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Abstract

Configurable computing machines are an emerging class of hy-
brid architectures where a field programmable gate array (FPGA)
component is tightly coupled to a general-purpose microproces-
sor core. In these architectures, the FPGA component comple-
ments the general-purpose microprocessor by enabling a developer
to construct application-specific gate-level structures on-demand
while retaining the flexibility and rapid reconfigurability of a fully
programmable solution. High computational performance can be
achieved on the FPGA component by creating custom data paths,
operators, and interconnection pathways that are dedicated to a
given problem, thus enabling similar structural optimization ben-
efits as ASICs. In this paper, we present a new programming en-
vironment for the development of applications on this new class
of configurable computing machines. This environment enables
developers to develop hybrid hardware/software applications in a
common integrated development framework. In particular, the fo-
cus of this paper is on the hardware compilation part of the problem
starting from a software-like algorithmic process-based specifica-
tion.

1 Introduction

Traditionally, there has been a strong separation between software
running on general-purpose programmable processors and dedi-
cated hardware. Microprocessors can perform many different func-
tions by providing a general mechanism to execute software. They
can be programmed to perform different tasks, ranging from the
execution of a word processor program to the processing of an
audio stream. However, versatility comes at a price: applications
implemented in software are usually much slower than their hard-
ware counterparts. In contrast, application-specific hardware cir-
cuits provide precisely the functions needed for a specific task.
Thus, they can be carefully tuned to the application, resulting in
solutions that are often smaller, cheaper, faster, and more power
efficient.

The advent of field programmable gate arrays (FPGAs) offers an
intriguing alternative. Like a general-purpose microprocessor, FP-
GAs can be dynamically reconfigured repeatedly to perform many
different functions. However, like application-specific hardware,
FPGAs can implement specific hardware structures that are tuned
to the application. FPGAs consist of large arrays of reconfigurable
logic blocks that can be reprogrammed to implement a specific
gate-level customization. Thus, FPGAs can serve as a powerful
adaptive computing engine. Indeed, a number of impressive re-
sults have been documented using reconfigurable logic for a num-
ber of applications, including RSA encryption [22], DNA sequenc-
ing [14], multi-standard video compression [22], automatic target
recognition [21], and high energy physics [15], amongst others.
Several recent advances have made the case for adaptive comput-
ing even more compelling. The densities and performance of FP-
GAs have increased by several orders of magnitude compared to
earlier devices. Currently, FPGA devices with over 1M equivalent
gates capacity running at 200MHz clock speeds are emerging. The
dynamic reconfigurable times have also dramatically decreased de-
spite the substantial increase in logic capacity. A new generation of
devices is emerging that can be dynamically reconfigured at a rate
of 250M gates/sec.
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Figure 1: (a) FPGA co-processor board coupled to a
microprocessor-based system architecture. (b) FPGA coupled di-
rectly to the microprocessor on the same chip.

Recently, a number of hybrid architectures based on the coupling of
traditional microprocessors and FPGAs have been proposed, as de-
picted in Fig. 1. In these architectures, the FPGA component com-
plements the general-purpose processor component by enabling the
user to construct application-specific gate-level structures on-demand
while retaining the flexibility and rapid reconfigurability of a fully
programmable solution. These computing platforms are referred
to asconfigurable computing machines. A number of such config-
urable computing machines have been successfully demonstrated [22,
4, 23, 21, 25, 34]. This earlier generation of configurable comput-
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ing machines is based on an add-on FPGA co-processor board ap-
proach where the co-processor board is coupled to a microprocessor-
based system via a system peripheral bus. Given the increasing
scale of integration made possible by deep sub-micron technol-
ogy, researchers are also exploring FPGA-coupled microprocessors
where both the FPGA component and the general-purpose micro-
processor are integrated on the same IC [10, 7, 24]. An industrial
FPGA-coupled embedded processor from National Semiconductor
called the Napa 1000 has already been announced [28].

In this paper, we describe a new programming environment called
Picassofor the development of applications on configurable com-
puting machines. The programming of these machines will require
a new generation of programming tools that will permit program-
mers without traditional circuit design expertise to develop mean-
ingful hybrid hardware/software applications. To ease program-
ming, the programming language should have the expressive power
for describing an entire application, encompassing both the hard-
ware and the software parts. For these reasons, we use a C-like
algorithmic programming language that has been extended to sup-
port process-based concurrency and inter-process communication.
These extensions are based on the CSP [9] model of concurrency
and communication.

The organization of this paper is as follows. In Section 2, we in-
troduce the programming model based on the CSP formalism that
we use to program hybrid hardware/software applications. In Sec-
tion 3, we present a high-level overview of the design steps in our
compilation trajectory. The focus of this paper is on the hardware
compilation part of the problem. Our approach to this problem is
described in Section 4. The work presented in this paper has been
developed in the framework of a system calledPicasso. In Sec-
tion 5, we discuss the status of the project.

2 Programming Model

In this section, we describe a C-like hardware/software program-
ming model, based on the CSP formalism [9]. We believe it has
the expressive power to serve as a single executable system specifi-
cation, encompassing both the hardware and the software parts, so
that an application developer can describe an entire application as
a single programming activity.

More specifically, our programming language is a process-based
programming model. It looks like a C program: the syntactic struc-
ture and the expression syntax are nearly identical. However, our
model provides language mechanisms not found in C for speci-
fying processes and channel communications, based on the CSP
formalism [9]. In addition to its expressive power to handle paral-
lelism and communication, CSP has a rigorously defined semantics
along with a well-defined algebra to reason about the concurrent
behavior [18], which lends well to formal verification. This section
presents a brief overview of our programming model by means of
an example.
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Figure 2: Process model.

Our programs are hierarchically composed of processes that com-

municate through synchronizing channels. In Fig. 2, a simple ex-
ample composed of two processes calledping andpong is illus-
trated.

1. ping (input chan(int) a, output chan(int) b)
2. f
3. int x;
4.
5. for (;;) f
6. x = <-a; /* receive */
7. if(x < 100) x = 10 - x;
8. else x = 10 + x;
9. b <-= x; /* send */
10. g
11. g

12. pong (input chan(int) c, output chan(int) d)
13. f
14. int y, z = 0;
15.
16. for (;;) f
17. d <-= 10;/* send */
18. y = <-c; /* receive */
19. z = (z + y) % 345; /* send */
20. g
21. g

22. system ( )
23. f
24. chan(int) c1, c2;
25.
26. par f
27. ping (c2, c1);
28. pong (c1, c2);
29. g
30. g

Channels are declared using thechan statement, as exemplified
in Line 1 . The unary receive operator,<- , receives data on the
channel specified as its right operand. The received value may then
be manipulated by other operators, e.g. it can be assigned to a vari-
able, as exemplified inLine 6 . The send operator,<-= , trans-
mits the result of the expression provided as its right operand on
the channel specified as its left operand, as exemplified inLine 9 .
Basic control-flow constructs, likeif-then-else , for-loops ,
andwhile-loops , and basic arithmetic and relational operators,
like +, - , * , %, and>, >=, ==, != , are the same as in C. There
is also analt construct [9], not used here, that provides a mech-
anism for non-deterministic execution. Processes can be hierar-
chically composed to form larger systems, as exemplified by the
processsystem . Thepar statement executes the statements in
its body in parallel and joins the threads of execution at the end
by waiting for all processes to terminate before proceeding. This
construct provides a mechanism for invoking concurrency. Finally,
other communication constructs such as FIFO-based communica-
tion can be programmed on top of the send and receive primitives.

3 Overview of Design Steps

In this section, we present a high-level overview of the design steps
in our compilation trajectory. They are comprised of the follow-
ing: hardware/software partitioning, software compilation, hard-
ware compilation, and hardware/software interfacing. These design
steps are described below.



Hardware/Software Partitioning In our programming model,
processes provide a natural level of granularity for partitioning.
Currently, the assignment of processes to the processor component
and the FPGA component is performed by the application devel-
oper. This partitioning step arguably requires considerable under-
standing of the application at hand, which may be best left to the
creativity of the developer, as long as the remaining compilation
steps can be automated, including hardware/software interfacing.
With the remaining compilation steps automated, and the aid of
profiling and debugging tools, the developer can quickly experi-
ment with different partitionings.

Software Compilation In the case that only asinglesequential
process is assigned to the processor component, then the software
compilation step is straightforward: the sequential process is sim-
ply syntactically translated into a C [11] program, which can then
be readily compiled to native machine code using conventional op-
timizing C compilers [1, 19]. In the case where multiple concur-
rent processes are assigned to the processor component, an em-
bedded multi-threading operating system can be used to support
the run-time scheduling of processes, interprocess communication,
and context-switching. Again, this involves a relatively straight-
forward pre-processing step where the processes and communica-
tion constructs are syntactically converted to equivalent thread and
communication primitivies that are supported by the operating sys-
tem. Alternatively, we have recently developed asoftware synthesis
technique that can pre-determine the execution order of operations
at compile-time. This technique avoids the need for a run-time op-
erating system. The interested reader can refer to [13] for more
details.

Hardware Compilation On the reconfigurable hardware side,
well-developed FPGA synthesis tools have been available for some
time. Example commercial tools include [30, 31, 26, 33]. These
tools perform logic synthesis and technology mapping to cell logic
blocks. They are also linked to low-level placement and routing
tools. Current FPGA synthesis tools assume a register transfer level
description, e.g. using either VHDL [3] or Verilog [2], which es-
sentially describes the behavior on a clock-cycle basis. If we start
from an algorithmic behavioral specification, then high-level syn-
thesis steps such as scheduling and resource allocation are needed.
A number of high-level synthesis systems have been developed
to address this problem [5, 8], including some commercial sys-
tems [29, 27]. These systems are based on various control-data-
flow-graph (CDFG) models. These models mostly permit onlya
single thread of control, starting from a C-like language. In con-
trast, our CSP-based model can be used to specify behaviors with
multiple threads of control. In Section 4, our hardware synthesis
approach is further elaborated. The approach is built on top of ex-
isting FPGA synthesis tools, using register transfer level VHDL or
Verilog as the intermediate representation.

Hardware/Software Interfacing Finally, we need a way to fa-
cilitate communication between processes running on the proces-
sor and the microprocesses compiled on to the FPGA component.
Fortunately, the CSP model provides a high-level abstraction for
communication and synchronization. Since the communication ar-
chitecture coupling the FPGA coprocessor to the microprocessor
is predefined, we can solve this communication problem by intro-
ducing a library ofchannel protocol adaptersthat can mediate the
communications between the microprocessor and FPGA compo-
nent. The only requirement is that the library implementation must

satisfy the semantics of rendezvous communication. This library
implementation can easily be predefined for a given hybrid micro-
processor/FPGA architecture.

4 Hardware Compilation

Our approach is based on first compiling the initial CSP specifi-
cation into an intermediatePetri netrepresentation. We thenstat-
ically schedulethe operations on the Petri net on to clock cycles
via a procedure calledexpansion. The resulting solution is asingle
sequential state machine that can be syntactically mapped to regis-
ter transfer level VHDL [3] (or Verilog [2]) for logic synthesis and
technology mapping to a target FPGA architecture using available
FPGA synthesis tools (e.g. [30, 31, 26, 33]).

4.1 Petri Nets and Intermediate Construction

Let G = hP; T; F;m0i be a Petri net [17], whereP is a set of
places,T is a set of transitions,F � (P � T ) [ (T � P ) is the
flow relation, andm0 : P ! N is the initial marking, whereN is
the set of natural numbers.

The symbols�t andt� define, respectively, the set of input places
and the set of output places of transitiont. Similarly, �p andp�
define, respectively, the set of input transitions and the set of output
transitions of placep.

A placep is called aconflict placeif it has more than one output
transition. Two transitions,ti andtj are said to be inconflict if and
only if �ti \ �tj 6= ;.

A state, or marking,m : P ! N , is an assignment of a non-
negative number to each place.m(p) denotes the number of tokens
in the placep. A transitiont can fire at markingm1 if all its input
places contain at least one token. The firing oft removes one token
from each of its input places and adds a new token to each of its
output places, leading to a new markingm2. This firing is denoted

bym1

t
! m2.

Given a Petri netG, the reachability set ofG is the set of all mark-
ings reachable inG from the initial markingm0 via the reflexive
transitive closure of the above firing relation. The corresponding
graphical representation is called a reachability graph.

A Petri netG is said to belive if 8t 2 T , 9m reachable from the
initial markingm0 such thatt is enabled. A Petri netG is said to
be safeif in every reachable marking, there is at most one token
in any place. In this case, we can simply represent each marking
m : P ! f0; 1g as a binary assignment.

In [6, 20], a process algebra was developed for constructing a Petri
net model from a program of communication processes. Consider
again the example shown in Fig. 2. The derived Petri net models
for processesping andpong are shown in Fig. 3(a) and Fig. 3(b),
respectively, along with their initial markings.

Concurrent processes can be composed via parallel composition. In
parallel composition, communication actions in fact form synchro-
nization points and are joined together at their common transitions.
This is illustrated in Fig. 3(c).
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f: z=(z+y)%345

Figure 3: Derived Petri net representations: (a)ping (b) pong (c)
system = ping k pong

4.2 Quasi-Static Scheduling and Hardware Generation

In this section, we present a quasi-static scheduling algorithm for
Petri nets. It is based on the framework presented in [13] for soft-
ware synthesis. The algorithm is based on a systematic algorithm
for generatingacyclicPetri net segments from an initial cyclic Petri
net representation. For each acyclic Petri net segment, a quasi-
static scheduling procedure is applied to schedule the operations
(transitions) in that segment. Based on the schedule, a portion of
the state machine (representing the control-flow) is generated. Af-
ter the overall procedure is completed, the resulting state machine
is mapped to a register transfer level hardware description for fur-
ther logic synthesis and technology mapping to the target FPGA
architecture.

The procedure for systematically generating acyclic Petri net seg-
ment is based on a concept calledmaximal expansion. A maxi-
mal expansion is defined with respect to some initial markingm.
Starting from this marking, we identify a set of places encountered
when a cycle has been reached. These places are referred to ascut-
off places. Intuitively, the maximal expansion of a Petri netG with
respect to a markingm corresponds to the largestunrolling of G
from m before a cycle has been encountered. Consider the exam-
ple shown in Fig. 4(a). The corresponding maximal expansion with
m = hp1; p2i is shown in Fig. 4(b).

Let G be a Petri net, and letE be a maximal expansion ofG
with respect to the initial markingm. A markingmc is said to
be acut-off markingif it is reachable fromm and no transitions
are enabled to fire. The set of cut-off markings is denoted by
CM(E). For the example shown in Fig. 4, there are two possible
cut-off markingsmc1 = hp10; p20i andmc2 = hp30; p4i, shown
respectively in Fig. 4(c) and Fig. 4(d). From each cut-off marking
mci 2 CM(E), a new maximal expansion segmentEi is gen-
erated usingmci as the initial marking. This iteration terminates
when all cut-off markings have already been visited.

In the example shown in Fig. 4, only two expansion segments are
needed. From the initial markingm = hp1; p2i, the only cut-
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Figure 4: (a) Petri net example. (b) Its maximal expansion. (c) A
cut-off marking. (d) Another cut-off marking.

off markings reachable aremc = hp1; p2i andmc = hp3; p4i.
However, fromm = hp3; p4i, the only cut-off marking reachable
ismc = hp3; p4i itself, as shown in Fig. 5.

However, in the example shown in Fig. 3, onlyoneexpansion seg-
ment is needed since the only cut-off marking reachable from the
initial marking is the initial marking itself (i.e.m = hp1; p2i)1.

Give an expansion segmentE, represented as an acyclic Petri net
fragment, we perform astatic schedulingof the operations in that
segment. During scheduling, astepis assigned to every operation
in E. More formally, static scheduling is defined as follows.

Definition 4.1 LetE be an expansion segment.ti is said topre-
cedetj in E, denoted asti � tj , if there is a directed path from
ti to tj . Let � : T ! N , be aschedule functionthat assigns a
non-negative integer�(t) 2 N to everyt 2 E. A schedule is said
to bevalid iff it satisfies the following condition:8ti; tj 2 E, if
ti � tj , then�(ti) � �(tj). If �(ti) = �(tj), then8tk such that
ti � tk � tj , �(ti) = �(tk) = �(tj).

In the case when there existsti and tj , such thatti � tj , but
�(ti) = �(tj), it means both operations are executed in the same
clock cyclecombinationally. This technique is referred to aschain-
ing in high-level synthesis research [5, 8].

1Here, we do not distinguish betweenpi andp0

i
because they simply denote dif-

ferent instances of the same place.
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Figure 5: (a) Another maximal expansion. (b) and (c) Cut-off
markings.

To illustrate this process, consider the expansion segment shown
in Fig. 6(a). A valid schedule is shown. It is not the intention
of this paper to discuss in details the different possible scheduling
heuristics. The interested reader can refer to [5, 8] for a survey of
example techniques.
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Figure 6: (a) A valid static schedule. (b) Corresponding state ma-
chine (control-flow graph) fragment.

Given a schedule�, a state machine fragmentSM� is constructed.
The control-flow-graph generation step is based on a traversal ofE

using Petri net firing rules, but we modify the firing rules so that
we proceed in accordance to the levels defined by�. For example,
the schedule shown in Fig. 6(a) will result in the state machine
fragment depicted in Fig. 6(b).

Currently, the sharing of hardware resources, such as the sharing of
arithmetic operators, must be specified manually by the developer
via pragmas. We have not incorporated automated optimization
procedures for this yet. However, we believe resource allocation
and sharing heuristics developed in high-level synthesis are appli-
cable to our scheduling framework. This is currently under investi-
gation.

Once the overall state machine has been generated, it can be syntac-
tically translated into a register transfer level VHDL [3] description
(or Verilog [2]). Existing FPGA synthesis tools (e.g. [30, 26, 31,
34, 25]) can be used for logic synthesis and technology mapping
on to a target FPGA architecture.

5 Status

The hardware compilation method presented in this paper has been
developed in the framework of a system calledPicasso. Our tar-
get platform is an FPGA-coupled microprocessor architecture like
the ones described in [10, 7, 24, 22, 4, 23, 21, 25, 34]. The over-
all Picasso system can be used to program both the microprocessor
part as well as the FPGA co-processor part. To permit experimen-
tations, we are currently developing a simple simulator for a hypo-
thetical hybrid architecture comprising of a MIPS core and a FPGA
component. To build the simulator, we are currently investigating
the use of the SPIM instruction-set level simulator for the MIPS
R2000/R3000 instruction-set [12] along with a simple cycle-based
compiled-code simulator for the reconfigurable hardware part.

6 Summary

In this paper, we described a programming environment for the
development of hybrid hardware/software applications for FPGA-
coupled configurable computing machines. In particular, we pre-
sented a new hardware compilation method that can produce effi-
cient hardware configurations starting from a high-level algorith-
mic process-based specification.
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