
ABSTRACT: Satisfiability (SAT) is a computationally
expensive algorithm central to many CAD and test appli-
cations. In this paper, we present the architecture of a
new SAT solver using reconfigurable logic. Our main
contributions include new forms of massive fine-grain
parallelism and structured design techniques based on
iterative logic arrays that reduce compilation times from
hours to a few minutes. Our architecture is easily scalable.
Our results show several orders of magnitude speed-up
compared with a state-of-the-art software implementa-
tion, and with a prior SAT solver using reconfigurable
hardware.

1.  INTRODUCTION
Thesatisfiability(SAT) problem - given a boolean formula

, find an assignment of binary values to (a sub-
set of the) variables, so thatF is set to 1, or prove that no such
assignment exists - is a central computer science prob-
lem[12][18]. TypicallyF is expressed as a product-of-sums
which is also calledconjunctive normal form(CNF). Here we
review the terminology via an example: in the formula

, we have twovariables(A
andB) and threeclauses, each with twoliterals; the literals in
the third clause areA andB, whereB is an inverting literal
andA is anon-invertingone. The assignment (A=1,B=1) is a
satisfying assignment, as it setsF=1. HenceF is satisfiable.
The formula  isunsatisfiable.

SAT has many applications in CAD and test[11]; here we
will mention only a subset. A system of boolean equations
can be solved by SAT by merging all equations into one for-
mula. CAD problems that require solving large systems of
boolean equations include timing verification[7][15], layout,
and routability analysis[6][23]. Automatic test-pattern gener-
ation (ATPG) may be formulated as a SAT problem[14][21].
Computing the maximum circuit delay in the presence of
false paths can also be solved by SAT[20]. Many problems in
logic synthesis[3] - such as state assignment, state minimiza-
tion, I/O encoding and asynchronous circuit design[13] -
have SAT-based solutions.

It is well-known that SAT is an NP-complete problem[4].
Even with the most advanced SAT algorithms, such as
GRASP[19], difficult problems may require many hours of

computation. In the DIMACS set of SAT benchmarks[8],
there are still several problems so difficult that, to the best of
our knowledge, no SAT algorithm has ever been able to solve
them. Applied to complex VLSI circuits, SAT-based algo-
rithms have long run-times. Thus speeding up SAT will result
in improving the efficiency of many CAD and test algorithms
relying on SAT.

2.  PREVIOUS WORK
Recently, several research groups have explored different

approaches to implement SAT on reconfigurable hard-
ware[22][1][24][17][25][16][2]. Figure 1 illustrates the
general data flow of such an approach, whose goal is to speed
up an algorithmALG working on a given circuitC. A map-
ping program generates the model of a new circuitALG(C),
which executesALG for C. SinceALG(C)will be used only
once, it is not economically feasible to actually construct it.
Using reconfigurable hardware allows one to“ virtually” cre-
ate ALG(C), then execute the algorithm by emulating this
circuit. In contrast to a hardware accelerator forALG (for
example, a simulation accelerator), where the same spe-
cial-purpose hardware processes different circuits, in this
approach theALG(C)hardware is designed specifically for a
single circuit. The advantage is thatALG will run at emula-
tion speed, without incurring the cost of building
special-purpose hardware.

In the following, we will refer to aSAT(C)circuit as ahard-
ware SAT solver, or asatisfier. Suyamaet al. [22] were the
first to create a satisfier, which is downloaded into an emula-
tor for execution. Although this method can be more efficient
than a software SAT solver, its SAT algorithm is primitive
and its applicability to CAD is limited because the generated
vectors are always fully specified. This overspecification is
detrimental in most CAD and test applications; for example,
in ATPG, full specification would preclude test set compac-
tion or generating the obtained vector by a different circuit.

The satisfier of Zhonget al.[24][25] implements a version
of the classical Davis-Putnam SAT algorithm[5]. For every
variable i, they construct an implication circuit and a state
machine to manage the decision process fori. The implica-
tion circuit detects the conditions when values of other
variables imply a value fori, and detects a conflict when both
0 and 1 are implied fori. The decision state machine keeps
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track of the current value ofi (0, 1, or x for unas-
signed/unknown), and of the way the value has been obtained
(assigned or implied). The decision state machines of all vari-
ables are connected as cells in a serial chain, where only one
cell at a time may be enabled. The leftmost enabled cell
whose variablei has an unknown value first assignsi=1. All
the implications of this assignment are determined, and if no
conflicts are detected, the next cell to the right is enabled. If
i=1 leads to conflicts, the assignmenti=0 is tried next. When
both 0 and 1 lead to conflicts,i is set tox and control is passed
to the left (backtracking). A cell whose value has been
implied simply passes control to the right for normal process-
ing or to the left for backtracking. The architecture has been
implemented using an IKOS emulator. A proposed exten-
sion[25] implements a sophisticated non-chronological
backtracking mechanism. The published results show a
median speed-up of 64 on a subset (about 60%) of the
DIMACS SAT benchmarks[8], compared with a software
SAT solver constrained to run a similar algorithm.

An important problem in any SAT solver is the method
used to select the next decision variable and its value to be
tried. In software, the most efficient techniques rely on
dynamic (run-time) ordering of variables based on heuristic
measures that allow selecting the best one[18][19]. Dynamic
selection, however, has been considered too expensive to
directly implement in hardware. What all hardware SAT
solvers do is order the variables statically (as a preprocessing
step) based on some heuristic functions. This predetermines
the basic order in which the search space will be explored at
run-time. The only way this ordering may be altered is by
skipping certain variables based on run-time conditions.

The static order used in [25] ranks variables based on their
fanout count and is used to arrange the variables in the serial
chain. The only variables skipped at run-time are those
already having a binary value, and for every decision variable
the 1 value is tried before 0. This mechanism leads to unnec-
essary or detrimental decisions. For example, when variable
A becomes enabled andA still has valuex, A=1 will be tried,
even if no assignment toA is really needed in the current state
(if A feeds only already satisfied clauses), or even if 1 is the
wrong choice forA (when onlyA literals appear in the cur-
rently unsatisfied clauses); this results in a lot of unnecessary
backtracking. A satisfier architecture similar to [25] has been
recently described by Platzner and De Micheli[16]. They
overcome the unnecessary decisions in [25] by introducing
additional clauses to identify the conditions that make a vari-
able become adon’t careand logic that avoids decisions on
these variables.

The satisfier proposed by Abramovici and Saab[1] solves
thecircuit SAT problem- given a combinational circuit with
output F, finding an input assignment to setF=1. SAT is
solved by modeling a CNF by a 2-level circuit. The satisfier
executes a line justification algorithm patterned after
PODEM[10]. Central to this algorithm is the concept of
objective, which is a desired assignmentl=v of valuev to line
l, which currently has an unknown valuex. Initially all lines
are set tox. An objective may be achieved only by primary

input (PI) assignments. Abacktraceprocedure propagates an
objectivel=v along a single path froml to a PIi, where all the
lines along the path have valuex, and determines a PI assign-
menti=vi that is likely to contribute to achievingl=v . A major
innovation introduced in [1] is logic for backtracing of objec-
tives, thus realizing a backward circuit traversal in hardware.
The search process is performed in a central control unit,
using a hardware stack to support the backtracking process.
Backtracing inherently avoids both decisions ondon’t care’s
and assigning wrong values as done in [25]. However, the
lack of a regular structure makes this architecture difficult to
scale with the size of the problem. Rashidet al.[17] discuss
an implementation of this architecture using Xilinx 6200
series FPGAs. No results are reported in either [1] or [17].

An important issue affecting any algorithm implemented
on reconfigurable hardware, is thecompilation timespent in
preparing the FPGA-based circuit to be emulated. This pro-
cess involves multi-FPGA partitioning taking into account
the existing board interconnect, and then, for every FPGA,
technology mapping, placement, and routing. If these tasks
require more time than solving the original problem in soft-
ware, then no overall speed-up can be achieved. To realize a
proper balance between the run-time of the FPGA physical
design tools and the computational savings resulting from
accelerating SAT, [25] suggests that one should use a satis-
fier only for really difficult problems for which it is worth
spending even a couple of hours in compilation if this saves
many more hours of computation.

The remainder of the paper is organized as follows. Section
3 summarizes our main contributions. Section 4 describes the
architecture of our satisfier. Section 5 presents our prelimi-
nary results, and Section 6 concludes the paper.

3.  MAIN CONTRIBUTIONS
In this paper, we first introduce anew massively-parallel

fine-grain satisfier architecture. Like [1], our satisfier selects
the next variable to assign based on backtracing objectives.
But while in [1] only one objective is propagated along a sin-
gle path and results in a unique variable assignment, the new
architecture providesnew forms of massive parallelism- par-
allel backtracing of all objectives along all possible paths
and concurrent assignments of several variables. Conceptu-
ally, the parallel backtrace is similar to the multiple backtrace
of the FAN algorithm[9]; but, unlike in software, where
objectives must be processed serially, in hardware we back-
trace all objectives concurrently. An important difference is
that in places where FAN selects only one path to backtrace
one objective, in hardware we allowsimultaneous explora-
tion of all possible paths. To make possible this massive
parallel processing we introduce the novel concept ofobjec-
tives with different priorities.

A unate variablehas all its literals either complemented or
not, and hence it can never cause a conflict. Another signifi-
cant contribution in our approach is theidentification of
dynamically unate variables.After a variable is assigned,
certain clauses become satisfied. All the unassigned literals
of an already satisfied clause are said to bedead, because in
the current state, their values can no longer influence that



clause. When our satisfier detects that all inverting literals of
a variableA have died, it immediately assignsA=1, because
this will satisfy all the clauses containingA without causing
any conflicts. Similarly, detecting that all non-inverting liter-
als of A have died shows thatA may be safely set to 0.
AlthoughA is not unate, we treatA as a variable that becomes
unate in the current state(dynamically unate). Identifying
and assigning dynamically unate variables represents an
opportunistic assignmentwhich is treated like anew type of
implication. Increasing the number of implications reduces
the search space and results in significant speed-up.

An unassigned variable becomesdeadwhen all its literals
have died. Our satisfier identifies dead variables and never
assigns them, thus avoiding the unnecessary decisions taken
in [25]. Our dead variables are equivalent to thedon’t care’s
of [16], but are identified by a simpler mechanism.

To overcome the high computational costs of conventional
FPGA physical design tools, we have developedmodular
design techniques using iterative logic array (ILA) structures
to obtain easy-to-compile circuits. Like in [17], we design
several types of basic building blocks (including their inter-
nal placement and routing), and create a library of modules as
ILA cells to be used by any satisfier. After the library mod-
ules have been created,the complexity of the place-and-route
procedure for an ILA grows only linearly with the size of the
ILA. For inter-ILA connections we use a conventional router,
which works in an area of the FPGA where no logic has been
placed. While an unstructured chip design ends up with many
unrouted nets after 10-12 hours of CPU time, the samecircuit
using ILA-based design techniques takes only a few minutes
to successfully compile. These techniques are applicable to
any type of FPGA, and the reduction in compilation time they
provide becomes even more significant when we need to
compile a large number of FPGAs.The ILA-based approach
is inherently scalable, since adding more cells to an ILA does
not change its regular structure.

4.  THE SATISFIER ARCHITECTURE
Figure 2 shows the high-level view of our satisfier.Vari-

able Logic maintains the current values (0, 1, orx) of all
variables. Their values are sent toLiteral Logic, which dis-
tributes them as literal values toClause Logic. Clause
Logic computes the value of every clause and of the output
functionF, and also determines objectives for all the literals.
These objectives are sent back toLiteral Logic, which
merges objectives arriving from different literals of the same

variable into one objective for that variable. BothClause
Logic andLiteral Logic are combinational blocks.Variable
Logic maps the objectives arriving fromLiteral Logic into
assignments (implications or decisions). TheSynchroniza-
tion Unit initiates backtracking when the functionF becomes
0, performs some timing and control functions, and provides
the interface with the outside world:Reset/Start initiates the
execution,Doneis the completion signal, andSatisfiedindi-
cates whether the SAT problem has been successfully solved.
4.1  Concurrent Objectives

We model a CNF as a two-level circuit, as illustrated in
Figure 3. Each PI represents a variable, each OR input repre-
sents a literal, and each OR gate represents a clause.
Structurally, a variable is also referred to as a fanout stem.

To justify F=1, all the inputs of the AND gate must be 1.
While in software line justification algorithms[10][9], these
simultaneous requirements are processed one objective at a
time, in our massively parallel approach all the objectives are
concurrently processed. Allowing concurrent objective prop-
agation along several paths means that different objectives
may reach the same variable. Figure 3 shows that not all
objectives are equally important. Here we assume thatA has
already been assigned value 0, which in turn satisfied clause
D (logic values are italicized). All the objectives shown in
bold are necessary to setF=1, while the 1 objectives at the
inputs ofE are not (since there are two alternative ways of
settingE=1). We say that an objective hashigh priority if it
must be achieved(in the current state) to set the functionF to
1; the other objectives are said to havelow priority . We will
abbreviate “high- and low-priority objective” as “HI- and
LO-objectives” respectively. Note that HI-objectives always
form continuous implication chains(represented by bold
arrows) starting with theF objective. Clearly, a HI-objective
on a fanout branch of a stem should override any LO-objec-
tives on other branches of the same variable. In Figure 3, the
HI-1 objective onB1overrides LO-0 onB2and it is transmit-
ted toB. HI-objectives reaching PIs denoteimplicationsand
are mapped into value assignments for the corresponding
variables in the next clock cycle. (Since every clause has
always a HI-1 objective, these objectives are fixed in the
logic and not propagated fromF; but for the sake of clarity,
we will show them as being propagated.)

Conflicts: Conflicting HI-objectives arriving at the same
variable indicate an inconsistent state, because any binary
value assigned to that PI in the current state would set the
function F to 0 by reversing at least one of the implication
chains arriving at the stem fromF. Figure 4 illustrates such a
case where the objectives atB1 andB2 are, HI-1 and HI-0.
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Here we would like to backtrack immediately to cut useless
wandering in a no-solution area of the search space. This is
achieved by same technique described above that maps any
HI-objective reaching a PI into its corresponding variable
assignment, because no matter which binary value is
assigned to that PI, one of the implication chains will be
reversed and the result will beF=0. This value ofF is used in
theSync. Unit to initiate backtracking.

Potential conflicts: An additional priority level is useful to
differentiate among LO-objectives. A LO-objective means
that this objective is useful to achieve an upstream HI-objec-
tive, but in the current state there are alternative ways of
achieving the same HI-objective. In Figure 5, all the OR
inputs have LO-1 objectives, and bothA andB receive two
LO-1 and one LO-0 from their fanout branches. Clearly, this
indicates potential for conflicts in the future. Here the choice
of the objective value to propagate to the variable is arbitrary
(A gets 0 andB gets 1), but we flag the variable objective as
a potential conflictusing a *.Variable Logic will select the
next decision variable among the PIs with a potential conflict
flag. Propagating LO-1 objectives from all inputs of the OR
gates guarantees thatall potential conflicts are identified.

Dead literals and dynamically unate variables:As a
result of assigningA=1 in Figure 6, clauseE becomes satis-
fied, and its other input becomes adead literal. AlthoughB
is a binate variable, it may no longer cause a conflict; we say
thatB has become adynamically unate variable. A dead lit-
eral is identified by adead objective, denoted by∅ in
Figure 6. Clearly, the priority of∅ should be the lowest.
ThenB is recognized as a dynamically unate variable because

its fanout branches propagate only non-conflicting objectives
(LO-1 and∅). Although the value ofB is not implied by the
current state, weopportunistically assign B=1 to satisfy
clausesC anD without causing any conflicts. To effectively
treat B=1 as an implication,Literal Logic converts the
non-conflicting LO-1 objectives into a HI-1, which will gen-
erate the implicationB=1 in the next clock cycle.

In summary, our satisfier recognizes four priorities for
objectives: HI, * (potential conflict), LO, and∅ (dead).
4.2  Clause Logic

As illustrated in Figure 7, every clause withm literals is
implemented by a bidirectional ILA ofm OR2 cells. Every
cell receives the value of one variable (Vin), a flag (Inv) indi-
cating whetherVin should be inverted, and the partial OR
result from the cells on its left (Vl), and computes

for the next cell on its right (using
3-valued logic). TheVr value obtained at the right-most OR2
cell is the clause output value, which is sent to an AND ILA
to iteratively compute the value of the functionF.

While values propagate
left-to-right through the ILA,
objectives advances in the oppo-
site direction. Every OR2 cell
receives its output objectiveOr
from the cell on its right (the
right-mostOr is set to HI-1), and
determines the objective for its
input Oin and the output objective
Ol for the cell to its left. In fact,
the binary value of any (non-dead)
objective is known apriori (1 for
Ol andInv for Oin) and it is hard-coded in the logic. The com-
putation of priorities is given in Table 1, where H/L denotes
a HI or LO priority.
4.3  Literal Logic

Since he propagation of the variable values to literals is
straightforward, we will discuss only the process of comput-
ing an objective for a variable from the objectives of its
literals. As illustrated in Figure 8, we model a stem as a
sequence of stems with two fanout branches. The stem objec-
tive is computed by an ILA composed of ST2 cells which
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iteratively merge the
objectives arriving on
fanout branches from
Clause Logic. Every
ST2 cell receives the par-
tial result Or from the
cell on its right and the
objective of one fanout
branch Obr, and com-
putes the objective for its
stemOl, which is sent to
the next cell on its left.
The Ol output from the
left-most cell is the PI objective sent toVariable Logic. The
rules for computing objectives are given in Table 2, wherev
anda are arbitrary objective values, and H/L/*∈{HI, LO, *}.
Note thatObr cannot be a potential conflict (which may be
generated only byLiteral Logic), and thatObr is given prior-
ity over Or in the case both have HI-priority. A conflict
between HI-objectives will be detected because any value
assigned to the stem will causeClause Logic to outputF=0.
4.4  Variable Logic

As illustrated in Figure 9,Variable Logic is constructed as
a bidirectional ILA of VL cells. Every cell maintains its vari-
able valueV in a 2-bit register, and receives the objectiveO
from Literal Logic as a 3-bit field (2 bits for priority and 1
for value). All cells with HI-objectives are assigned in the
next clock cycle. A LO-objective shows that this variable has
become dynamically unate; its priority is immediately con-
verted to HI so that it will be treated as an implication. A
*-objective denotes a potential conflict; if no variable must
be implied, one of the variables with a *-objective will be
selected as the next decision variable.

Since all implications must be done before any decision is
tried, the ILA iteratively determines whether HI-objectives
are present anywhere in the array. For this, every cell com-
putes aHIr flag signaling whether its objectiveO or any of
the objectives of the cells to its left has HI-priority; the result
from the preceding cells is brought in by the inputHIl. The
signalImplobtained at theHIr output from the right-most cell
reports whether at least one variable is being implied. Since
no decisions should be made while implications are in
progress, Impl is complemented and fed back to the
right-most cell as a decision-enable input (DEr). A cell
receiving a dead objective (O=∅), because either its value is

binary or because its variable is dead, just passes the decision
enable signal through, i.e.,DEl=DEr. If the objectiveO of a
cell denotes a potential conflict and the cell is enabled to take
a decision (hasDEr=1), then its variable will be the next deci-
sion variable, so it disables decisions for the cells to its left by
setting itsDEl output to 0. The complement of theDEl output
from the left-most cell is the signalDecisionwhich indicates
whether any cell is taking a decision.

The control of the satisfier is distributed among the state
machines in the VL cells andSync. Unit. Unlike the central
stack used in [1], our architecture simply equips each VL cell
with an up/down counter to keep track of the decision level.
The state of a cell is encoded in a 2-bit state register, which
can only be updated if the cell is at the current decision level.
All counters are concurrently incremented or decremented as
specified by theCTRinputs. Such a distributed control mech-
anism is easily-scalable.

5.  EXPERIMENTAL RESULTS
Figure 10 shows the layout of a satisfier for a formula hav-

ing 13 variables, 29 clauses, and 69 literals, using an XC6264
FPGA. The layout is organized in alternating columns of
clause logic and variable/literal logic. The space between
these columns is reserved for the routing between the ST2
blocks of literals and the OR2 blocks of clauses. It is this rout-
ing that takes most of the compilation time, since the routing
of the ILAs themselves is trivial. Nevertheless, the empty
space reserved between columns guarantees efficient routing.
No automatic place and route tool would achieve the compi-
lation speed and compactness of this layout. The block in the
lower left corner is theSync. Unit, whose size does not vary
with the SAT instance being solved. The layout took about 3
minutes to be compile from its original CNF file. In contrast,
the unstructured version of the same satisfier (that is, without
using ILA-based design) could never be successfully com-
piled (after 10 hours of CPU time, there were still more than
200 of unrouted nets). We determined that a satisfier that
occupies the whole chip area can be clocked with a main
clock frequencyf of about 3.5MHz.

We use examples extracted from the DIMACS set of SAT
benchmarks[8]. In Table 3 we compare the results of our sat-
isfier with GRASP[19], one of the most efficient software
SAT solvers available. Because of the small capacity of our
current hardware platform, the results of the satisfier are
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obtained using a C model whose correctness was verified
against a VHDL model which accurately represents the hard-
ware implementation. The first 5 columns in Table 3 show
the benchmark data: name, number of inputs #I, number of
clauses #C, number of literals #L, and a Yes/No indication of
satisfiability. The following columns show the time taken by
our satisfier in number of main clock cyclesT, the time taken
by GRASP using the same time unit, and the speed-upSU
gained with our approach. The main clock frequency is

3.5MHz. GRASP was run on a Sun Ultra Sparc workstation
with 1026Mb RAM using a 248MHz clock. Thus GRASP is
running with a clock about 83 times faster than the emulation
clock.Unlike in [25], where GRASP was run in a restricted
mode, so that it matched the features implemented in hard-
ware, we allowed GRASP to run “full-speed,” using all its
sophisticated techniques. Our experience has shown that for
many instances, the restrictive mode slows down GRASP by
several orders of magnitude. GRASP was allowed to run each
example for up to one hour (equivalent to 12.6G clock cycles
on our satisfier), before aborting the execution. For 11 exam-
ples out of 20, our satisfier achieved significant speed-ups
between 78 and 7,000, and for 3 instances the speed-up was
in the 1.5 to 2.8 range. For 6 examples GRASP was faster
than our satisfier. This is due to its sophisticated search fea-
tures that do not have a match in our satisfier.

Table 4 shows a comparison against the reconfigurable
hardware satisfier described in [24] and [25]. To reproduce
their results, we simply switched off our features for dealing
with dead variables and dynamically unate variables, which
do not exist in their approach. Thus the compared satisfiers
use the same static ordering and the same implication mech-
anism, which results in a fair comparison. ColumnH
represents the “hardware cost” of our satisfier, defined as in
[24] as the total number gates and flip-flops;HP is the corre-
sponding cost in [24], andHO is the ratioH/HP, given only
for the examples that are common in the two papers. Our
hardware cost is between 1.1 and 2.6 times greater than [24].
However, this buys us a speed-up of 1 to 2 orders of magni-
tude on 8 out of the 20 examples from Table 3 (SU=1 for the
examples not included in Table 4). Several runs bypassing a
threshold of 100M clocks were aborted. Note that we are not
including the speed-up that results from our faster compila-
tion time: according to [25], their compilation time for one
FPGA is about 40 minutes, one order of magnitude greater
than our 3 minutes.

6.  CONCLUSIONS
In this paper we have introduced anew satisfier architec-

ture, usingnew forms of fine-grain massive parallelismto
accelerate a SAT solver implemented on reconfigurable

Benchmark #I #C #L Sat Clocks ClocksG SU

aim-50-1_6-no-2 50 80 240 N 75,415 21,000 0.28

aim-50-1_6-no-3 50 80 240 N 51,900 17,500 0.34

aim-100-1_6-no-2 100 160 480 N 6,570K 52,500 0.01

aim-100-1_6-yes1-3100 160 480 Y 1,711K 42,000 0.02

aim100-6_0-yes1-1 100 600 1800 Y 12,388 129,500 10.4

aim200-6_0-yes1-1 200 1200 3600 Y 942,830 2,033,500 2.2

dubois20 60 160 480 N 10,486K 199,500 0.02

hole8 72 297 648 N 259,519 302,834K 1166.9

hole9 90 415 900 N 2,336K 12.3G 5,270.0

hole10 110 561 1210 N 23,357K >12.6G >539.3

ii8a2 180 800 2052 Y 60,587 168,000 2.8

ii32c1 225 1280 6081 Y 38 150,500 3960.5

ii32d2 404 5153 17940 Y 31,701 5,586K 176.2

jnh1 100 850 4392 Y 3,879 304,500 78.5

par8-1-c 64 254 732 Y 118 28,000 237.3

par16-1-c 317 1264 3670 Y 1,133K 748,160K 660.0

par16-2-c 349 1392 4054 Y 703,007 4.93G 7,000.0

par16-5 1015 3358 8980 Y 1,750K 814,415K 465.4

pret60_25 60 160 480 N 28,512K 210,000  0.01

ssa432-003 435 1027 2364 N 86,496 126,000  1.5

Table 3. Comparison to GRASP

Figure 10. Satisfier layout on XC6264

Benchmark H HP HO Clocks ClocksP SU

aim-50-1_6-no-2 12,854 --- --- 75,415 2,885K 38

aim-50-1_6-no-3 12,854 --- --- 51,900 4,162K 80

aim-100-1_6-no-2 25,554 --- --- 6,570K >100M >15

aim-100-1_6-yes1-325,554 --- --- 1,711K >100M >58

aim-200-6_0-yes1-1165,354 100,453 1.6 942,830 942,830 1

hole8 32,113 --- --- 259,519 2,226K 9

hole9 44,099 --- --- 2,336K 28,912K 12

hole10 58,751 21,872 2.6 23,357K >100M >4

ii8a2 98,166 37,959 2.5 60,587 4,325K 71

ii32d2 790,349 --- --- 31,701 854,807 27

par16-1-c 174,054 80,215 2.1 1,134K 1,134K 1

ssa432-003 124,277 103,709 1.1 86,496 86,496 1

Table 4. Comparison to [24]



hardware:parallel backtracing of multiple objectives along
all possible paths and concurrent assignments of several
variables. This massive parallel processing is facilitated by
objective propagation with several different priorities. Our
satisfier identifiesdynamically unate variablesand dead
variables. These techniques generate more implications,
avoid wrong and unnecessary decisions, and reduce the
amount of backtracking. Our results show several orders of
magnitude speed-up compared with both a state-of-the-art
software SAT solver and a previous satisfier. Objectives are
a flexible mechanism that can be easily extended to support
additional algorithmic improvements, such as dynamic vari-
able selection, that we recently implemented (these results
will be reported in the future).

We have developedmodular design techniques using ILA
structures,thus overcoming the high computational costs of
conventional FPGA physical design tools. While an unstruc-
tured chip design ends up with many unrouted nets after
10-12 hours of CPU time, the same circuit using ILA-based
design techniques takes only a few minutes to successfully
compile. These techniques are applicable to any type of
FPGA, and the reduction in compilation time they provide
becomes even more significant when we need to compile a
large number of FPGAs. Another advantage of the
ILA-based approach is itsinherent scalability.

In a related paper[2], we have introduced avirtual logic
systemthat allows a reconfigurable logic platform to solve
SAT problems much larger than its available capacity. It
relies onnovel decomposition techniquesto divide a formula
into independent subproblems that can be run by different
FPGAs in any order. The unusual feature of our decomposi-
tion is thatinter-FPGA signals are never required.Unlike the
multi-FPGA partitioning used in a conventional design flow,
our decomposition is independent of the reconfigurable hard-
ware architecture. When the number of subproblems is larger
than the number of available FPGAs, we simply reuse the
same FPGA to solve in turn several subproblems. The
FPGAs can be run concurrently, introducing a new level of
course-grain parallelism, and resulting inup to three orders
of magnitude additional speed-up,which compensates for
the time spent in decomposition.
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