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Abstract

Standard interfaces for hardware reuse are currently de�ned
at the structural level. In contrast to this, our contribu-
tion de�nes the reuse interface at the behavioral register-
transfer (RT) level. This promotes direct reuse of function-
ality and avoids the integration problems of structural reuse.
We present an object oriented reuse interface in C++ and
show the use of it within two real-life designs.

1 Introduction

The rush forward of digital implementation technology faces
contemporary chip designers with ever increasing design com-
plexities. This makes the ability to reuse components in a
system an essential design skill. Examples of such compo-
nents are embedded cores or complex random logic blocks.
The VSI (Virtual Socket Interface) Alliance is an industry-
backed organization that targets the requirements and stan-
dards de�nition for component reuse.

The established view on reuse is focused at the structural
level. A component is made reusable by matching it to a
standard interface. This interface de�nes input/output sig-
nals, their timing relationship etc. Such an interface allows
hiding of the detailed design of a component as intellectual
property (IP) of a designer, and yet makes the component
available for reuse.

The reuse of hardware components at the structural level
is not without problems, because of the following reasons:

� Reuse is in the �rst place a matter of reusing func-
tionality, not structure. It happens often that a com-
ponent can be 'almost' reused, but requires additional
encapsulation to match the right behavior.

� Structural reuse seals the behavior of a component in
a closed box behind the reuse interface. As a result,
the reused behavior can only be manipulated indirectly
through this interface.

� Current hardware development environments are good
in capturing, simulation and synthesis of hardware com-
ponents. They do however a bad job in manipulating
the same descriptions. As an example, VHDL de�nes a
component as an entity with a well de�ned port set. It

is not possible to strip the ports of an entity depending
on some external design condition.

As shown in Table 1, the impact of reusing structure
instead of functionality can be substantial. The table col-
lects some statistics for a DECT transceiver we recently de-
signed. It lists the number of blocks in the chip (total).
An amount of those (prog) require datapath register access,
which is embodied in a per-block programming interface.
Next, the total RT-VHDL line count is shown, �rst without
this programming function (wo/prog) and next including it
(w/prog). As this function is parameterized by the num-
ber of datapath registers per block, it cannot be obtained
through simple instantiation. Therefore, introduction of this
per-block function requires signi�cant RT coding overhead.

This situation has been recognized by other authors as a
'Silicon Ceiling' [7]. Research solutions have been either to
encapsulate VHDL within an advanced design environment
[6] or else to extend the semantics of VHDL itself [1, 2].

Being faced with structural reuse problems in several re-
cent demonstrator designs, we developed a hardware reuse
mechanism at the more abstract behavioral RT-level. Rather
than tackling this problem at the VHDL level, we used a
C++ based development environment and an object ori-
ented RT model [8, 5]. The use of C++ has been proven
to be an adequate container for modeling and simulation
of parallel hardware systems [12, 4]. Our environment in-
cludes the capturing and the simulation of a digital hardware
system, and also contains a code generator that translates
the C++ description to synthesizable VHDL. In addition,
it supports HDL testbench generation that allows to verify
the C++ description against the hardware synthesis results.

This contribution places the emphasis on the hardware
reuse mechanism. Section 2 presents two motivational ex-
amples that clearly state the behavioral reuse problem. In
section 3, our C++ class hierarchy for the description of
digital hardware is presented. Section 4 will de�ne a behav-
ioral reuse mechanism that builds upon this class hierarchy.
Section 5 picks up the two motivational examples again, and
applies the reuse method on it. Finally, a summary of the
contributions is given in section 6.

Block count RT VHDL linecount

total prog wo/prog w/prog

25 23 17K 28K

Table 1: RT line counts for DECT design
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Figure 1: Communicating Processors

2 Problem Statement

In this section, two hardware design problems are intro-
duced to sketch the problems of reuse. The �rst one is an
interblock synchronization interface, while the second one
is a programming interface for ASICs. Both of the design
problems originate from the close interaction between the
internal behavior of a block and the external world [10, 9].

2.1 Interblock synchronization

Figure 1 shows a simple case of two communicating pro-
cessors, P1 and P2. Each of the processor's behavior is de-
scribed through a �nite state machine (FSM). The nodes in-
dicate execution states, while the edges correspond to state
transitions for every clock cycle of data processing. Each
of the FSMs thus represents the schedule of an algorithm.
The GET and PUT operations show at which clock cycles the
processors communicate data. This shows that there is an
input/output dependency between processors P1 and P2.
When unsynchronized, processor P1 produces output data
every second clock cycle. This data is consumed by proces-
sor P2 with a variable schedule of two or three clock cycles.
The communication of data thus introduces a synchroniza-
tion requirement between P1 and P2 to guarantee correct
operation of the system. The current practice to solve this
kind of communication consistency problem is to use one of
the following methods.

a) To adapt each of the processor's description such that
they are always in perfect synchrony.

b) To introduce a global synchronization mechanism that
forces communication synchrony.

c) To embed a universal communication protocol onto the
IO ports.

When thinking in terms of reuse none of these three so-
lutions is optimal. Cases a) and b) force designers to solve
two interdependent tasks at the same time (local and global
behavior), resulting in a di�cult and hard-coded solution.
Case c) implies the use of a universal communication mech-
anism which might represent an overhead at the next appli-
cation.

Structural reuse becomes hard, or in the best case causes
an overhead in silicon and/or timing. What we need here is
a method that automatically manipulates the local processor
behavior and adapts it to the existing communication envi-
ronment. Such a method is generic, and is a good candidate
for behavioral reuse.
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Figure 2: Programming Interface

2.2 A programming interface

The second design problem, a programming interface, is a
common feature in ASICs. An example is shown in �gure
2. It consists of two blocks out of a synchronous ASIC de-
sign. Only the parts relevant to the programming interface
are shown. The �rst is a Master Interface. The purpose
of this block is to make the data processing registers of the
ASIC programmable from the outside world. The second
block, Data Processing, is a functional component of the
ASIC. This block has a local controller FSM, that sequences
instructions to a datapath. Doing this, a digital signal pro-
cessing (DSP) algorithm such as equalization can be im-
plemented. Furthermore, this local controller also performs
additional instructions, which are invoked by the master in-
terface through pgm and copy.

The data processing block has two modes of operation:
an active mode, and a programming mode. The desired
mode is set by the master interface through the value of
pgm. The data processing block also signals which mode is
currently active through a status bit. The data register D is
updated when the master interface sets the copy bit and at
the same time the data processing block is in programming
mode.

A simple protocol controls the programming of the data
register D. When a value is available in register I, the master
interface sends a program mode request to the data process-
ing block by setting the pgm bit. Depending on the real time
requirements inside the data processing algorithm, the data
processing block will enter the program mode some cycles
later and signals this to the master interface through the
status bit. The master interface then can update the data
register D by setting the copy bit.

The design complexity of the data processing block lies
in the simultaneous presence of DSP algorithm and pro-
gramming protocol. As a consequence, the designer of the
data processing block needs to master both a DSP algorithm
schedule and a protocol. Whether the FSM is described hi-
erarchically or not does not matter: the designer needs to
think of two things at once.

In addition, using current HDL environments, it is not
possible to design the DSP processing schedule of the block
independently of the protocol, which degrades potential reuse
possibilities.

What is really needed here is a method that allows the
data processing to be designed independently from the inter-
facing. This will be possible by describing the programming
interface as a case of behavioral reuse (Section 5.2).
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Figure 3: Ones-counter behavioral RT

3 The OO-RT data model

The OO-RT model is a framework that enables behavioral
reuse. In this section, the OO-RT model is explained. We
start with a classic RT speci�cation of a simple processor
that counts the number of '1' bits in a bit stream. Next,
an OO-RT version of the same processor is presented. The
ones-counter processor contains the following elements.

� A datapath with two registers. Register N holds the
number of '1'-bits seen after the last reset, while reg-
ister C holds the value of the currently observed bit in
the bit stream. It is assumed that the count register
N has su�cient width to hold the maximum bit count
during two subsequent reset instructions.

� A controller FSM that can increment, hold or reset the
count register in the datapath.

Figure 3 shows a behavioral RT speci�cation of this ones-
counter. The speci�cation consists of a Mealy-type state
transition diagram, and three RT instructions rst, inc and
hold. These correspond to the datapath actions in case of
reset, observation of a '1'-bit and observation of a '0'-bit
respectively.

This behavioral RT speci�cation is now mapped into an
object oriented model. The C++ speci�cation shown below
corresponds to the representation of �gure 3.

1: clk ck;

2:

3: sig C(ck,0):

4: sig N(ck,0);

5: sig input;

6: sig output;

7: bus IB;

8: bus OB;

9:

10: sfg rst;

11: N = 0;

12: C = input;

13: rst << in(input,IB);

14:

15: sfg inc;

16: N = N + 1;

17: C = input;

18: output = N;

19: inc << in(input,IB) << out(output,OB);

20:

21: sfg hold;

22: C = input;

23: output = N;

24: hold << in(input,IB) << out(output,OB);

25:

26: fsm ones_cnt;

27: state s0;

28: state s1;

29: ones_cnt << deflt(s0);

30: ones_cnt << s1;

31: s0 << always << rst << s1;

32: s1 << cnd(C) << inc << s1;

33: s1 << !cnd(C) << hold << s1;

The data processing is expressed in terms of sig objects,
that represent plain signals or registers (lines 3-6). Datapath
instructions such as rst, inc, and hold are described using
the sfg objects. Each of these group a number of signal
expressions (lines 10-24). The I/O ports of the behavior are
indicated using bus objects (lines 7-8).

The control description of the ones-counter is captured
by a direct modeling of the FSM description in �gure 3.
Each state of the ones-counter FSM maps into one state

object (lines 27-28). The fsm object groups a number of
state objects (lines 29-30), identifying one as the initial
state (line 29).

The datapath instructions are assigned to control steps
by creating FSM transitions (lines 31-33). A transition con-
tains a source state, a transition condition, a datapath in-
struction to execute, and a target state.

When this C++ description executes, a hierarchy of ob-
jects is constructed. Rather than directly executing code,
a data structure is created �rst, that subsequently can be
processed by an interpreter or a code generator.

Operator overloading is used extensively to create this
object hierarchy, and to relate individual objects to each
other. For example, the shift operator (<<) is used to de�ne
datapath I/O (lines 13, 19, 24). It is also used to associate
a state object with an fsm object (lines 29-30). Finally, it
is used to de�ne state transitions (lines 31-33). In each of
those cases the shift operator is used to establish a relation-
ship between individual objects. An fsm object for example
retains a pointer to each state object it contains.

As a result of this operator-overloading strategy, the
complete RT behavior of the ones-counter is captured in an
object hierarchy. This hierarchy is a data structure made up
out of objects that represent behavioral-RT concepts such
as signals, datapath instructions, or controller states. One
way to represent this object hierarchy more formally is to
use a class diagram. Figure 4 illustrates this diagram using
the Object Modeling Technique (OMT) [3]. Each rectangle
indicates a class, while the arrows indicate class relations.
An arrow ending in a �lled circle indicates a one-to-many
relation, such as the relation of a single fsm object to the
several state objects it contains. An arrow starting with
a diamond indicates a part-of relationship; while a plain
arrow-start indicates a non-exclusive relationship.

The class diagram in �gure 4 indicates that a reference
to an fsm object is su�cient to retrieve the complete proces-
sor description as a set of interrelated objects. Each other
object can be reached by following the necessary links of re-
lationship. In the next section, a reuse mechanism will be
de�ned that uses this object hierarchy.
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4 Behavioral Reuse in the OO-RT Data Model

Traditional hardware reuse focuses on the reuse of prebuilt
blocks. This is possible by providing these blocks with a
standard interface (specifying port naming conventions, elec-
trical and timing properties, etc) to connect them to the
system.

The OO-RT data model promotes reuse because it con-
structs systems according to a standard class diagram, as
shown in �gure 4. This set of classes, and their relations can
play the role of a standard interface. The reusable blocks
then become pieces of RT behavior that are built up out of
standard OO-RT objects themselves, and that interact with
an existing object hierarchy. We can add new objects to an
existing object hierarchy, or else modify existing relation-
ships. Some examples of useful manipulation of the object
hierarchy are:

� Changing the transition condition (cnd object) of a
state transition (trans object).

� Attaching extra wait states (state object) and tran-
sitions to an fsm (fsm object), e.g. to add a synchro-
nization capability.

� Adding extra operations (sigops object) to an instruc-
tion (sfg object) to extend it, e.g. to add overow
detection in the ones counter.

For the purpose of manipulation, the classes presented
in �gure 4 have methods that allow to query and/or modify
their relationships towards other classes.

The method of behavioral reuse works at a �ner granu-
larity then structural reuse, and can incrementally change
existing behavior. Consider for example a state object,
which is used to represent a control state. It can be added
to an existing fsm object in order to extend the set of con-
trol states that this fsm understands. New transitions can
be created from existing states towards the newly created
state to extend the control ow.

We found that this kind of object oriented manipulation
is best organized into a new object, a reuse object. This new
object does contain a piece of register transfer code that
can be attached to existing behavior. An example of such
an object is the waitstate object.
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Figure 5: Manipulations by the waitstate object

1: class waitstate {

2: state ws;

2: public:

3: waitstate();

4: expand(fsm &f, sig &flag, state &s) {

6: f << ws;

7: s << cnd(flag) << ws;

8: ws << cnd(flag) << ws;

9: ws << !cnd(flag) << s;

7: }

8: };

This object adds a wait state to an existing state in an
FSM. Given an FSM f, a start state s and a signal flag,
it will modify the FSM such that it includes a conditional
jump from the start state to a newly created wait state ws.
We will call the existing objects to which a reuse object is
attached the hooks. In this case, the hooks are: an FSM f,
a state s and a signal flag. Also, we will call the procedure
that performs the manipulation the expand method. The
e�ect of the waitstate object is shown in �gure 5.

In the next section, the two design problems introduced
earlier are solved with a behavioral reuse mechanism.

5 Application and Results

5.1 Interblock synchronization

The interblock synchronization is now solved as an appli-
cation of behavioral reuse. Figure 6 shows a part from the
example of section 2.1 as an input for reuse. We explain the
synchronization solution for the case of the PUT instruction
done by processor P1. This processor is connected to the
processor P2 via a communication bus object. The imme-
diate implementation of such a bus object is simple wiring.
However, in the case that the PUT has to be synchronized to
the corresponding GET in processor P2, a synchronizer ob-
ject comes into play. The synchronizer object will take care
of merging a synchronization protocol into P1's OO-RT de-
scription. In P2's OO-RT description, a similar synchronizer
object is used to provide a matching protocol.

Being a reuse object, the synchronizer needs hooks and
an expand method. The hooks for this reuse object are a
communication bus on one hand, and an FSM that reads/
writes this communication bus on the other. Given the fsm
of P1 and the bus object that carries the PUT, the expand()
method of the synchronizer modi�es the OO-RT description
of P1 as shown on the bottom of the �gure.

Several modi�cations take place during the expansion.
First, a wait transition is inserted. In addition, new in-
structions are added, which provide the signaling of a syn-
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Figure 6: synchronizer in action

chronous handshake protocol [11]. The signaling is done
through newly created bus objects p req and p ack. The
inserted instructions include: req1 and req0, which assert/
deassert the request for data communication, and read, which
samples the acknowledge bus. The sampled value is used as
a transition condition in the expanded FSM.

The protocol implementation of GET (as for instance in
processor P2) proceeds by a similar, symmetrical expansion.
The parametric expansion algorithm, done by the reuse ob-
ject synchronizer is described in pseudocode as follows.

1: attach_synchronizer(fsm F, bus B) {

2: for each transition T in F

3: S = source_state(T)

4: T.attach_instruction(read)

5: if transition.instructions contains B

6: create a new transition Tw from S to S

7: cond(Tw) = ! ack

8: cond(T) = prev_cond(T) & ack

9: for each transition U in F

10: if target_state(U) = S

11: U.attach_instruction(req1)

12: else

13: U.attach_instruction(req0)

14: }

The algorithm shown has still certain limitations. For
example, two I/O accesses subject to synchronization in the
same transition are not allowed. However, by formulating
the synchronization problem as a behavioral reuse problem,
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Figure 7: Concept of programming interface object
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the synchronizer object can be readily replaced by a new,
more sophisticated one without additional modi�cations to
the original behavior of P1.

5.2 The programming interface

The programming interface problem is another natural can-
didate for reuse at behavioral level. Figure 7 shows the
decomposition of the data processing block. The designer
is responsible for the description of the data processing it-
self, but does not need to worry about the protocol with the
master interface. Rather, this protocol is available through
a reuse object prog itf.

To implement the programming interface in the data pro-
cessing block, a number of hooks must be given to the pro-
gramming interface. These include: a reference to the data
register for implementing a write operation from the mas-
ter interface and a reference to a state at which the block
can go into programming mode. Given these hooks, the
expand method of prog itf can be called to implement the
programming interface into the block.

An example of the operation of prog itf is shown in �g-
ure 8. Data register D, as well as state S2 of the original
FSM where hooked onto the programming interface object.
Calling the expand() method of prog itf modi�es the orig-
inal state transition diagram resulting in one as shown on
the bottom of the �gure. One new state is inserted, as well
as four new transitions. In addition, four new instructions



Line Count

Reuse Body Headers System Total

CABLE OO RT-C++ 1746 5369 1975 4023 13113

CABLE RT-VHDL 21798 5654 2180 29631

DECT OO RT-C++ 800 8776 2286 1192 13054

DECT RT-VHDL 19781 6271 2311 28363

Table 2: RT line counts for 2 example designs

are inserted, needed for writing into the D register (upd), sig-
naling the block status (status0,status1), and reading the
master interface commands read. This last instruction also
requires the creation of two new condition registers (prog
and copy) to hold these commands.

It is seen that the programming interface is an ideal can-
didate for reuse, since it is independent of the behavior in
which it is embedded.

5.3 Application results

Finally we summarize the results obtained by applying this
method to two 80 Kgate designs. In a cable modem demon-
strator that we developed recently, an I2C programming in-
terface was designed as a behavioral reuse object. This ob-
ject was applied to 6 di�erent data processors in the modem.
The second design is a DECT base station transceiver. This
modem was a �rst of a kind device and needed an in-circuit
debugging interface with real-time observation of registers.
Also this debugging interface was designed as a behavioral
reuse object. Both of the reuse objects (I2C and debugging
interface) a�ect datapath and control descriptions at the
same time, and are similar to the programming interface
object (section 5.2).

Table 2 indicates the source code statistics for the up-
stream Cable Modem and the DECT base station transceiver.
For both designs, the �rst line indicates the C++ line count
in the OO-RT model. The RT-VHDL line count of gener-
ated code is shown on the second line. The type of code is
subdivided in

� Reuse: Reusable objects such as programming inter-
faces according to the presented methodology.

� Body: Line count of individual block bodies.

� Headers: .h �les for C++ and entity declarations for
VHDL.

� System: The system level netlist and testbench drivers.

The savings in coding become obvious from considera-
tion of the total line count. In VHDL, the reused objects
get instantiated in the body of blocks, which increase con-
siderably.

6 Conclusions

In this contribution, we have presented a method for behav-
ioral reuse. The di�erence with current, structural reuse,
is that the reuse interface is de�ned at the behavioral RT
level. The RT descriptions are entered in an object oriented
environment. The following are essential advantages of this
reuse method:

� Reuse is encouraged and supported as an integral part
of the design process itself. This is di�erent from the
traditional view on reuse, which revolves around the
matching and glueing of existing, incompatible blocks.

� Dislike functions in the same component can be devel-
oped independently.

� Reusing functionality instead of structure enables com-
pact descriptions that are more easy to understand and
maintain.

� Distribution of the reusable objects can be done as ob-
ject code. Therefore, intellectual property of a reused
function is safeguarded.

The method has been applied with success to the design
of an upstream cable modem and a DECT transceiver which
have been brought to working silicon.
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