9 P T. In the following h; will denote thei-th node in a DFG.

A complete definition of a FRT is given by the tupl The FRT associated with; is denoted adrtj. D; denotes

UP'She definition offrt; andU; ; denotes theisg of frt;. The
Op,D,[Us,...,Un],F,C, T,CS. Op denotes the operation.) - ! h ' 9 I
'(I'hep dor[nalin varizna]bIeE andus_{), . .,IlDJn represent thepalterna-f”nCt'Oan('z j) returnsk, whereny defines the value used by
tive SR locations for the definition and the usés.T, and Ui j- Eachni is also associated with variabl@€ j, denoting
C denote theextended resource informatigBRI), specify- the transfer costs for eadh j. There is a predicatesi),
ing the used FUF, the cost<C (given as the number of in- Which holdsifnjisa CSE. _
struction cycles required to execute the RT), and a machiner a given DFG, FRT covering is performed by applying
instruction typeT. Machine instruction types specify, howthe constraintmatchto each frt;, which yields a new in-
RTs can be combined to machine instructions, in order $ance of the matching FRT in the internal machine model.
be executed in parallel. A subset of the machine instructibf" eachusg of frt; we apply the transfer constraint
types of the ADSP-210x are shown in fig. 6. Types and FUs* (Dyqi j),Ui,j, TG, j), in order to ensure the existence of a
are used to model potential parallelism between RISis path between each deifion D, j) to its useU; j. With each
the constraint set defining the mutual dependencies betwegie representing a program variable, a set of possible initial
the SRs. It may also specify dependencies between SRs fidtions at the beginning of a basic block is associated with
ERIs. Thus, effects like selecting certain FUs and machigge definitionD;. With each common subexpressioSE we
types (e.g., during scheduling) are also tightly coupled wilssociate extra variabl@ andTC. Covering of common

domain variables ar = <alu-op>
D spmemir)] | P | <maciops
U1 :: [mr,mx]
U2 :: [my,mf]
c “[o] typé
VT o [typl,.. typ8]
;| FU:[mac]

axjmx=d | aymy:=p ‘

arlat = <alu-op>
mrimf := <mac-op>

typs | @

r code selection approach covers each Die@e with a

the covering process.) subexpressions rooted mtis handled by additionally defin-
As an example consider the set of RTig—* (D;,D{, TC). This allows to define extra locations
{c:=a+ba:=c+b}. The FRT is described byfor CSEs. In order to keep the model more simple, we as-

(+,D,[U, Uz, F,C, T, {D € {c,a},U1 € {c,a},U, = b}). sume, that every node has these extra variables, and declare
Note, that the specification of domains is also given in th@nstraintD] = D; A TC/ = 0 for eachnon-CSE node. The
form of constraints. Additionally, we need constraints tapproach of FRT covering can be declaratively stated as:
describe the dependency betwderandU;. This can be

expressed by the constraidt= c <> Uy = a. If we now set v : match(frti) AVU; j € frtj :—* (Dygi)Y, TGj)

D to ¢, the constraint causes the reductiorlafto a. As a ’

further example, we consider the FRT specification for the _ Nty [T

operation™" of the ADSP-210x in fig. 6. The definitioD Vi Acsei) =" (Di, D, TG)
consists of the alternative SRy andmf, and avirtual SR

source runtime nodes edges CSEs

(VSR) *(X,Y). This VSR takes into account, that the multi- X 078 5 v/ T
plication may also be a sub-operation of the chained MAC iir 0.62 17 19 2
operation (e.g.mrmf := mr+ mrjmx+x myimf). If D is set cu 0.96 17 18 4
to *(X,Y), the multiplication is part of the MAC operation. e 10;5825 2133 2174 é‘
Then, the costs are set to zefd 0), since the costs of the 1 241 24 38 8
MAC operation are associated with the node denoting the t2 3.04 29 47 7
"+/-" operation. The constraillt = mf — T # typl takes 3 %-ég g% 11;% 195

ILP conditions into account: ID is located tomf, typl

is eliminated fromT’s domain. During scheduling, only
FRTs with equal types can be assigned to the same machine
instruction.

The information to generate FRTs are held in theernal In table 1 the runtimes of FRT covering for several example
machine modebf the code generator. The covering proced3FGs are shown. These examples comprise the one from
accesses information of the internal machine model via tfig. 3, some DSPStone benchmarks [16] (complextipiy
interface predicatenatci{Op,D,[Uy,...,Uy],F,C,T). The (cm), complex update (cu), iir filter (iir)), a lattice filter (If)

Table 1:Runtimes for FRT covering

and some internal benchmarks (t1-t4). All runtimes in thiand provide experimental results (w.r.t. a sequential execu-
paper are given in UltraSparc CPU seconds. The runtime daten model) showing how the proposed technique eliminates
indicate that FRT covering is efficient. The table also showiise drawbacks of tree-based covering mentioned in section
some characteristics of the benchmarks: the number of DRGCSL1: Traditional DFT-based covering, i.e. DFGs are split
nodes, edges and CSEs. One can show that the worst ¢ase DFTs at CSE nodes. EadbF T, is covered optimally
complexity of FRT covering i©O(N « D?), whereN is the butseparately. A constrainsér;) = D € Memensures that
number of DFG nodes, and is the maximum number of CSEs are located to memory. Covering is performed by ap-
either FUs, SRs, or instruction types. An important featupdying minimize! (V(DFT),Cost(DFT)). CS2: DFG cover-

of our approach is, that a generally exponential number 88, While taking into account the routing costs of CSEs to
alternative covers is stored in a representation of linear sthgir uses. As an example, consider fig. 7. The introduction

(w.rt. to the number of DFG nodds), by means of FRT of the extra result locatioD’ of CSEs (cf. section 4.2) leads
covers. to further improvements. In fig. 7 the transfer paths from

node 0 to nodes 1 and 2 both require a move fromasko
my. Both routes are combined in one route frBno D', thus

i i i reducing the transfer cost from 2 to 1. Covering is specified
S Appllcatlons of FRT covering by imposing a constraints€r;) = D; ¢ V SRand applying

This section describes several applications of the prese mipimizel (V(DFG)) Cos(DFG)). CS3: DFG covering,

. : ; . le additionally allowing CSEs to be mapped to chained
gtlch;rn Cf?)\r/etr)lggst.ecginr!scﬁsvénc%%i? dzslggtt'i%‘af‘gg dzogglgcet%%eranons (fig. 3c). No extra constraints are needed. Table
for DFGs with respect to a sequential instruction execution
model, i.e., neglecting ILP. We show the improvements in
code quality achieved as compared to a tree-based code se-
lection approach. Since optimal DFG covering may be too
computation-time intensive for large DFGs, we also present
a heuristic variant, which achieves close-to-optimum results
within reasonable computation times. After that, we briefly
describe the integration of the code selection phase into a
phase-coupled code generation technique, where alternative
DFG covers are exploited to maximize ILP, resulting in very Figure 7:Effect of CSE routing
compact machine code. _ _

In the following we make use of the following notations: fog Shows the resulting costs (number of RTs) and runtimes of
ni, the setCV = {Ci;, TG} U{T; j|Ui j € frt;} denotes the the DFG code selection methods CS1 to CS3. The improve-
cost variablesCost = ¥ .y € denotes the cover costs, andnents fromstrategy CS1 to CS3 range within 18%0% (35

_ D D T N ; % on average). Runtimes shown"4s*" refer to exam-
ngdgﬁﬂ:i?tlib[rzls} :n{duii!s'gélj %vgrt\;\}»i”lsd?neofee ttr?; ?5010:333 nosf es where the optimization did not terminate within 24 hours

DFT; with r;. us not proven to be optimal).

5.1 Optimal DFG covering 5.2 Heuristic DFG covering

Intuitively, optimal DFG covering can be specified as find-

ing a labeling of the variables itJy, (CV USR), w.rt. Since optimal DFG covering is an exponential probl'em, op-
minimizing the costsCos{DFG) = ¥, Cost. It can be timal code selection for DFGs may be too computation-time

o o . intensive for large problems. We have therefore designed an

flhOD""é’g that 'tc':f/ sufflglent to Iabelh_thhe dSEt t(')f ?l’a”ableﬁdditional code selection method, which splits a DFG into a
(DFG) = (Uy CM) U {Djcsd)}, which drastically re- oo’ of smaller manageable DFGs. This methd84) leads

duces the search space. Optimal covering can now be Sggtmuych better runtimes than optimal DFG covering, while
ified, making use of ECLiPSe’s optimization proceduregoming close to the optimal results. In CS4, code selection
minimizgl (V(DFG)), Cos{DFG)). The labeling strategy js based on the optimization strategies described in the last
I(V) selects the most constrained variable in each labeligghsection. The strategy for partitioning the DFG is splitting
step. We compare three code selection methods for DFag DFEG at its CSEs (like in CS1), leading to a set of DFTSs.

source CSI da CS2 te CS3 s We assume a certain orderifigF Ty, ..., DFTy] of the DFTs.
exm 1160 %.143 136 106298 . 35 l1.9373 Now, for eachDFT;, the variableD] and TG of r; are ex-
o 16 03 1» 480 12 £ 30 cluded from labeling, and variablé:ﬁ andTC} of all CSEs
cm 14 017 10 6.90 10 4.32 nj being used iMDFT; are included in labeling. An example
If 39 07 24 23537 24 687.40 ; s ;

is shown in fig. 8, where the labeling b, at the root of tree
t1 44 069 29 27107.61 28 2455529 ; y . . 1 ;
2 42 0.9 28 * kk 26 53296.18 DFT; is pOStpOHEd untiDFT, is labeled (note that addlng
t3 47 055 31 1929.09 28 1490.33 ri to DFT; yields a DFG). The results of the method CS4
t4 148 265 96 *rr 88 L are shown in table 3, compared to the costs of optimal DFG

)] covering (CS3) and to pure DFT covering (CS1). The costs
Table 2:Results of different code selection methods achieved by CS4 are much better than the costs of CS1 and
come very close to the optimal cost values.

mx := M[a] my :=M[b]

6 Conclusions

The irregular architecture of fixed-point DSPs often prevents
compilation of efficient machine code due to many con-
straints imposed by special-purpose registers and ILP. In or-
der to overcome this problem, in this paper we have pro-
posed a novel constraint-driven approach to code selection,
which takes irregularities in a DSP architecture iatcount.

We have shown that the proposed DFG covering technique
produces better code (for a sequential execution model) than
the traditional tree-based method, due to a more efficient
code selection for CSEs. Furthermore, our approach enables
phase coupling by exploiting alternative DFG covers dur-

mr :=mr + mx*my

mr = mr + mx*my

Figure 8:Covering method CS4

2‘;“mr°e Clsol CS53 C§4 8%0 ing the scheduling phase. Experimental results demonstrate
iir 16 13 13 0.58 that by exploiting these two features the quality of compiler-
cu 16 12 12 0.95 generated code can be significantly improved as compared
il 315‘ 214? 2150 f;‘f to existing techniques and may come close to the quality of
t1 44 28 o8 549 hand-written assembly code.

2 42 26 27 2.20

13 47 28 30 3.51

t4 148 88 92 21651 References

[1] G. Araujo, S. Malik, and M. Lee. Using Register-Transfer Paths in
Code Generation for Heterogeneous Memory-Register Architectures.
In 33rd Design Automation Conference (DACY96.

[2] A. Fauth, G. Hommel, A. Knoll, and C. Mueller. Global code selec-
tion for directed acyclic graphs. In Peter A. Fritzson, edi@mpiler
Constructionvolume 786 olLNCS pages 128-141. Springer—\Verlag,
Edinburgh, U.K., April 1994. 5'th International Conference, CC'94.

C. Fraser, R. Henry, and T. A. Proebsting. Engineering a Simple, Effi-
cient Code-Generator Generat®fCM Letters on Programming Lan-
guages and Systeniq3):213-226, September 1992.

C.H. Gebotys. An Efficient Model for DSP Code Genera-
tion:Performance, Code Size, Estimated Energy.Qth International

Table 3:Results of CS4

5.3 Phase-coupled code generation

As mentioned in section 2 (fig. 4), selection of only a single
optimal DFT or DFG cover from multiple alternative optimal [3]
covers may affect exploitation of ILP. A better exploitation of
ILP is possible, if the final binding of operations and values to
FUs and SRs is postponed until instruction scheduling. This]

phase coupling can be realized in our approach, since the FRT
covering technique introduced in section 4.2 does not commit
to a single DFG cover but implicitly retains a set of alterna]
tive optimal covers. We have implemented an extended li
scheduling algorithm that integrates code selection, regist
allocation and instruction scheduling. The scheduling algo-
rithm takes a FRT cover and transforms it into a sequenc[g]
of machine instructions, while adding new constraints (e.g

on ILP) and thus reducing the resource sets. The amountégil

alternative resources represented by a FRT cover provide
high flexibility for making good decisions ach step during
scheduling. We have generated parallel code for the examptg

source. GNU hw pc &

exm - 5 5 03

iir 33 12 12 1.8 [10]
cu 23 9 9 19

cm 16 6 6 04

[11]

Table 4:Executable code for DSPStone benchmarks (17

from figure 8 and some DSPStone benchmarks [16] and @%
ADSP-210x based on method CS4. Results are given in ta
4. Each entry gives a number of generated parallel machtﬁ
instructions (including additional code for address comput
tions). Column 2 shows results obtained with a GNU-based
ADSP-210x C-Compiler. Column 3 (hw) gives the IengthS]
of the hand-written reference code for th&PStone bench-

marks, while column 4 (pc) provides the results achieved
by the phase-coupled code generation technique. Colum

Symposium on System Synthesis (ISERO)7.

S. Hanono, G. Hadjiyiannis, and S. Devadas. Aviv: A Retargetable
Code Generator Using ISDL. Proc. 34th DAC'971997.

D. Lanner, M. Cornero, G. Goossens, and H. De Man. Data routing:
a paradigm for efficient data—path synthesis and code generation. In
Proc. 7th IEEE/ACM Int. Symp. on gti—Level Synthesiday 1994.

R. Leupers.Retargetable Code Generation for Digital Signal Proces-
sors Kluwer Academic Publishers, 1997.

R. Leupers and P. Marwedel. Retargetable code generation based on
structural processor descriptions.Design Automation for Embedded
Systems, vol. 3, no, 1998.

S. Liao, S. Devadas, K. Kreuzer, and S. Tjiang. Instruction Selec-
tion Using Binate Covering for Code Size Optimizatidnternational
Conference on CAD (ICCAD}995.

K. Marriott and P.J. StuckeyProgramming with Constraints: An In-
troduction The MIT Press, 1998.

P. Marwedeland G. Goossens, edit@ede Generation for Embedded
ProcessorsKluwer Academic Publishers, 1995.

P. Paulin, C. Liem, T. May, and S. Sutarwala. Flexware: A Flexi-
ble Firmware Developement Envirenment for Embedded Systems. In
Marwedel and Goossens [11], chapter 4, pages 65—84.

K. Rimey and P.N. Hilfinger. Lazy Data Routing and Greedy Schedul-
ing. In MICRO, volume 21, pages 111-115.1988.

M. Wallace, S. Novello, and J. Schimpf. EES: A Plat-
form for Constraint Logic Programming, 1997. Publications at
http://www.icparc.ic.ac.uk/.

T. Wilson, G. Grewal, S. Henshall, and D. Banerji. An ILP-Based Ap-
proach to Code Generation. In Marwedel and Goossens[11], chapter 6,
pages 103-118.

é? V. Zivojnovic, J.M. Velarde, C. Schlaeger, and H. MeySPBStone - A

(tpc) shows the runtimes for phase coupled scheduling.

Or DSP oriented Benchmarking Methodology.|@SPAT 1994.

the tested benchmarks our technique was able to produce the

same code quality as in the case of the hand-written code.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

