A Massively-Parallel Easily-Scalable Satisfiability Solver
Using Reconfigurable Hardware

Miron Abramovici Jose T. de Sousa Daniel Saab
Bell Labs - Lucent Technologies Case Western Reserve University
Murray Hill, NJ 07974 Cleveland, Ohio 44106
miron@research.bell-labs.com sousa@research.bell-labs.com saab@alpha.cwru.edu

ABSTRACT: Satisfiability (SAT) is a computationally computation. In the DIMACS set of SAT benchmarks[8],
expensive algorithm central to many CAD and test appli- there are still several problems so difficult that, to the best of
cations. In this paper, we present the architecture of a our knowledge, no SAT algorithm has ever been able to solve
new SAT solver using reconfigurable logic. Our main them. Applied to complex VLSI circuits, SAT-based algo-
contributions include new forms of massive fine-grain rithms have long run-times. Thus speeding up SAT will result
parallelism and structured design techniques based on inimproving the efficiency of many CAD and test algorithms
iterative logic arrays that reduce compilation times from relying on SAT.
hours to a few minutes. Our architecture is easily scalable. 2. PREVIOUS WORK
Our results show several orders of magnitude speed-up

compared with a state-of-the-art software implementa- Recently, several research groups have explored different
tion, and with a prior SAT solver using reconfigurable ~ @PProaches to implement SAT on reconfigurable hard-
hardware. ware[22][1][24][17][25][16][2]. Figure 1 illustrates the

general data flow of such an approach, whose goal is to speed
1. INTRODUCTION up an algorithmALG working on a given circuiC. A map-

Thesatisfiability (SAT) problem - given a boolean formula ping program generates the model of a new ciréliG(C),
F(xy, X5....,X,) , find an assignment of binary values to (a sub-which execute\LG for C. SinceALG(C)will be used only
set of the) variableso that~ is setto 1, or prove that no such once, it is not economically feasible to actually construct it.
assignment exists - is a central computer science proldsing reconfigurable hardware allows oné tartually” cre-
lem[12][18]. TypicallyF is expressed as a product-of-sumsate ALG(C), then execute the algorithm by emulating this
which is also calledonjunctive normal forfiCNF). Here we circuit. In contrast to a hardware accelerator AtG (for
review the terminology via an example: in the formula example, a simulation accelerator), where the same spe-
F = (A+B)O(A+B)O(A+ B), we have twovariables(A cial-purpose hardware processes different circuits, in this
andB) and threeclauseseach with twditerals; the literalsin ~ approach thé\LG(C)hardware is designed specifically for a
the third clause aré andB, whereB is aninverting literal single circuit The advantage is th&LG will run at emula-
andAis anon-invertingone. The assignmemd{1,B=1)isa tion speed, without incurring the cost of building
satisfying assignmenas it setd==1. HenceF is satisfiable = special-purpose hardware
The formula F' = FO(A+B) iunsatisfiable

SAT has many applications in CAD and test[11]; here we
will mention only a subset. A system of boolean equations
can be solved by SAT by merging all equations into one for-
mula. CAD problems that require solving large systems of
boolean equations include timing verification[7][15], layout,
and routability analysis[6][23]. Automatic test-pattern gener-
ation (ATPG) may be formulated as a SAT problem[14][21]. ' |n the following, we will refer to &8AT(C)circuit as ehard-
Computing the maximum circuit delay in the presence ofware SAT solveror asatisfier. Suyamaet al. [22] were the
false paths can also be solved by SAT[20]. Many problems ifirst to create a satisfier, which is downloaded into an emula-
logic synthesis[3] - such as state assignment, state minimizaor for execution. Although this method can be more efficient
tion, 1/0 encoding and asynchronous circuit design[13] -than a software SAT solver, its SAT algorithm is primitive
have SAT-based solutions. and its applicability to CAD is limited because the generated

It is well-known that SAT is an NP-complete problem[4]. vectors are always fully specified. This overspecification is
Even with the most advanced SAT algorithms, such agletrimental in most CAD and test applications; for example,

GRASP[19], difficult problems may require many hours of in ATPG, full specification would preclude test set compac-
tion or generating the obtained vector by a different circuit.

The satisfier of Zhongt al[24][25] implements a version
Permission to make digital/hardcopy of all or part of this work for personal or of the classical Davis-Putnam SAT algorithm[5]. For every

Original
circuit
C

circuit
ALG(C)

Mapping Reconfigurable

program Hardware

Figure 1. Speeding up algorithmALG for circuit C

classroom useis granted without fee provided that copies are not made or distributed : : : ; : ; ;
for profit or commercial advantage, the copyright notice, the tile of the publication Yafiablei, they construct an implication circuit and a state
and its date appear, and notice is given that copying is by permission of ACM, Inc. machine to manage the decision process fdihe implica-

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires tion circuit detects the conditions when values of other
prior specific permission and/or afee.

DAC 99, New Orleans, Louisiana variables imply a value fdr and detects a conflict when both
() 1999 ACM 1-58113-109-7/99/06..$5.00 0 and 1 are implied for. The decision state machine keeps

track of the current value of (0, 1, or x for unas- input(Pl) assignments. Backtraceprocedure propagates an
signed/unknown), and of the way the value has been obtainedbjectivel=v along a single path froito a Pli, where all the
(assigned or implied). The decision state machines of all varidines along the path have valugand determines a Pl assign-
ables are connected as cells in a serial chain, where only onmenti=v; that is likely to contribute to achievirlgv. A major

cell at a time may be enabled. The leftmost enabled cellinnovation introduced in [1] is logic for backtracing of objec-
whose variablé has an unknown value first assigid. All tives, thus realizing a backward circuit traversal in hardware.
the implications of this assignment are determined, and if naThe search process is performed in a central control unit,
conflicts are detected, the next cell to the right is enabled. Ifusing a hardware stack to support the backtracking process.
i=1 leads to conflicts, the assignmen® is tried next. When Backtracing inherently avoids both decisionsdum’t care’s
both 0 and 1 lead to conflictsis set toxand controlis passed and assigning wrong values as done in [25]. However, the
to the left (backtracking). A cell whose value has beenlack of a regular structure makes this architecture difficult to
implied simply passes control to the right for normal process-scale with the size of the problem. Raslkidal[17] discuss

ing or to the left for backtracking. The architecture has beenan implementation of this architecture using Xilinx 6200
implemented using an IKOS emulator. A proposed exten-series FPGAs. No results are reported in either [1] or [17].

sion[25] ‘implements a sophisticated non-chronological - A jmportant issue affecting any algorithm implemented
backtracking mechanism. The published resultso Show @ reconfigurable hardware, is thempilation timespent in
median speed-up of 64 on a subset (about 60%) of thgyenaring the FPGA-based circuit to be emulated. This pro-
DIMACS SAT benchmarks[8], compared with a software egq involves multi-FPGA partitioning taking into account
SAT solver constrained to run a similar algorithm. the existing board interconnect, and then, for every FPGA,
An important problem in any SAT solver is the method technology mapping, placement, and routing. If these tasks
used to select the next decision variable and its value to beequire more time than solving the original problem in soft-
tried. In software, the most efficient techniques rely onware, then no overall speed-up can be achieved. To realize a
dynamic (run-time) ordering of variables based on heuristicproper balance between the run-time of the FPGA physical
measures that allow selecting the best one[18][19]. Dynamialesign tools and the computational savings resulting from
selection, however, has been considered too expensive taccelerating SAT, [25] suggests that one should use a satis-
directly implement in hardware. What all hardware SAT fier only for really difficult problems for which it is worth
solvers do is order the variables statically (as a preprocessingpending even a couple of hours in compilation if this saves
step) based on some heuristic functions. This predeterminesiany more hours of computation.
the basic order in which the search space will be explored at g remainder of the paper is organized as follows. Section
run-time. The only way this ordering may be altered is by 3 symmarizes our main contributions. Section 4 describes the
skipping certain variables based on run-time conditions. 5 rchitecture of our satisfier. Section 5 presents our prelimi-
The static order used in [25] ranks variables based on theinary results, and Section 6 concludes the paper.
fanout count and is used to arrange the variables in the seri
chain. The only variables skipped at run-time are thos:‘%' MAIN CONTRIBUTIONS

already having a binary value, and for every decision variable_ N this paper, we first introduce mew massively-parallel
fine-grain satisfier architecture.ike [1], our satisfier selects

the 1 value is tried before 0. This mechanism leads to unnec: :) . o
essary or detrimental decisions. For example, when variabld€ Néxt variable to assign based on backiracing objectives.
ut while in [1] only one objective is propagated along a sin-

A becomes enabled aridstill has valuex, A=1 will be tried, X) i)
even if no assignment #is really needed in the current state 91€ Path and results in a unique variable assignment, the new

(if A feeds only already satisfied clauses), or even if 1 is the?"chitecture providesew forms of massive parallelismpar-

wrong choice forA (when onlyA literals appear in the cur- allel backtracing of all objectives along all possible paths

rently unsatisfied clauses); this results in a lot of unnecessarfnd concurrent assignments of several variab&snceptu-
backtracking. A satisfier architecture similar to [25] has beena”y' the parallel chktrace IS S|m|la(to t_he multiple backirace
recently described by Platzner and De Micheli[16]. They ©f the FAN algorithm[9]; but, unlike in software, where
overcome the unnecessary decisions in [25] by introducing’Piectives must be processed serially, in hardware we back-

additional clauses to identify the conditions that make a vari-trace all objectives concurrently. An important difference is
able become don’t careand logic that avoids decisions on thatin places where FAN selects only one path to backtrace
these variables. one objective, in hardware we allogimultaneous explora-

tion of all possible pathsTo make possible this massive

The satisfier proposed by Abramovici and Saab[1] solvesparallel processing we introduce the novel concetigéc-
thecircuit SAT problem given a combinational circuit with tjyes with different priorities
outputF, finding an input assignment to SEt=. SAT 1S A unate variablehas all its literals either complemented or
solved by modeling a CNF by a 2-level circuit. The satisfier dh ; fi p her sianifi
executes a line justification algorithm patterned after 'Ol @nd hence it can never cause a conflict. Another signifi-

PODEMI[10]. Central to this algorithm is the concept of Cant contribution in our approach is thdentification of
objective which is a desired assignment of valuevto line ~ dynamically unate variablesifter a variable is assigned,
I, which currently has an unknown valuelnitially all lines certain clauses become satisfied. All the unassigned literals

are set tox. An objective may be achieved only by primary of an already satisfieq clause are said talbad pecause in
the current state, their values can no longer influence that

clause. When our satisfier detects that all inverting literals ofvariable into one objective for that variable. Bafliause

a variableA have died, it immediately assigs1, because Logic andLiteral Logic are combinational block&/ariable

this will satisfy all the clauses containifgwithout causing Logic maps the objectives arriving frofriteral Logic into

any conflicts. Similarly, detecting that all non-inverting liter- assignments (implications or decisions). T$ynchroniza-

als of A have died shows thad may be safely set to 0. tion Unit initiates backtracking when the functierbecomes
AlthoughAis not unate, we tredt as a variable that becomes 0, performs some timing and control functions, and provides
unate in the current stat@lynamically unate)ldentifying the interface with the outside worl®eseBtartinitiates the

and assigning dynamically unate variables represents apxecutionDoneis the completion signal, arfatisfiedndi-
opportunistic assignmenthich is treated like aew type of cates whether the SAT problem has been successfully solved.
implication Increasing the number of implications reduces 4.1 Concurrent Objectives

the search space and results in significant speed-up. We model a CNF as a two-level circuit, as illustrated in

An unassigned variable becomasadwhen all its literals Figure 3. Each Pl represents a variable, each OR input repre-
have died. Our satisfier identifies dead variables and nevegents a literal, and each OR gate represents a clause.

assigns them, thus avoiding the unnecessary decisions taka&gructurally, a variable is also referred to as a fanout stem.
in [25]. Our dead variables are equivalent to thom't carés
of [16], but are identified by a simpler mechanism.

To overcome the high computational costs of conventional
FPGA physical design tools, we have developeddular
design techniques using iterative logic array (ILA) structures
to obtain easy-to-compile circuits. Like in [17], we design
several types of basic building blocks (including their inter-
nal placement and routing), and create a library of modules as
ILA cells to be used by any satisfier. After the library mod- Figure 3. HI- and LO-objectives

ules have been createtie complexity of the place-and-route To justify F=1, all the inputs of the AND gate must be 1.
procedure for an ILA grows only linearly with the size of the while in software line justification algorithms[L0][9], these
ILA. For inter-ILA connections we use a conventional router, simultaneous requirements are processed one objective at a
which works in an area of the FPGA where no logic has beenime, in our massively parallel approach all the objectives are
placed. While an unstructured chip design ends up with many:oncurrently processed. Allowing concurrent objective prop-
unrouted nets after 10-12 hours of CPU time, the seincetit ~ agation along several paths means that different objectives
using ILA-based design techniques takes only a few minutegay reach the same variable. Figure 3 shows that not all
to successfully compilérhese techniques are applicable to ppjectives are equally important. Here we assumeAHas
any type of FPGA, and the reduction in compilation time they aready been assigned value 0, which in turn satisfied clause
provide becomes even more significant when we need t@ (logic values are italicized). All the objectives shown in
compile a large number of FPGABhe ILA-based approach hold are necessary to sét1, while the 1 objectives at the
is inherently scalablesince adding more cellsto an ILAdoes inputs of E are not (since there are two alternative ways of
not change its regular structure. settingE=1). We say that an objective haigh priority if it
4. THE SATISFIER ARCHITECTURE must be achieve(in the current state) to set the functibro
Figure 2 shows the high-level view of our satisfi®fari- 1’btk?e qtfler‘%bjei]ctlvez ellre Sa'd to haﬁ? p;!orl"fy ; \/\‘{alwlll d
able Logic maintains the current values (0, 1, yrof all EEO rei)\qae_ Igh- an _ovlv-p'r\llorlty ho JeH(i |v§_ as -Ian
variables. Their values are sentltiteral Logic, which dis- -objectives res.petlzltlve.y. or;ce.t at Hl-o]ec'gv%s abw%ys
tributes them as literal values #Blause Logic. Clause ~ [orm continuous implication chaingrepresented by bo
Logic computes the value of every clause and of the outpuf"rrows) starting with th& objective. Clearly, a HI-objective

functionF, and also determines objectives for all the literals. ona fanout branch of a stem should ov_errlde any_LO-objec—
These objectives are sent back ttiteral Logic, which tives on other branches of the same variable. In Figure 3, the

. - ; ; HI-1 objective orB1overrides LO-0 orB2and it is transmit-
merges objectives arriving from different literals of the same. . 4ioB. Hl-objectives reaching Pls dendteplicationsand

control . are mapped into value assignments for the corresponding
" | Variable Logic variables in the next clock cycle. (Since every clause has
always a HI-1 objective, these objectives are fixed in the
status value4 Tobjectives logic and not propagated frofy but for the sake of clarity,
Resetbtart we will show them as being propagated.)
Done | S&’Qﬁ Literal Logic Conflicts: Conflicting Hl-objectives arriving at the same
o variable indicate an inconsistent state, because any binary
Satisfigy A value assigned to that PI in the current state would set the
value objectives g . . LT
function F to 0 by reversing at least one of the implication
F cl Loa chains arriving at the stem frok Figure 4 illustrates such a
ause Logic iacti . _
Figure 2. Satisfier architecture 9 case where the objectivesB1 andB2 are, HI-1 and HI-0

its fanout branches propagate only non-conflicting objectives
(LO-1 and(d). Although the value oB is not implied by the
current state, weopportunistically assign 81 to satisfy
clausesC anD without causing any conflicts. To effectively
treat B=1 as an implication Literal Logic converts the
non-conflicting LO-1 objectives into a HI-1, which will gen-

| < feecel It erate the implicatioB=1 in the next clock cycle.

,B2 ¥ NB E In summary, our satisfier recognizes four priorities for
Figure 4. Conflicting Hl-objectives objectives: HI, * (potential conflict), LO, and (dead).
Here we would like to backtrack immediately to cut useless4 2 Clause Logic

wandering in a no-solution area of the search space. This is s illustrated in Figure 7, every clause with literals is
achieved by same technique described above that maps an?@lemented by a bidirectional ILA ah OR2 cells. Every

Hl-objective reaching a PI into its corresponding variable' ; , g~
assignment, because no matter which binary value iS¢ eceives the value of one variablgy, a flag (nv) indi-
assigned to that PI, one of the implication chains will be cating whethe, should be inverted, and the partial OR

reversed and the result will B&=0. This value of is used in re\?ulz X/omm ;[:5) +C\? lls f(())rnthgsnelitc\éﬁl)for?ir':g ri;?]:n(%'“slﬁﬁz
o X = (V, |
the Sync. Unit to initiate backtracking. 3—vf';1lued Ilggic). Thé/, value obtained at the right-most OR2

Potential conflicts: An additional priority level is useful to cell is the clause output value, which is sent to an AND ILA
differentiate among LO-objectives. A LO-objective means to iteratively compute the value of the functin

that this objective is useful to achieve an upstream HI-objec-
tive, but in the current state there are alternative ways of
achieving the same HI-objective. In Figure 5, all the OR

inputs have LO-1 objectives, and bodandB receive two _ —*—4_—_—#_4—_—_‘r4 B [

AND2 AND2

.
F

I T aral | mamin m

LO-1 and one LO-0 from their fanout branches. Clearly, this o
indicates potential for conflicts in the future. Here the choice | ORr2 [Z| or2 [%| or2 [| "% or2 [_ |
of the objective value to propagate to the variable is arbitrary | | HI-Y HI-
(A gets 0 andB gets 1), but we flag the variable objective as _ _*o_ _/ il _‘_*1 L *3]
apotential conflictusing a *.Variable Logic will select the l l BN - 4
next decision variable among the Pls with a potential conflict : ~o
flag. Propagating LO-1 objectives from all inputs of the OR Vin - Oin Clause
gates guarantees thal potential conflicts are identified — M OR2 Vi—
— O| Or_> . .
Inv Figure 7. Clause logic
}
While values propagat _ _
left-to-right through the ILA, O Vi Vin § O 1O
objectives advances in the opp 0| - |- J0]0
’ o site direction. Every OR2 cell 1| -
Figure 5. Potentially conflicting LO-objectives receives its output objectiv®, | - [- [1 o | O
Dead literals and dynamically unate variablesAs a from the cell on its right (the 0o
result of assigning=1 in Figure 6, claus& becomes satis- 19ht-mostO; is set to HI-1), and < too
fied, and its other input becomesdaad literal Althoughs ~ deétermines the objective for itg
is a binate variable, it may no longer cause a conflict; we sayPut Oin @nd the output objectivefH/L | x | 0 JHL| D
thatB has become dynamically unate variableA dead lit- < for the cell o its left. In fact, 0 x [0 [AL
the binary value of any (non-dead

eral is identified by adead objective denoted byl in biective is K ori (1 f abie 1 OR? objectives
Figure 6. Clearly, the priority of] should be the lowest, CPi€ctive is known apriori (1 for

ThenB s recognized as a dynamically unate variable becaus& andInvfor G;,) and itis hard-coded in the logic. The com-
putation of priorities is given in Table 1, where H/L denotes

a Hl or LO priority.
4.3 Literal Logic

Since he propagation of the variable values to literals is
straightforward, we will discuss only the process of comput-
ing an objective for a variable from the objectives of its
literals. As illustrated in Figure 8, we model a stem as a
ol o1 &~ sequence of stems with two fanout branches. The stem objec-

, 0 ! tive is computed by an ILA composed of ST2 cells which
Figure 6. Dynamically unate variable

Literal Logic

Ly — — — = L — — = —
E —————————————— 3 «E DAEE:E Ir‘_;“L 4 0 34 Ny L 7~ Gompl_tried

T "N/ariahla | ~mi~ a I T aral | mnie m
d

|
ST2 [« ST2 = ST2 =, : > 7 e
1 |
— o) - — = 7 b |
A==/ F "F_LCI___'_'] ____J__‘[__L____ﬁ
/ L ause Logch 7 : | Vimpl
_Llause Logi el , N st sl
ewsion l T v Sync. Unit !
ST2 6 vt ————-
<—O| Or<— —»CTI CTr —>
OF Figure 8. Literal logic —=Hi, Vb hi = Figure 9. Variable logic
iteratively merge the ~—PDF DE/~—
objectiveys arriv?ng on O [O] O Notes R
fanout branches fron] U | O | U | same binary or because its variable is dead, just passes the decision
Clause Log_lc. Every | H/L-v H/L-v] H/L-v || objectives enable signal through, i.eDE=DE,. If the objectiveO of a
ST2cellreceivesthe palf—— |-y HI overrides cell denotes a potential conflict and the cell is enabled to take
tial result O from the [—m—r] Hiv || o] @decision (haBE=1), thenits variable will be the next deci-

cell on its right and the sion variable, so it disables decisions for the cells to its left by
objective of one fanouy U |H/L-V]H/L-V ||any objective setting itsDE; output to 0. The complement of ti¥E, output
branch Oy, and com-|H/L/«v| O [H/L/*-v||overridesd from the left-most cell is the sign&@lecisionwhich indicates
putes the objective for itg O~ LoV whether any cell is taking a decision.

,[S;er;g;t\’\gﬁhoﬁ ﬁgnlteg[) *v_[Lo-4 v * overrides Ld The control of the satisfier is distributed among the state
The O outout from the. ~Table 2. Varable objectves machines in the VL cells an8ync. Unit. Unlike the central
! P i stack used in [1], our architecture simply equips each VL cell

Irelit—mfos;t cerlrl1|s E[?ne Plbc.’bj(ifvt've S;emi‘\fa;'?r?l? Lb?g'g' Lﬁir with an up/down counter to keep track of the decision level.
uies for computing objectives are give anie 2, € The state of a cell is encoded in a 2-bit state register, which

andaare arbitrary objective values, and H/LIHI, LO, *}. can only be updated if the cell is at the current decision level.

Note thatOp, cannot be a potential conflict (which may be All counters are concurrently incremented or decremented as

generated only byiteral Logic), and thaiOy, is given prior- o ; L i
ity over O, in the case both have HI-priority. A conflict Zﬁ%crgl?sd ebgsti?yi-(r:illggllgs. Such a distributed control mech
K .

between HI-objectives will be detected because any valu
assigned to the stem will cau€¢ause Logic to outputF=0. 5. EXPERIMENTAL RESULTS

4.4 Variable Logic Figure 10 shows the layout of a satisfier for a formula hav-
ing 13 variables, 29 clauses, and 69 literals, using an XC6264
FPGA. The layout is organized in alternating columns of
: e : - ; clause logic and variable/literal logic. The space between
able valueVin a 2-bit register, and receives the objectve these columns is reserved for the routing between the ST2

from Literal Logic as a 3-bit field (2 bits for priority and 1 : A
for value). Al cells with Hl-objectives are assigned in the blocks of literals and the OR2 blocks of clauses. Itis this rout-

next clock cycle. A LO-objective shows that this variable has ing that takes most of the compilation time, since the routing

become dynamically unate; its priority is immediately con- of (€ ILAS themselves is trivial. Nevertheless, the empty
verted to HI so that it will be treated as an implication. A space reserved between columns guarantees efficient routing.

*-objective denotes a potential conflict; if no variable must No automatic place and route tool would achieve the compi-

ve mplie, one of e varables Wi -otjecve il be 2,7 520 10 Tpacnese.f e otk e ok e
selected as the next decision variable. ync. ’ y

i T ~with the SAT instance being solved. The layout took about 3
Since all implications must be done before any decision isminutes to be compile from its original CNF file. In contrast,
tried, the ILA iteratively determines whether Hi-objectives the unstructured version of the same satisfier (that is, without
are present anywhere in the array. For this, every cell comysing ILA-based design) could never be successfully com-
putes aHl, flag signaling whether its objectiv® or any of piled (after 10 hours of CPU time, there were still more than
the objectives of the cells to its left has HI-priority; the result 200 of unrouted nets). We determined that a satisfier that
from the preceding cells is brought in by the inpilj. The occupies the whole chip area can be clocked with a main

signallmpl obtained at théil, output from the right-most cell clock frequency of about 3.5MHz.

reports whether at least one variable is being implied. Since
no decisions should be made while implications are in
progress, Impl is complemented and fed back to the
right-most cell as a decision-enable inpi2E;). A cell
receiving a dead objectiv®E), because either its value is

pot. conflict

As illustrated in Figure 9yariable Logic is constructed as
a bidirectional ILA of VL cells. Every cell maintains its vari-

We use examples extracted from the DIMACS set of SAT
benchmarks[8]. In Table 3 we compare the results of our sat-
isfier with GRASP[19], one of the most efficient software
SAT solvers available. Because of the small capacity of our
current hardware platform, the results of the satisfier are

3.5MHz. GRASP was run on a Sun Ultra Sparc workstation
with 1026Mb RAM using a 248MHz clock. Thus GRASP is
running with a clock about 83 times faster than the emulation
g~ i . clock.Unlike in [25], where GRASP was run in a restricted
R - 3 mode, so that it matched the features implemented in hard-
1 i 1 ware, we allowed GRASP to run “full-speed,” using all its
:; e = Al A sophisticated techniques. Our experience has shown that for
Wi [+ o “Ha bl : I many instances, the restrictive mode slows down GRASP by
i i T several orders of magnitude. GRASP was allowed to run each
! il il : example for up to one hour (equivalent to 12.6G clock cycles
T e T on our satisfier), before aborting the execution. For 11 exam-
a2 e T o o S A, SRS ; : ples out of 20, our satisfier achieved significant speed-ups
l 413 3121 [l 3 PR between 78 and 7,000, and for 3 instances the speed-up was
¥ : T : in the 1.5 to 2.8 range. For 6 examples GRASP was faster
; Wy N TEE than our satisfier. This is due to its sophisticated search fea-
' 1 tures that do not have a match in our satisfier.

Hi 1 z] : g Table 4 shows a comparison against the reconfigurable
i ok =g ~ - hardware satisfier described in [24] and [25]. To reproduce
. i 7 their results, we simply switched off our features for dealing
LIk = gy 1 1 with dead_ va_riable_s and dynamically unate variables, wh_ich
Figure 10. Satisfier layout on XC6264 do not exist in their approach. Thus the compared satisfiers

._use the same static ordering and the same implication mech-
obtained using a C model whose correctness was verlfle(g

: 4el which | he hard nism, which results in a fair comparison. Colunih
againsta VHDL model which accurately represents the hardygyresents the “hardware cost” of our satisfier, defined as in
ware implementation. The first 5 columns in Table 3 show

X 24] as the total b t d flip-flopts is th -
the benchmark data: name, number of inputs #l, number o 1 as the total number gates and flip-flop#s is the corre

’ e onding cost in [24], anHO is the ratioH/Hp, given onl
clauses #C, number of literals #L, and a Yes/No indication offp 9 [24] P 9 Y

A) . or the examples that are common in the two papers. Our
satisfiability. The following columns show the time taken by 4 rgware cost is between 1.1 and 2.6 times greater than [24].
our satisfier in number of main clock cycl&sthe time taken

X . . However, this buys us a speed-up of 1 to 2 orders of magni-
by.GF(szSPhusmg the samr::- tm;}e unit, an(Ij trl‘(e spee@Up e on 8 out of the 20 examples from TableSBEL for the
gained with_our_approach. The main _clock frequency iseyamples not included in Table 4). Several runs bypassing a

nanma

I A

Benchmark | #1 |#C | #L Saj|Clocks| Clockg | SU | threshold of 100M clocks were aborted. Note that we are not
[eim-50-1_6-no-2 | 50| 80 240 N| 75415 21,000 0.28inc|uqling the spe_ed-up that reSL_JIts from oyrfa_ster compila-
aim50-1 6:n0-3 | 50 80 240 N| 51900 17,500 0.342%%?& abCCOtr%‘g to [t25]: their Cgmp"?t'on t'Tedfor one
[sim-100-1_6mo-2| 100 160 48p N| 6570K 52500 opa, > [a0n B MINUIES, one order of magnittide greater
|aim-100-1_6yesip100 160 480 V| 1,711k 42,000 OPA Benchmark 1 Ho JHO[|Clocks [Clocksy] SU
aim100-6_0-yes1-1 1000 604 180D Y| 12,388 1295D0 1p.4ams0.l 6moz | 12854 — | —|| 75415 2883k B
Jaim200-6_0-yes1-1 200{1200 360D Y| 942,830 2,033,500 Z-I'aim—50—1:6—no—3 12,854 - | || 51,900 4,162k o
dubois20 60| 160 480 N|10,486K 199,500 O 31aim-100-1_6-n0-2 25554 - | || 6,570k >100M >1b
Joles 72| 297 648 N| 259,519 302,834K 116p.Jaim-100-1 6-yes1}s25,554 - | || 1,711K >1o0j >5p
[roteo 90| 413 909 Nj 2,336K 12.3G 5.274.Qaim-200-6_0-yes1}165,354 100,453 1|6 942,830 942,830 | 1
fhote10 110 561 121p N|23,357K >12.4G >53Ia.1h0|98 32113 — | —|[250510 222k b
fisa2 180 804 205P Y| 60,547 168,0p0 -dnoles 24009 — | —|| 2.336K28912k 1
fiz2c1 225128¢ 6081 Y 38 150,500 396p Jhole10 58,75] 21,87p 2Jp 23,357K >100M }4
Iii32d2 404{5153 17940 31,701 5,586K 17 5-1ii8a2 98,164 37,950 2] 60,587 4,326K 71
finn2 100 850 439p Y| 3879 304500 7p4igq; 790349 - | —|| 31701 854807 17
fpars-1-c 641259 732 Y] 118 28,000 23%3pari6-1-c 174,054 80,215 2[1 1,134K 1,13BK |1
[pari6-1-c 317/1264 367D Y| 1,133K 748,160K 669.0c52232-003 124271 103,709 1] 86,406 86.496 | 1
[pari6-2-c 349(1392 4054 Y| 703,007 4.93G 7,00p.0 Table 4. Comparison to [24]

[pari6-5 10153358 8980 Y| 1,750K 814,415K 46b.45 CONCLUSIONS
[pret6o_25 60| 160 480 Nj28,512K 210,000 0Pl |n this paper we have introducechaw satisfier architec-
ssa432-003 4351027 2364 Nl 86,496 126,000 L.3ure, usingnew forms of fine-grain massive parallelisim

Table 3. Comparson 10 GRASP accelerate a SAT solver implemented on reconfigurable

hardwareparallel backtracing of multiple objectives along Intn’l. Conf. on CAD pp. 294-297, November 1989

all possible paths and concurrent assignments of several?] S. Devadas, K. Keutzer, S. Malik, and A. Wang, “Certified
variables This massive parallel processing is facilitated by ;nmng Ve_r'f'cit'?“ antd theC Trfg‘s'tag%‘ggyff a nggczclrcun,"
objective propagation with several different prioritieQur roc. Design Automation Lanpp. 549-959, June,

satisfier identifiesdynamically unate variablesnd dead [sg]erg!\gSguilghgﬁgnegne@}:at?bee':lgEnTz;ngiln%/ /dimacs.rut-
Va”?‘b'ei- These techniques ge”e“?‘t_e more 'mpllcatlons[eQ] H.- Fujiwara and T. Shimono, “On the Acceleration of Test
avoid wrong and unnecessary decisions, and reduce thegeneration Algorithms,JEEE Trans. on Computerspl. C-32,
amount of backtracking. Our results show several orders of g 12, pp. 1137-1144, December, 1983.

magnitude speed-up compared with both a state-of-the-anto] P. Goel, “An Implicit Enumeration Algorithm to Generate
software SAT solver and a previous satisfier. Objectives are Tests for Combinational Logic CircuitslEEE Trans. on Com-
a flexible mechanism that can be easily extended to support puters Vol. C-30, No. 3, pp. 215-222, March, 1981.

additional algorithmic improvements, such as dynamic vari-[11] J. Gu, “Satisfiability Problems in VLSI Engineering,”
able selection, that we recently implemented (these results PIMACS Workshojpn Satisfiability Problem: Theory and Appli-

will be reported in the future). cations March 1996
P) [12] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, “Algorithms

We have developemhodular design techniques using ILA for the Satisfiability (SAT) Problem: A SurveyDIMACS Work-
structuresthus overcoming the high computational costs of shopon Satisfiability Problem: Theory and Applicationsp.
conventional FPGA physical design todighile an unstruc- 19-51, March 1996
tured chip design ends up with many unrouted nets aftef13]J. Gu and R. Puri, "Asynchronous Circuit Synthesis with Bool-
10-12 hours of CPU time, the same circuit using ILA-based gg? g;g'sijg&“;ty;ggg'f Trans. on CADVol. 14, No. 8, pp.
design techniques takes only a few minutes to successfull T2 h . . .
compile. These techniques are applicable to any type o 14H't nghrzaéage_r, Test PaétirnVGlerﬁralﬂon1Usmg4Bfg|%an Satisfi-
FPGA, and the reduction in compilation time they provide i fans. on CADVol. 11, No. 1, pp- 4-15, January,

becomes even more significant when we need to compile 15 p, c. McGeer et al., “Timing Analysis and Delay-Fault Test
large number of FPGAs. Another advantage of the Generation Using Path Recursive Functiomgc. Intn’l. Conf.
ILA-based approach is iiaherent scalability on CAD pp. 180-183, November 1991

In a related paper[2], we have introducedigtual logic [16] M. Platzner and G. De Micheli, “Acceleration of Satisfiability

systenthat allows a reconfigurable logic platform to solve Algorithms by Reconfigurable Hardwarebroc. Intn’l. Work-

SAT problems much larger than its available capadity iggg on Field-Programmable Logic and Applicatio®ept.,

relies onnovel decomposition techniquiesdivide a formula {17] A. Rashid, J. Leonard, and W.H. Mangione-Smith, “Dynamic

into independent subproblems that can be run by different circuit Generation for Solving Specific Problem Instances of

FPGAs in any order. The unusual feature of our decomposi- Boolean Satisfiability,Proc. IEEE Symp. on Field-Programma-

tion is thatinter-FPGA signals are never requirednlike the ble Custom Computing Machinespril 1998

multi-FPGA patrtitioning used in a conventional design flow, [18] J. M. Silva, “An Overview of Backtrack Search Satisfiability

our decomposition is independent of the reconfigurable hard- Algorithms,” Proc. 5th Intn’l. Symp. on Artificial Intelligence and

ware architecture. When the number of subproblems is larger Mathematics,January 1998)

than the number of available FPGAs, we simply reuse thd19] J- M. Silva and K. A. Sakallah, "GRASP - A Ne®earch

same FPGA to solve in turn several subproblems. The QQ%";';@megvrefnagﬁrf'fgggty’ Proc. Intn’l. Conf. on CAD pp.

FPGAs can be run c_oncurrently, mt_rodycmg anew level Of[20] L. G. Silva et al., “Realistic Delay Modeling in Satisfiabil-

course-grain parallelism, and resultingup to three orders ity-Based Timing Analysis,Proc. Intn’l. Symp. on Circuits and

of m_agmtude addltlonal spggd-uwhlch compensates for gystems (ISCASylay 1998

the time spent in decomposition. [21] P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli,

“Combinational Test Generation Using SatisfiabilityEE

[71] MRAEbGGEnRO\I/%c’i\'aCr‘;(IjEE Saab, “Satisfiability On Reconfigurable __1rans. on CADvol. 15, no. 9, pp. 1167'117“6' Sept. 1996.
Hardware,”Proc. Intn’l. Workshop on Field-Programmable [22] T. Suyama, M. Yokoo, and H. Sawada, SoIV|_ng Satisfiability
Logic and ApplicationsSept., 1997 Problems on FPGAsP_roc_. Intn’l. Workshop on Field-Program-

[2] Miron Abramovici, J. T. de Sousa, “A Virtual Logic System for _mable Logic and Application2996 e
Solving Satisfiability Problems Using Reconfigurable Hard- [23] G. Nam, K. A. Sakallah, and R.A. Rutenbar, “Satisfiabil-
ware,” to appear ifProc. Symp. on Field-Programmable Custom ty-Based Layout Revisited: Routing Complex FPGAs Via

Computing Machines1999 Search-Based Boolean SATProc. Intn’l. Symp. on FPGAs
[3] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-vin- _February 1999 _ . .
centelli, Logic Minimization Algorithms for VLS| Synthesigu- [24] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, *Accelerating
wer Academic Publishers, 1984 Boolean Sat‘ISﬁablhty with Configurable Hardwaréfroc. IEEE
[4] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” SYMPp-. on Field-Programmable Custom Computing Machines
Proc. 3rd Annual ACM Symp. on Theory of Computatipp. April, 1998) e
151-158, 1971 [25] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Using

[5] M. Davis and H. Putnam, “A Computing Procedure for Quanti- Reconfigurable Computing Techniques to Accelerate Problems in
fication Theory;Journal of the ACMvol. 7, pp. 167--187, 1960 the CAD I_Domaln: A C_:ase Study with Boolean Satisfiability,”
[6] S. Devadas, “Optimal Layout Via Boolean Satisfiabilitpfoc. Proc. Design Automation Canflune 1998

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

