
Constraint Driven Code Selection for Fixed-Point DSPs

Steven Bashford, Rainer Leupers�

Dept. of Computer Science 12
University of Dortmund, Germany

email:bashford@ls12.cs.uni-dortmund.de

Abstract– Fixed-point DSPs are a class of embedded pro-
cessors with highly irregular architectures. This irregu-
larity makes it difficult to generate high-quality machine
code from programming languages such as C. In this pa-
per we present a novel constraint driven approach to code
selection for irregular processor architectures, which pro-
vides a twofold improvement of earlier work. First, it
handles complete data flow graphs instead of trees and
thereby generates better code in presence of common
subexpressions. Second, the presented technique is not
restricted to computation of a single solution, but it gen-
erates alternative solutions. This feature enables the tight
coupling of different code generation phases, resulting in
better exploitation of instruction-level parallelism. Ex-
perimental results indicate that our technique is capable
of generating machine code that competes well with hand-
written assembly code.

1 Introduction

Today, many embedded systems employ programmable pro-
cessors as their core components. The machine code run-
ning on embedded processors frequently must meet tight
speed and size constraints. This is due to the presence of
real-time requirements and limited silicon area for program
memories. These requirements frequently prevent the use of
high-level language compilers for embedded software devel-
opment, since compilers usually cause an overhead in code
quality as compared to hand-written assembly code.
In this paper, we consider fixed-point DSPs as a specific class
of embedded processors. In particular for this type of proces-
sors compilers tend to produce an intolerably large overhead
in code size and performance [16]. As a consequence, the
largest part of fixed-point DSP software is still written manu-
ally in assembly languages. This implies a bottleneck in sys-
tem development and also reduces some of the advantages of

�The authors acknowledge the support by the DFG and HP EESof

embedded software (as compared to ASIC hardware), such
as reusability and portability. Our overall goal is to elimi-
nate this bottleneck by providing better code generation tech-
niques for high-level language compilers, which take the pe-
culiarities of fixed-point DSPs intoaccount.
The poor quality of compiler-generated code for fixed-point
DSPs is primarily caused by the irregular architecture of such
processors, which in turn is a consequence of the demand for
very efficient processors in the DSP area. By ”irregularity” of
the processor architecture we denote the following features:
Special-purpose registersmay not be orthogonallyaccessible
by all functional units, but may be connected to the inputs and
outputs of specific functional units. There may bechained
operations, where the most important example in DSPs is the
MAC (multiply-accumulate) instruction. Furthermore, fixed-
point DSPs typically showrestricted instruction-level paral-
lelism, i.e., they do permit the parallel execution of several
instructions per instruction cycle, but unlike in VLIW ma-
chines, the permissible combinations of parallel instructions
are quite restricted.
In this contribution we focus on the task ofcode selection
for fixed-point DSPs or, more generally, for processor ar-
chitectures with irregular data paths. Code selection is con-
cerned with mapping an intermediate representation (IR) of
the source program to machine instructions of the target pro-
cessor. This task can be viewed as ”covering” the IR by ma-
chine instruction patterns. Most current code selection tech-
niques are based ontree coveringand operate on data flow
tree (DFT) based IRs of basic blocks. However, tree cover-
ing in general produces suboptimal covers for basic blocks.
Since basic blocks generally appear in the form of data flow
graphs (DFGs), DFGs have to be split into DFTs (fig. 1). This
is performed by cutting DFGs at nodes representing multiple
uses of values (common subexpressions, CSEs).

**

+

+

+

+

a b

t

a b

c

c t

t

Memory

Figure 1:Splitting a DFG into DFTs

As we will discuss later, the tree-based approach has draw-
backs particularly for irregular architectures and leads to infe-
rior code quality. In this contribution we therefore propose a
novel code selection technique, which generalizes code selec-
tion for irregular processor architectures from DFTs to DFGs,

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

thereby producing more efficient machine code. This code
selection technique is capable of covering complete DFGs by
machine instructions and is based on the paradigm of con-
straint logic programming (CLP).
The paper is structured as follows: The next section pro-
vides a discussion of the limitations of DFT covering based
code selection for fixed-point DSPs and also mentions re-
lated work. Section 3 shortly sketches concepts of constraint
logic programming. In section 4 a model for representing
alternative DFG covers and the DFG covering approach it-
self are presented. Section 5 describes several applications of
the DFG covering technique in a compiler and provides ex-
perimental results indicating the code quality improvements
achieved.

2 Motivation and related work

Throughout this paper we will represent processor opera-
tions by register transfers (RTs), that reflect the operations
performed and the storage resource (SR) locations for the
operands and the result. In fig. 2 a partial data path of an Ana-
log Devices ADSP-210x together with a subset of its RTs are
shown. For instance, in RTar := ax+ay the first and second
operand must reside in SRsaxanday, respectively. The result
is stored in SRar. In the following, we callar thedefinition
of the RT andax;ay its uses. We sayusei , when referring to
operand numberi.

2.1 Drawbacks of DFT covering

Most of today’s code selection approaches are based on tree
covering or tree parsing. Covering consists of mapping DFT
nodes to available RTs. DFT edges may be mapped to RTs
denoting pure transfer (move) operations, required for rout-
ing data between the functional units (FUs). An example of a
cover is shown in fig. 3 a. Tree covering is typically based on
tree pattern matchingcombined withdynamic programming.
Tree pattern matchers are used to determine the set of alterna-
tive covers for a DFT. Dynamic programming serves to select
the optimal cover from the alternatives. Such code generators
can be generated automatically by tools like iburg [3], which
require a formal description of the target instruction set given
as a tree grammar.
For applying tree covering, DFGs have to be split into DFTs
(fig. 1), where uses of CSEs are represented as variable nodes
with the same identifier. Tree covering requires that these
variable nodes are mapped to a certain fixed SR (typically the
memory) in advance.

*

ax ay af

+/-

ar
+/-

mx my mf

mr

d p ar := ar + ay
ar := ar + af
ar := ax + ay
ar := ax + af

af := ar + ay
af := ar + ar
af := ax + ay
af := ax + af

mr := mr * my
mr := mr * mf

mr := mr +/- mr*my

Figure 2:Partial ADSP-210x data path with RTs

+

+

*

*

+

+

+

*

+

c)

mr := mr + mx*my

a b

b

c t

c

a

t

mr := M[a] my := M[b]

mr := mr*my
M[t] := mr

ar := M[c] ay := M[t]

ay := M[t]

ar := ar+ay

ar := ar+ay

mr := mr + mx*my

mr := M[c]

my := M[b]mx := M[a]

c

a

t

b

a)

Costs=9

costs=6

costs=5

mr := M[a] my := M[b]

mr := mr*my

ar := mr+af

af := mr+ay

b)

ay := M[c]

Figure 3:DFT vs. DFT covering

As an example consider fig. 3 a), where variables are mapped
to memory. Thus, the CSE labeled witht is moved from SR
mr to memory, and each use loadst back into SRay. If code
selection was done for the complete DFG, then the overall
costs of the cover (i.e. the number of instructions required to
implement the DFG) could be reduced from 9 to 6 (fig. 3 b).
Note, that not only the location of the definition and the uses
of the CSE change, but also the complete covering of the sec-
ond DFT (exploiting commutativity of operators). Fig. 3 c)
shows the additional optimization effect achieved by allow-
ing CSEs to occur as sub-operations in chained operations,
which again decreases the costs by one instruction.

A further drawback of approaches based on tree covering is
that instruction-level parallelism(ILP) cannot be taken into
account during covering. Fig. 4 shows two covers with the
same costs, but only the second cover can be mapped to par-
allel code for the ADSP-210x: Parallel transfer operations
are only feasible if one operand is moved from memoryd to
mx, and the second one fromp to my. Therefore, it is obvi-
ously favorable to keep alternative covers of the same costs
for the scheduling phase, during which the most appropriate
alternative may be selected.

* *

a b a b

Cost=3

mr := mr*my mr := mx*my

my := d[b] mx := d[a] my := p[b]mr := d[a]

mx := d[a] my := p[b]mr := d[a]

mr := mr*my
mr := mx*my

Cycles=3 Cycles=2

my := d[b]

Figure 4:Impact of covers on ILP

In the following, we discuss related work, which is based
on either tree covering or a phase-coupled approach to DFG
code generation.

2.2 Approaches based on tree covering

In the CBC and RECORD compilers [2, 7], processor models
are mapped to iburg [3] specifications, from which code gen-
erators are automatically generated. In [1] DFGs are trans-
formed into DFTs by pruning edges of CSEs based on the
”RTG criterion”, leading to larger DFTs. Covering is then
performed with help of the code generator generator olive (an
extension of iburg). However, the RTG criterion only holds
for a very specific class of fixed-point DSPs. In contrast to
these approaches our technique enables optimal DFG cov-
ering (instead of DFTs), simultaneously taking into account
routing costs of CSEs and allowing CSEs to be mapped to
chained operations.

2.3 Approaches based on phase coupling
Several approaches are based on the paradigm of coupling
different code generation phases (including code selection),
so as to maximize code quality. In [15, 4, 5, 9] optimal code
is generated for DFGs, taking into account register allocation
and instruction scheduling. Code generation phases are de-
scribed in the form of constraints (generally linear equations
and inequations). The complete solution space is explored
while all constraints are considered simultaneously. Gener-
ally only basic blocks of very limited size and a restricted
set of architectures can be handled by this approach. Other
phase coupling approaches are based on heuristics and post-
pone the final selection of a certain RT to register allocation,
and/or scheduling [12, 13, 6, 8]. In each step during regis-
ter allocation or instruction scheduling, resources are strictly
bound.
In contrast to these approaches, the presented technique al-
lows to choose between optimal and heuristic (for large
DFGs) DFG covering. More important, our technique does
not generate only a single DFG cover, but retains alternative
DFG covers for later code generation phases. Alternatives are
kept as long as possible, leaving much freedom for decisions
during the scheduling phase.

3 Constraint logic programming

Our approach is implemented in theconstraint logic pro-
gramming(CLP [10]) language ECLiPSe1 [14]. The model-
ing technique of our covering approach is based onconstraint
satisfaction problems(CSPs). CSPs are represented by a set
of variables and a set of constraints, describing dependencies
between the variables. Variables are associated with certain
domains (i.e., sets of values), therefore also calleddomain
variables. A CSP solution is a mapping of each variable to
a certain member of its domain, which meets all constraints.
The goal is to find one valid solution or an optimal solution
according to an objective function.
A basic technique used in CLP systems isconstraint propa-
gation. Constraints locally check the feasibility of the do-
mains, and they also eliminate infeasible members of do-
mains. In ECLiPSe, constraints act like agents in the back-
ground and may be either in a woken or suspended state.

1ECLiPSe is based on PROLOG and comes along with a set of domains
together with dedicated constraints, solvers, and search and optimization
strategies.

ar := ar+ay
ar := ar+af
ar := ax+ay
ar := ax+af
af := ar+ay
af := ar+af
af := ax+ay
af := ax+af

ar|af := ar|ax + ay|afcombine to
FRT

U1 :: [ar,ax]
U2 :: [ay,af]

D :: [ar,af]representation of
FRTs by a set of
domain variables

D := U1+U2

Figure 5:Representation of multiple RTs by a FRT

Waking of constraints is performed automatically by the sys-
tem, e.g. if the domains of a variables are altered. As an
example we consider the variablesX andY, both associated
with the domainf1; ::;10g. If we now impose the constraint
X <Y, the domain ofX is reduced tof1; ::;9g, because there
is no legal assignment ofY meeting the constraint, ifX is
set to 10. As there is no feasible solution ifY = 1, the do-
main ofY is reduced tof2; ::;10g. A setting ofX to 5 leads
to a reduction ofY0s domain tof6; ::;10g, caused by the re-
activation ofX < Y. Solving is based on search strategies
by means of constraining the variables to certain members of
their domains, which is denoted aslabeling. Given a set of
variablesV, a certain labeling strategy defines an order for
traversing the variables and a strategy for selecting members
from the domains. The constraints guide the labeling of vari-
ables. Constraint propagation serves for pruning the search
space in each labeling step by reducing the domains of unla-
beled variables and leads to an early detection of the infeasi-
bility of a partial labeling. Any labeling which does not meet
the given set of constraints is rejected and leads to backtrack-
ing. ECLiPSe provides several predefined labeling strategies,
but also enables user defined labeling strategies.
For optimization problems, there are predefined generic op-
timization procedures based on branch and bound strate-
gies. Given a set of variables2 V, the optimization proce-
dures expect a labeling strategyl(V) and an objective func-
tion cost(V) defining the costsC. Solving the optimization
problem is performed by calling one of the predefined opti-
mization procedures in the form ofoptimize(l(V);cost(V)).
Each time a new minimal solutionC0 is found, a new con-
straintC < C0 is added and search is continued, triggered by
the backtracking mechanism of ECLiPSe. Given an appro-
priate design of the model, the efficiency for finding solu-
tions basically depends on the labeling strategy, which may
be specified by the user.

4 Generation of DFG covers

An essential point in our code selection methodology is a new
representation of DFG covers and the computation of the set
of all alternative covers of a DFG by means of a set of domain
variables and constraints. We will first introduce our model
of alternative DFG covers, then describe the generation of
all alternative covers, and conclude this section with runtime
results.

4.1 Model of alternative DFG covers

To represent alternative DFG covers, the resources of all RTs
matching a node in the DFG are combined to afactorized

2This may also be any data structureV , containing domain variables.

+/-
* *(X,Y)

mr|mf := <mac-op>
ar|af := <alu-op>

mr|mf := <mac-op>
ar|af := <alu-op>

mr|mf := <mac-op>
ar|af := <alu-op>

mr := <mac-op>

<regs> := p
p := <regs>

ar := <alu-op>

<regs> := d
d := <regs>

ax|mx:=d ay|my:=ptyp1

typ8

typ5

typ4

machine instruction types

domain variables

constraints

D = mf => T <> typ1
D = *(X,Y) => C = 0

D :: [mr,mf,*(X,Y)]
U1 :: [mr,mx]
U2 :: [my,mf]
C :: [0,1]

FU :: [mac]
T :: [typ1,..,typ8]

mx my mf

d p

mr

D := U1 * U2

Figure 6:Representation of FRTs

RT (FRT). The resulting FRT is represented by a set of do-
main variables, representing alternative resource sets. In fig.
5 RTs of the"+" operation of the ADSP-210x and a sub-
set of the domain variables of the resulting FRT are shown
(a domainfv1; ::;vng is associated with variablesX by writ-
ing X :: [v1; :::;vn]). The set of possible RTs is now given
by the possibilities of combining the resources. Restrictions
on combining certain resources are expressed in the form of
constraints.
A complete definition of a FRT is given by the tuple
(Op;D; [U1; : : :;Un];F;C;T;CS). Op denotes the operation.
The domain variablesD andU1; : : :;Un represent the alterna-
tive SR locations for the definition and the uses.F;T, and
C denote theextended resource information(ERI), specify-
ing the used FUF , the costsC (given as the number of in-
struction cycles required to execute the RT), and a machine
instruction typeT. Machine instruction types specify, how
RTs can be combined to machine instructions, in order to
be executed in parallel. A subset of the machine instruction
types of the ADSP-210x are shown in fig. 6. Types and FUs
are used to model potential parallelism between RTs.CS is
the constraint set defining the mutual dependencies between
the SRs. It may also specify dependencies between SRs and
ERIs. Thus, effects like selecting certain FUs and machine
types (e.g., during scheduling) are also tightly coupled with
the covering process.
As an example consider the set of RTs
fc := a+b;a := c+bg. The FRT is described by
(+;D; [U1;U2];F;C;T;fD 2 fc;ag;U1 2 fc;ag;U2 = bg).
Note, that the specification of domains is also given in the
form of constraints. Additionally, we need constraints to
describe the dependency betweenD and U1. This can be
expressed by the constraintD = c$U1 = a. If we now set
D to c, the constraint causes the reduction ofU1 to a. As a
further example, we consider the FRT specification for the
operation"*" of the ADSP-210x in fig. 6. The definitionD
consists of the alternative SRsmr andm f, and avirtual SR
(VSR) �(X;Y). This VSR takes into account, that the multi-
plication may also be a sub-operation of the chained MAC
operation (e.g.,mrjm f := mr+mrjmx�myjm f). If D is set
to �(X;Y), the multiplication is part of the MAC operation.
Then, the costs are set to zero (C = 0), since the costs of the
MAC operation are associated with the node denoting the
"+/-" operation. The constraintD = m f ! T 6= typ1 takes
ILP conditions into account: IfD is located tom f, typ1
is eliminated fromT ’s domain. During scheduling, only
FRTs with equal types can be assigned to the same machine
instruction.
The information to generate FRTs are held in theinternal
machine modelof the code generator. The covering process
accesses information of the internal machine model via the
interface predicatematch(Op;D; [U1; : : :;Un];F;C;T). The

FRT which matches the operationOpassociates domains and
constraints with the input variables ofmatch. Since con-
straints are handled internally by the CLP system, they are
not passed as an argument tomatch. The internal machine
model also provides constraints to ensure the existence of
transfer paths between definitions and uses of values. The
interface predicate!� (D;U;C) holds if there exists a path
from a definitionD to a useU , and also comprises the depen-
dencies between locationsD;U and transfer costsC. On the
ADSP-210x, there is no transfer path fromm f to any other
SR. We denote such SRs asdeadlock SRs. Furthermore, lo-
cating a definition to a VSR always requires to also locate
all uses to the same VSR. Thus,!

� (D;U;C) is expressed by
(D = m f $U = m f)^ (D = �(X;Y)$U = �(X;Y)).

4.2 The FRT covering process
Our code selection approach covers each DFGnode with a
FRT. In the following,ni will denote thei-th node in a DFG.
The FRT associated withni is denoted asf rti. Di denotes
the definition of f rti andUi; j denotes theusej of f rti. The
functionvd(i; j) returnsk, wherenk defines the value used by
Ui; j. Eachni is also associated with variablesTCi; j, denoting
the transfer costs for eachUi; j. There is a predicatecse(i),
which holds ifni is a CSE.
For a given DFG, FRT covering is performed by applying
the constraintmatch to each f rti, which yields a new in-
stance of the matching FRT in the internal machine model.
For each usej of f rti we apply the transfer constraint
!

� (Dvd(i; j);Ui; j;TCi; j), in order to ensure the existence of a
path between each definition Dvd(i; j) to its useUi; j. With each
node representing a program variable, a set of possible initial
locations at the beginning of a basic block is associated with
the definitionDi . With each common subexpressionCSEi we
associate extra variablesD0

i andTC0

i . Covering of common
subexpressions rooted atni is handled by additionally defin-
ing !� (Di ;D0

i;TC0

i). This allows to define extra locations
for CSEs. In order to keep the model more simple, we as-
sume, that every node has these extra variables, and declare
constraintsD0

i = Di ^TC0

i = 0 for eachnon-CSE node. The
approach of FRT covering can be declaratively stated as:

8ni : match(f rti)^8Ui; j 2 f rti :!� (D0

vd(i; j);Ui; j;TCi; j)

8ni ^cse(i) :!� (Di ;D
0

i;TC0

i)

source runtime nodes edges CSEs
exm 0.28 6 7 1
iir 0.62 17 19 2
cu 0.96 17 18 4
cm 0.85 13 14 4
lf 1.52 23 27 8
t1 2.41 24 38 8
t2 3.04 29 47 7
t3 2.15 21 33 9
t4 7.99 82 153 15

Table 1:Runtimes for FRT covering

In table 1 the runtimes of FRT covering for several example
DFGs are shown. These examples comprise the one from
fig. 3, some DSPStone benchmarks [16] (complex multiply
(cm), complex update (cu), iir filter (iir)), a lattice filter (lf)

and some internal benchmarks (t1-t4). All runtimes in this
paper are given in UltraSparc CPU seconds. The runtime data
indicate that FRT covering is efficient. The table also shows
some characteristics of the benchmarks: the number of DFG
nodes, edges and CSEs. One can show that the worst case
complexity of FRT covering isO(N �D2), whereN is the
number of DFG nodes, andD is the maximum number of
either FUs, SRs, or instruction types. An important feature
of our approach is, that a generally exponential number of
alternative covers is stored in a representation of linear size
(w.r.t. to the number of DFG nodesN), by means of FRT
covers.

5 Applications of FRT covering

This section describes several applications of the presented
FRT covering technique in code selection and code gener-
ation for DFGs. First, we consider optimal code selection
for DFGs with respect to a sequential instruction execution
model, i.e., neglecting ILP. We show the improvements in
code quality achieved as compared to a tree-based code se-
lection approach. Since optimal DFG covering may be too
computation-time intensive for large DFGs, we also present
a heuristic variant, which achieves close-to-optimum results
within reasonable computation times. After that, we briefly
describe the integration of the code selection phase into a
phase-coupled code generation technique, where alternative
DFG covers are exploited to maximize ILP, resulting in very
compact machine code.
In the following we make use of the following notations: for
ni, the setCVi = fCi;TC0

ig [fTi; jjUi; j 2 f rtig denotes the
cost variables;Costi = ∑c2CVi

c denotes the cover costs, and
SRi = fDi ;D0

ig[fUi; jjUi; j 2 f rtig is the set of SR locations
of definitions and uses. We will denote the root node of a
DFTi with ri .

5.1 Optimal DFG covering

Intuitively, optimal DFG covering can be specified as find-
ing a labeling of the variables in

S
ni
(CVi [SRi), w.r.t.

minimizing the costsCost(DFG) = ∑ni
Costi. It can be

shown, that it is sufficient to label the set of variables
V(DFG) = (

S
ni

CVi)[fD0

jjcse(j)g, which drastically re-
duces the search space. Optimal covering can now be spec-
ified, making use of ECLiPSe’s optimization procedures:
minimize(l(V(DFG));Cost(DFG)). The labeling strategy
l(V) selects the most constrained variable in each labeling
step. We compare three code selection methods for DFGs

source CS1 tCS1 CS2 tCS2 CS3 tCS3
exm 10 0.13 6 0.28 5 1.33
iir 16 0.4 13 1.69 13 1.97
cu 16 0.3 12 4.80 12 5.30
cm 14 0.17 10 6.90 10 4.32
lf 39 0.7 24 235.37 24 687.40
t1 44 0.69 29 27107.61 28 24555.29
t2 42 0.9 28 *.** 26 53296.18
t3 47 0.55 31 1929.09 28 1490.33
t4 148 2.65 96 *.** 88 *.**

Table 2:Results of different code selection methods

and provide experimental results (w.r.t. a sequential execu-
tion model) showing how the proposed technique eliminates
the drawbacks of tree-based covering mentioned in section
2. CS1: Traditional DFT-based covering, i.e. DFGs are split
into DFTs at CSE nodes. EachDFTi is covered optimally
but separately. A constraintcse(ri))D0

i 2Memensures that
CSEs are located to memory. Covering is performed by ap-
plying minimize(l(V(DFT);Cost(DFT)). CS2: DFG cover-
ing, while taking into account the routing costs of CSEs to
their uses. As an example, consider fig. 7. The introduction
of the extra result locationD0 of CSEs (cf. section 4.2) leads
to further improvements. In fig. 7 the transfer paths from
node 0 to nodes 1 and 2 both require a move from SRar to
my. Both routes are combined in one route fromD to D0, thus
reducing the transfer cost from 2 to 1. Covering is specified
by imposing a constraintcse(ri)) D0

i =2VSRand applying
minimize(l(V(DFG));Cost(DFG)). CS3: DFG covering,
while additionally allowing CSEs to be mapped to chained
operations (fig. 3c). No extra constraints are needed. Table

C1=0 C2=0

*

**

0:

1: 2:

D = ar

C=1

D’= my

U1,2=my U2,1=my

moveD = ar

C1=1 C2 = 1
* *

1: 2:

0:

U1,2=my U2,1=my

Figure 7:Effect of CSE routing

2 shows the resulting costs (number of RTs) and runtimes of
the DFG code selection methods CS1 to CS3. The improve-
ments from strategy CS1 to CS3 range within 18%�50% (35
% on average). Runtimes shown as"*.**" refer to exam-
ples where the optimization did not terminate within 24 hours
(thus not proven to be optimal).

5.2 Heuristic DFG covering

Since optimal DFG covering is an exponential problem, op-
timal code selection for DFGs may be too computation-time
intensive for large problems. We have therefore designed an
additional code selection method, which splits a DFG into a
set of smaller manageable DFGs. This method (CS4) leads
to much better runtimes than optimal DFG covering, while
coming close to the optimal results. In CS4, code selection
is based on the optimization strategies described in the last
subsection. The strategy for partitioning the DFG is splitting
the DFG at its CSEs (like in CS1), leading to a set of DFTs.
We assume a certain ordering[DFT1; :::;DFTn] of the DFTs.
Now, for eachDFTi , the variablesD0

i andTC0

i of ri are ex-
cluded from labeling, and variablesD0

j andTC0

j of all CSEs
nj being used inDFTi are included in labeling. An example
is shown in fig. 8, where the labeling ofD0

1 at the root of tree
DFT1 is postponed untilDFT2 is labeled (note that adding
r1 to DFT2 yields a DFG). The results of the method CS4
are shown in table 3, compared to the costs of optimal DFG
covering (CS3) and to pure DFT covering (CS1). The costs
achieved by CS4 are much better than the costs of CS1 and
come very close to the optimal cost values.

+

+

*

+

+

*c

a b

mx := M[a] my := M[b]

mr|*(X,Y) := mx * my

DFT1
c

a b

mx := M[a] my := M[b]

mr := M[c]

mr := mr + mx*my

mr := mr + mx*my

*(X,Y) := mx * my

DFT2

Figure 8:Covering method CS4

source CS1 CS3 CS4 tCS4
exm 10 5 5 0.30
iir 16 13 13 0.58
cu 16 12 12 0.95
cm 14 10 10 0.46
lf 39 24 25 4.94
t1 44 28 28 2.49
t2 42 26 27 2.20
t3 47 28 30 3.51
t4 148 88 92 216.51

Table 3:Results of CS4

5.3 Phase-coupled code generation

As mentioned in section 2 (fig. 4), selection of only a single
optimal DFT or DFG cover from multiple alternative optimal
covers may affect exploitation of ILP. A better exploitation of
ILP is possible, if the final binding of operations and values to
FUs and SRs is postponed until instruction scheduling. This
phase coupling can be realized in our approach, since the FRT
covering technique introduced in section 4.2 does not commit
to a single DFG cover but implicitly retains a set of alterna-
tive optimal covers. We have implemented an extended list
scheduling algorithm that integrates code selection, register
allocation and instruction scheduling. The scheduling algo-
rithm takes a FRT cover and transforms it into a sequence
of machine instructions, while adding new constraints (e.g.,
on ILP) and thus reducing the resource sets. The amount of
alternative resources represented by a FRT cover provides a
high flexibility for making good decisions ineach step during
scheduling. We have generated parallel code for the example

source GNU hw pc tpc
exm - 5 5 0.3
iir 33 12 12 1.8
cu 23 9 9 1.9
cm 16 6 6 0.4

Table 4:Executable code for DSPStone benchmarks

from figure 8 and some DSPStone benchmarks [16] and the
ADSP-210x based on method CS4. Results are given in table
4. Each entry gives a number of generated parallel machine
instructions (including additional code for address computa-
tions). Column 2 shows results obtained with a GNU-based
ADSP-210x C-Compiler. Column 3 (hw) gives the length
of the hand-written reference code for the DSPStone bench-
marks, while column 4 (pc) provides the results achieved
by the phase-coupled code generation technique. Column 5
(tpc) shows the runtimes for phase coupled scheduling. For
the tested benchmarks our technique was able to produce the
same code quality as in the case of the hand-written code.

6 Conclusions
The irregular architecture of fixed-point DSPs often prevents
compilation of efficient machine code due to many con-
straints imposed by special-purpose registers and ILP. In or-
der to overcome this problem, in this paper we have pro-
posed a novel constraint-driven approach to code selection,
which takes irregularities in a DSP architecture intoaccount.
We have shown that the proposed DFG covering technique
produces better code (for a sequential execution model) than
the traditional tree-based method, due to a more efficient
code selection for CSEs. Furthermore, our approach enables
phase coupling by exploiting alternative DFG covers dur-
ing the scheduling phase. Experimental results demonstrate
that by exploiting these two features the quality of compiler-
generated code can be significantly improved as compared
to existing techniques and may come close to the quality of
hand-written assembly code.

References
[1] G. Araujo, S. Malik, and M. Lee. Using Register-Transfer Paths in

Code Generation for Heterogeneous Memory-Register Architectures.
In 33rd Design Automation Conference (DAC). 1996.

[2] A. Fauth, G. Hommel, A. Knoll, and C. Mueller. Global code selec-
tion for directed acyclic graphs. In Peter A. Fritzson, editor,Compiler
Construction, volume 786 ofLNCS, pages 128–141. Springer–Verlag,
Edinburgh, U.K., April 1994. 5’th International Conference, CC’94.

[3] C. Fraser, R. Henry, and T. A. Proebsting. Engineering a Simple, Effi-
cient Code-Generator Generator.ACM Letters on Programming Lan-
guages and Systems, 1(3):213–226, September 1992.

[4] C.H. Gebotys. An Efficient Model for DSP Code Genera-
tion:Performance, Code Size, Estimated Energy. In10th International
Symposium on System Synthesis (ISSS). 1997.

[5] S. Hanono, G. Hadjiyiannis, and S. Devadas. Aviv: A Retargetable
Code Generator Using ISDL. InProc. 34th DAC’97, 1997.

[6] D. Lanner, M. Cornero, G. Goossens, and H. De Man. Data routing:
a paradigm for efficient data–path synthesis and code generation. In
Proc. 7th IEEE/ACM Int. Symp. on High–Level Synthesis, May 1994.

[7] R. Leupers.Retargetable Code Generation for Digital Signal Proces-
sors. Kluwer Academic Publishers, 1997.

[8] R. Leupers and P. Marwedel. Retargetable code generation based on
structural processor descriptions. InDesign Automation for Embedded
Systems, vol. 3, no. 1, 1998.

[9] S. Liao, S. Devadas, K. Kreuzer, and S. Tjiang. Instruction Selec-
tion Using Binate Covering for Code Size Optimization.International
Conference on CAD (ICCAD), 1995.

[10] K. Marriott and P.J. Stuckey.Programming with Constraints: An In-
troduction. The MIT Press, 1998.

[11] P. Marwedel and G. Goossens, editors.Code Generation for Embedded
Processors. Kluwer Academic Publishers, 1995.

[12] P. Paulin, C. Liem, T. May, and S. Sutarwala. Flexware: A Flexi-
ble Firmware Developement Envirenment for Embedded Systems. In
Marwedel and Goossens [11], chapter 4, pages 65–84.

[13] K. Rimey and P.N. Hilfinger. Lazy Data Routing and Greedy Schedul-
ing. In MICRO, volume 21, pages 111–115. 1988.

[14] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A Plat-
form for Constraint Logic Programming, 1997. Publications at
http://www.icparc.ic.ac.uk/.

[15] T. Wilson, G. Grewal, S. Henshall, and D. Banerji. An ILP-Based Ap-
proach to Code Generation. In Marwedel and Goossens [11], chapter 6,
pages 103–118.

[16] V. Zivojnovic, J.M. Velarde, C. Schlaeger, and H. Meyr. DSPStone - A
DSP oriented Benchmarking Methodology. InICSPAT. 1994.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

