
o

M
ue
e
an

.

ula

nd
M

, the

The
.
the
sor

of

are
the

n of

nts

as a
e
ce

ion
on

An Approach for Extracting RT Timing Information
to Annotate Algorithmic VHDL Specifications

Cordula Hansen
Forschungszentrum Informatik (FZI)

at the University of Karlsruhe
hansen@fzi.de

Francisco Nascimento
University of Tübingen

moreira@informatik.uni-tuebingen.de

Wolfgang Rosenstiel
University of Tübingen and FZI
rosen@informatik.uni-tuebingen.de
ABSTRACT - This paper presents a new approach for
extracting timing information defined in a simulation vector
set on register transfer level (RTL) and reusing them in the
behavioral specification. Using a VHDL RTL simulation
vector set and a VHDL behavioral specification as entry, the
timing information are extracted and as well as the specifica-
tion transformed in a Partial Order based Model (POM).
The POM expressing the timing information is then mapped
on the specification POM. The result contains the behavioral
specification and the RTL timing and is retransformed in a
corresponding VHDL specification. Additionally, timing
information contained in the specification can be checked
using the RTL simulation vectors.

1. Introduction
Up to now, most ASIC or FPGA designers have developed
synthesizable register transfer level (RTL) models and the
corresponding stimuli usually implemented in VHDL or Verilog. In
this context, several approaches have been published to facilitate
the development of RTL specifications and RTL stimuli [7] [8].
More and more, industrial VHDL specifications are implemented as
behavioral descriptions on the algorithmic level. Also already
existing RT specifications are now often integrated in algorithmic
VHDL descriptions. Thus, a new question arise: is it possible to
reuse information defined in the RTL simulation vector set for a
specification now on an algorithmic level? This paper addresses the
problem of extracting timing information from the VHDL RTL
simulation vectors for the algorithmic specification. Main feature of
the presented approach is the integration of the extracted timing
information into the algorithmic specification using a Partial Order
based Model. Further, already defined timing constraints in the
specification can be validated by comparing them with the timing
information contained in the RT simulation vector set. This allows
an efficient reuse of already existing timing information and,
therefore, a reduction of development time.

The paper is organized as follows: Section 2. describes the basic
definitions and relations of the used Partial Order based Model. In
Section 3., the design flow and the basic concepts of our approach
are presented. Some examples, including experimental results, are
presented in Section 4.. This paper concludes with a summary in
Section 5.

2. Partial Order based Model
One model that can be extended to implement the desired
characteristics is the Partial Order based Model (POM) [9] [2]. This
model is event based, and each event is defined as a unique instance
of an action and can not occur more than once in a computation.
Further, the POM is a non-interleaving model, i.e. in the

representation of the parallel execution of two events, n
information about the order of this execution is assumed.

2.1 Basic Definitions
The POM is based on the Chu space formalism [3]. A PO
consists of a setA of events, where each event represents the uniq
instance of an action, and a setX of states representing the possibl
or permitted states. Further, a state is defined in terms of
occurrence relationR(a,x)that is true when the eventa has occurred
in the statex.

 Definition 1: A POM is a Chu spaceC given by the tuple (A,
X, R), where

• A = {a0, a1, ..., an} is a set of events,
• X = {x0, x1, ..., xm} is a set of states, and
• represents the occurrence relation, i.e

R(a, x) = 1 if the eventa has occurred in the statex otherwise
R(a,x) = 0.
Each state is defined in terms ofR as:

POMs can be represented as a matrix or as a logical form
(Figure 1, 2). In the matrix, each entry (a,x) contains the value of
the occurrence relation. Consequently, the matrix rows correspo
to the POM states. Considering the matrix as a truth table, the PO
can be represented as a logical formula.

 Definition 2: The logical representationfC of the POMC is de-
fined as: where and is the logical for-
mula corresponding to , defined as follows:

In the logical representation, the events are defined as variables
states are defined as terms of the formula, and the relationR
determines whether the variable appears complemented or not.
logical formulaf is true for each state that is permitted in the POM
Due to the fact that a partial order exists between the states,
execution of a POM can be defined using the concept of succes
states. It is important to emphasize that if an eventa has occurred in
a statex, then this event has also occurred in all successor statesx
and, consequently, the occurrence relation holds.

2.2 Relations Between Events
Concerning the POM, four basic relations between events
defined: the independence, the precedence, the conflict, and
disjunctive enable relation.

2.2.1 Independence Relation
The independence relation represents the independent executio
two eventsa andb (a b). The POM for this relation can be seen
in Figure 1 (a). No order is imposed to the occurrence of the eve
a andb.

There are two reasons to represent the independence relation
tautology. One is related to the use of BDDs [1] for th
implementation of the symbolic representation. The independen
definition makes it possible to handle the state space explos
problem, since a high degree of parallelism in the specificati

R: A X× 0 1,{ }→()

xi 2
A∈

xi a a A∈() R a xi,() 1=()∧{ }=

f C f xi
∨= n X= f xi

xi X∈

f xi
a | a A∈() R a xi,() 1=()∧{ }∧()

a¬() | a A∈() R a xi,() 0=()∧{ }∧()∧
=

∇

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00
_

e

sk
on.
e I/
the

he
rms
T
y a
nd

tail
nt
L

he
ds.

n.

Ds,
e

leads to more independence relations and, consequently, to smaller
BDDs. The second point is, that, if necessary, two events can be
turned sequentially using one logical operation. A simple
conjunction of the logical formula of the independence relation
with the logical formula of the precedence relation implements this
serialization.

Figure 1. Independence and Precedence Relations

2.2.2 Precedence Relation
The precedence relation(a < b) represents the occurrence of the
event a followed by the occurrence of the eventb. The POM
representation for this relation can be seen in Figure 1 (b). This
relation is used to model the sequential execution of events.

2.2.3 Conflict Relation
The conflict relation(a # b)represents either the occurrence ofa or
the occurrence ofb. The correspondent POM and logical formula
are shown in Figure 2 (a).

2.2.4 Disjunctive Enable Relation
The disjunctive enable relation permits two events to be
represented, whose executions disjunctively enable a third event,
i.e.den(a,b,c) means the execution ofb or c enables the occurrence
of a. This relation, together with the above explained conflict
relation, is necessary to enable the events that follow an "if then
else"-statement. Figure 2 (b) represents the POM and the
corresponding logical formula.

Figure 2. Conflict and Disjunctive Enable Relations

3. Extracting and Validating Timing Information
In this section, the design flow and the basic concepts are
explained in more detail. First, the design flow is presented. Then,
the requirements and boundary conditions are described. Next, an
outline of the used POM semantics is given. Finally, the main topic
of this paper, the extraction and validation concepts are presented.

3.1 Design Flow
The approach presented in this paper facilitates two different tasks:

• the extraction of timing constraints from an RT simulation vec-
tor set (Figure 3 (a)). The timing information defined there can
be used to restrict the timing behavior of the specification.

• the validation of timing constraints defined in the algorithmic
specification (Figure 3 (b)-(c)). The timing constraints
extracted from the specification can be compared with the
extracted timing information of the RT simulation vector set

In the following, the design flow is described containing th
CADDY-II synthesis system [4] [5], and the extraction of timing
information, as well as the generation of the POMs.

Figure 3. An Overview of the Extraction and Validation of
Timing Constraints

In the first step, a VHDL preprocessing is started. The main ta
throughout this phase is the generation of a flow graph descripti
This description is used to identify the data dependencies of th
O signals necessary for the generation of the POM representing
algorithmic specification (POMSPEC). After the generation of the
preprocessor results, the POMSPECgeneration is started. This task
is described in more detail in Section 3.2.2. In the third step, t
high-level synthesis process is executed. This process transfo
the behavioral algorithmic specification into a structural R
description. The resulting RT design is usually represented b
VHDL description. The next step is the generation of the seco
POM (POMTC) representing the timing information contained in
the RT simulation vector set. This task is described in more de
in Section 3.2.3 The last step is the mapping of the different eve
semantics and the generation of a corresponding VHD
specification (Section 3.2.4).

Figure 4. Extraction of Timing Constraints

The second task, the validation of timing constraints defined in t
algorithmic specification can be solved using the same metho
Instead of generating a POMSPEC, a POM is generated
representing the timing constraints in the algorithmic specificatio
Finally, this POM is compared with the POMTC.

Due to the fact, that the POMs internally are represented as BD
the implementation of a comparison of two POMs can b
implemented using a simple conjunction [6].

0 0

0 1

x0

x1

Independence: a∇ b

a b

f∇ = a b + a b + a b + a b

1 0x2

1 1x3

0 0

1 0

x0

x1

Precedence: a< b

a b

f< = a b + a b + ab

1 1x2

= a + b

(a) (b)

= 1

0 0

0 1

x0

x1

Conflict: a# b

a b

f# = a b + a b + a b

1 0x2

0 0x0

Disjunctive Enable: den(a,b,c)

a b

(a) (b)

= a + b

c

0
0 1x1 0
0 0x2 1
0 1x3 1
1 0x4 1
1 1x5 0
1 1x6 1

fden = a→ (b + c)

specification
VHDL

RT simulation vectors
VHDL

simulation
VHDL

RT design
VHDL

simulation
VHDL

RT Timing
Constraints

extraction

Spec Timing
Constraints

extraction

validation

(a)

(b)

(c)

taking
over

CADDY-II
synthesisspecification

VHDL

mapping

RT simulation vectors
VHDL

simulation
VHDL

RT design
VHDL

simulation
VHDL

FG-
generation

POMSPEC
generation

POMTC
generation

POMSPEC

(D) FG

POMTC

timing information

g a
put

to
eral
ign
e
the

the
re,

ut
ist
3.2 Extraction of Timing Constraints by
Generating Partial Order Based Models

When implementing the extraction of timing constraints from a RT
simulation vector set, the following requirements have to be
fulfilled:

• in general, timing information extracted from simulation vec-
tor sets defined for one simulation cycle are sufficient. How-
ever, an extraction from simulation vectors defined for several
simulation cycles are also possible.

• at least, the simulation vector set has partially to implement a
synchronous timing behavior. Timing information can only be
extracted from simulation vectors that are not implementing a
complete handshake protocol.

• the timing behavior in the VHDL simulation vector set has to
be defined using one of the following WAIT constructs:WAIT
FOR <time>; or
WAIT UNTIL <clock_name>‘event AND <clock_name> =
<condition>;

• the VHDL specification can consist of assignments or loops
with a known number of loop passes. For loops with a
unknown number of loop passes, timing information for a sin-
gle loop pass can be extracted.

Following these requirements the extraction of timing information
can be executed in 4 steps:

1. A POM representing the algorithmic specification (POMSPEC)
is generated using an event execution semantics.

2. A POM representing the timing information of the RT stimuli
set (POMTC) is created using an event timing semantics.

3. The event execution semantics of the POMTC is mapped on the
event timing semantics of the POMSPEC.

4. The RT timing constraints are assigned to the POMSPECstates.
As a result, the POMSPECis restricted by the RT timing infor-
mation. The modified VHDL specification is produced.

3.2.1 POM Semantics
The basis of our approach is the POM described in Section 2..
Now, event semantics have to be defined that consider the data
dependencies between the I/O signals in the specification and the
timing information contained in the simulation vector set.
Therefore, two different event semantics are necessary: an event
execution semantics (Definition 3) for the POMSPECand an event
timing semantics for the POMTC.

 Definition 3: A POM eventei (i = 0,..,n) is defined as a read
operation from an interface signal or as a write operation to an
interface signal.

For illustration purposes, Example 1 is used. In this example, 9
different events can be detected. These events are summed up to
Event Execution Collections. Every collection consists of one
output signal and the corresponding input signals. The resulting
events and event collections are listed in Table 1, e.g. in column 1,
an event collectionSP0123has been generated consisting of the
eventssp0(read e0),sp1(read e1),sp2(read e2), andsp3(write x).

PROCESS (e0,e1,e2,e3)
BEGIN

x <= e0 + e1 + e2;
y <= e3;
z <= e1 + e3;

END PROCESS;

Example 1. A simple VHDL program

It is important to note that anEvent Execution Collectioncan
easily be created when input signals are directly assigned to output

signals. Using variables a collection can be created achievin
dataflow analysis. The dataflow analysis is used to detect the in
signals from which the actual output signal is dependent.

Concerning the event timing semantics a further distinction has
be made. Simulation vector sets can be implemented in sev
ways. Most important is the specification of the expected des
results corresponding to the defined stimuli. In VHDL, thes
results can be specified by using ASSERT statements. Hence,
event timing semantics in Definition 4 can be used.

 Definition 4: (first event timing semantics)
A POM eventei (i = 0,..,n) is defined as a write operation to an
interface signal, as a VHDL WAIT construct or as a VHDL AS-
SERT construct.

A simple example of a VHDL simulation vector set is given in
Program 2. The resulting event timing list is given in Table 2.

PROCESS
BEGIN

e0 <= 5; e1 <= 7; e2 <= 13;
WAIT FOR 5 ns;
ASSERT (x = 25);
e3 <= 9;
WAIT FOR 2 ns;
ASSERT (y = 9); ASSERT (z = 16);

END PROCESS;

Example 2. Simulation vector set with ASSERT statement

Sometimes the expected design results are not described in
VHDL simulation vector set but in separate data files. Therefo
another event timing semantics have to be used (Definition 5).

 Definition 5: (second event timing semantics)
A POM event ei (i = 0,..,n) is defined as a VHDL WAIT con-
struct or as a write operation to an interface signal.

As stimuli, the vector set described in Program 2 is used b
without any ASSERT statements. The resulting event timing l

Event Execution
Collection Event Description

SP0123 sp0, sp1,sp2
sp3

read e0, e1, e2
write x

SP45 sp4,
sp5

read e3
write y

SP678 sp6, sp7,
sp8

read e1, e3
write z

Table 1: Event execution list

Event Description

tc_a0 write e0

tc_a1 write e1

tc_a2 write e2

tc_a3 WAIT FOR 5 ns

tc_a4 ASSERT x

tc_a5 write e3

tc_a6 WAIT FOR 2 ns

tc_a7 ASSERT y

tc_a8 ASSERT z

Table 2: First event timing list

e
ed

the

nt

e
ad

wo

ro-
ist

ol-

M)
e
n

that
e
ert

n
d

ned
list
nd

s.
consists of events listed in Table 3. After the production of the
different event lists, the generation of the POMSPEC and the
POMTC can be started.

3.2.2 Generation of the POMSPEC
The generated event execution list is used for the generation of the
POMSPEC. The generation of the POMSPECstarts with a first state
(state0), where „no event has occurred“. The three assignments in
the VHDL specification represented as Event Execution
Collections are independent. Consequently, the independent
relation are used:SP0123∇ SP45, SP0123∇ SP67, SP45∇
SP67, and the resulting states are generated.

The POMSPEC can also be described as logical representation:

fPOM-SPEC= (¬SP0123∧ ¬SP45∧ ¬SP67)∨
(¬SP0123∧ SP45∧ ¬SP67)∨
(SP0123∧ ¬SP45∧ ¬SP67)∨
(SP0123∧ SP45∧ ¬SP67)∨
(SP0123∧ ¬SP45∧ SP67)∨
(SP0123∧ SP45∧ SP67)∨
(¬SP0123∧ ¬SP45∧ SP67)∨
(¬SP0123∧ SP45∧ SP67)

3.2.3 Generation of the POMTC
Using one of the event timing semantic definitions, the generated
event timing list is now applied for the generation of the POMTC.
Using Definition 4, a POMTC is generated with the relations:

tc_a0∇ tc_a1, tc_a0∇ tc_a2, tc_a1∇ tc_a2, tc_a0 < tc_a3,
tc_a1 < tc_a3, tc_a2 < tc_a3, tc_a3< tc_a4,
tc_a4∇ tc_a5, tc_a4 < tc_a6, tc_a5 < tc_a6,
tc_a6 < tc_a7., tc_a6< tc_a8, tc_a7∇ tc_a8

These relations express the following order: the first three write
operations e0, e1 and e2 are independent, but they are all
predecessors from the first WAIT construct (WAIT FOR 5 ns). This
WAIT construct has again to be executed before theASSERT x
statement. The write operatione3and theASSERT xstatement are
executed before the second WAIT (WAIT FOR 1,5 ns) construct.
Further, the second WAIT construct has to be executed before the
ASSERT yand theASSERT zstatement. These last two ASSERT
statements are independent from each other. Corresponding to the

generation of the POMSPEC, these relations are used to produce th
POMTC states and the logical formula that internally is represent
as BDD. The generation of the POMTC using Definition 5 is
similar to the already described strategy. The last step is
mapping of the POMTC on the POMSPECand the final generation
of the algorithmic VHDL specification.

3.2.4 Mapping of the different Event Semantics
The main problem during the mapping process is the differe
semantics of the single events in the POMTC and the POMSPEC.
Due to this fact, for certain events additional information hav
been collected, e.g. the Event Execution Collection sums up re
and write operations in the specification. In summary, there are t
steps to be executed:

1. A mapping file of the event names has automatically to be p
duced that indicates which event from the event execution l
corresponds to which event from the event simulation list.

2. The timing events have to be summed up in Event Timing C
lections.

The first step is the generation of the event name mapping (EN
file. For illustration purposes, the mapping of our simpl
assignment example is shown in Figure 5. In this figure, Definitio
4 is used as event timing semantics. It can easily be stated
every read operation respectively write operation in th
specification correspond to an write operation respectively ass
statement in the stimuli set.

Figure 5. Generation of the Event Name Mapping File

After the creation of the mapping file, for every Event Executio
Collection (EEC) an Event Timing Collection (ETC) is create
(Figure 6).

Figure 6. Generation of the Event Timing Collection

The read and write operations summed up in the EEC are assig
to the corresponding write and assert events in the event timing
(ETL). These events create the first part of the ETC. The seco
part are the timing information contained in the WAIT event

Event Description

tc_r0 write e0

tc_r1 write e1

tc_r2 write e2

tc_r3 WAIT FOR 5 ns

tc_r4 write e3

tc_r5 WAIT FOR 1,5 ns

Table 3: Second event timing list

state SP0123 SP45 SP67

state0 0 0 0

state1 0 1 0

state2 1 0 0

state3 1 1 0

state4 1 0 1

state5 1 1 1

state6 0 0 1

state7 0 1 1

Table 4: POMSPEC

Event Execution Names

read e0,e1,e2

Event Timing Names

tc_a0 (write e0)SP0123 :

write x
tc_a1 (write e1)
tc_a2 (write e2)
tc_a4 (assert x)

read e3
SP45 :

write y

tc_a5 (write e3)
tc_a7 (assert y)

read e1,e3
tc_a1 (write e1)SP678 :

write z
tc_a5 (write e3)
tc_a8 (assert z)

Event Execution Collection

read e0,e1,e2

Event Timing Collection

SP0123 :

write x

read e3
SP45 :

write y

read e1,e3
SP678 :

write z

write e0,e1,e2
SP0123 :

wait5 (event tc_a3)
assert x

write e3
SP45 :

wait2 (event tc_a6)
assert y

write e1
SP678 :

wait5 (event tc_a3)
write e3
wait2 (event tc_a6)
assert z

n

ent
d.

s
IT
.

ed.

he
ed
he

ng

s to
Ms

of
ion
at
he

L
se
k

then

the
ed
are

(2)
al
he
a

uli
tor
the
he

are
that
the

this
Using the ETL and the POMs, every event of the ETC are
examined whether a timing event belongs to it or not. The principal
algorithm is given in the following:

algorithm Find_EventTimingCollection(MEEC)
METC := ∅;
repeat

take_EEC_and_evaluate_events(MEEC, ENM, METCpart1);
take_ETC_and_insert_timing(METCpart1, ETL, METCnew);
METC := METC∪ METCnew;

until examined_all_EEC;
end Find_EventTimingCollection;

Figure 7. Finding Event Timing Collection

So far, the event timing semantics has been used for this method.
Using the second event timing semantics it is more difficult to
insert the timing information into the Event Timing Collection.
Therefore, the following definition is necessary:

 Definition 6: A WAIT event is valid for every output signal
that are reachable from the input signal updated previously.

With this definition and the POMTC relations, it is possible to
insert the timing information in the Event Timing Collection. E.g.
the write operationwrite x contained in the EECSP0123can be
executed as soon as the read operationread e0, e1, e2are executed.
These read operations correspond to the write operationswrite e0,
e1, e2 in the ETC. Using the POMTC relations the three read
operations (tc_r0, tc_r1, tc_r2) are predecessors of thetc_r3 event
(WAIT FOR 5 ns). Concerning our definition, the output signalx is
reachable from the input signalse0, e1, and e2 which have
previously been updated. Therefore, the eventtc_r3 is inserted in
the ETC. The following algorithm determines the timing
information to be included.

algorithm Insert_TimingInformation(POMTC,MEEC,METC)
for all EEC∈ MEECdo

repeat
take_EEC_output_and_search_inputs(EEC, Minputs);
search_ETC_outputs(Minputs, ENM, Moutputs);
traverse_POMTC_relation(POMTC, Moutputs, MTC);
ETC := ETC ∪ MTC;

until examined_all_outputs;
end do;

end Insert_TimingInformation;

Algorithm 1. Inserting Timing Information in the ETC

3.2.5 Assignment of the Timing Information to the
POMSPEC states

The last steps are the assignment of the RT timing information to
the POMSPEC states, and the production of the modified VHDL
specification. The first step has nearly solved in the last section.
The Event Execution Collection has only to be extended by the
timing information in the Event Timing Collection, e.g.SP0123
consists of the events:read e0, e1, e2; wait5; write x. These timing
information has to be inserted in the algorithmic VHDL
specification. In the following, the timing semantics concerning
the ASSERT interpretation is used. Indeed, this method works
similar using the second event timing semantics .

However, for every read or write operation from or to an interface
signal the corresponding Event Execution CollectionTC has to be
examined. During this examination, timing conflicts eventually
occurred have to be solved. For illustration purposes, the simple
assignment specification is used again. The first statement
concerning interface signals is:x <= e0 + e1 + e2; The output
signalx is contained in the EECTC SP0123. In this collection, one
wait event has been inserted. This wait event indicates that the
signal x is read from the simulation vector set after 5 ns. As a
result, the signalx has to be written after 5 ns at the latest. A first

WAIT statement is therefore included in the VHDL specificatio
with a time range from 0 ns to 5 ns.

The next interesting statement isy <= e3; The output signaly is
contained in the EECTC SP45. In this collection, also a wait event
has been inserted. Due to the fact, that this is the second statem
examined the previous timing information have to be considere
This can be handled using the relations of the POMTC. There, the
eventtc_a7(assert y) is a predecessor oftc_a6(WAIT FOR 2 ns)
which is finally a predecessor oftc_a4 (WAIT FOR 5 ns).
Consequently, the signaly is read after 7 ns (5 ns + 2 ns), and ha
to be written to the same time at the latest. A second WA
statement with a time range from 0 ns to 2 ns has to be inserted

PROCESS
BEGIN

-- t1 : time range 0 ns to 5 ns;
WAIT FOR t1;
x <= e0 + e1 + e2;
-- t2 : time range 0 ns to 2 ns;
WAIT FOR t2;
y <= e3;
z <= e1 + e3;

END PROCESS;

Algorithm 2. VHDL specification with timing information

The last statement in our example is:z <= e1 + e3; In the
corresponding collection two wait events have been insert
These waits are again the eventstc_a4andtc_a7. This means, the
signalz is read after 7 ns, and has to be written at this time at t
latest. Due to the already inserted WAITs, this time is just reach
and so, no further WAIT statements have to be inserted. T
resulting VHDL specification can be seen in Program 2.

Throughout the whole insertion process it is possible that timi
conflicts occur, e.g. in the simulation vector set the signalse1and
e3 are written first, and then the signalsy andz are read. Finally,
the signalse0 ande2 are written and the signalx is read. In this
case, the assignment order implemented in the specification ha
be refined. This can be executed by comparing the two PO
(POMSPECand POMTC) with a simple conjunction of the logical
formula. Due to space limitations, a more detailed description
that task is beyond the scope of this paper. For further informat
the reader is referred to [6]. However, it is important to note, th
already defined WAIT statements as well as a sensitivity list in t
specification are deleted.

One point that has still to be clarified is the usage of WAIT UNTI
constructs in the simulation vector set. It is possible to use the
constructs if the clock rate is known. In this case, the cloc
statements are transformed in absolute timing values, and are
handled like a WAIT FOR construct.

4. Results
The proposed technique has been implemented in the POM and
CADDY-II system, and the timing constraints have been extract
successfully from several examples. Some of these examples
listed in Table 5. They are: (1) our simple assignment example
communication example with two processes (3) differenti
equation (4) ggt (5) FFT (6) simulated annealing processor. T
CPU time for the POM computation for all examples on an Ultr
Sparc Station 1 was less than 1 millisecond.

In columns 2 and 3, the number of specification (spec) and stim
events are given. In example (3), (4) and (5), the simulation vec
sets consist of several simulation cycles. In columns 4 and 5,
number of generated POM states and BDD nodes for t
POMSPEC and the POMTC are listed. Above all, the number of
specification and stimuli events as well as the used relations
important, because they determine the number of POM states
has to be generated. The number of events increase with
number of accesses to the interface signals. Therefore, for

s
is
al

our
e
d

t of

ting
a
d
is
f a
for
er
ical
sen

ions
an
the

re
ary.
f the

g-

l

n-
approach a complex example is a design with a large number of
read and write operations from and to the interface signals.

However, the maximum number of POM states, that can be
handled, depends on the implementation of the BDD library.
Usually, in a BDD library several features are contained to handle
huge BDDs, e.g. partitioning, cache. Moreover, special procedures
are available to change dynamically the variable order, and this can
also lead to smaller BDDs. Besides, most of the I/O signals will be
independent, and due to the definition of the independent relation
as a tautology, this reduce the number of BDD nodes (Table 5: 5.
and 7. column). For the examples in Table 5, no BDD optimization
options have been used.

In Table 6, for every design the number of extracted timing
information are given. All RT stimuli sets have been specified with
WAIT FOR and WAIT UNTIL constructs (column 2). During the
insertion process the WAIT UNTIL constructs have been
automatically transformed into WAIT FOR statements (column 3).
It is also possible to maintain the WAIT UNTIL constructs
(column 3). This is suitable if the algorithmic description has been
specified using a clock signal. With some designs, a re-ordering of

the specification (refinement) due to the timing information wa
necessary. This information is listed in column 3. Above all, th
refinement is relevant for designs with a large number of sign
assignments, e.g. filter functions.

In summary, the presented results show several advantages of
extraction strategy. The system automatically identify th
extractable RT timing information. WAIT UNTIL statements use
in the RT stimuli set are automatically transformed in WAIT FOR
constructs if necessary. Furthermore, an automated refinemen
the specification are executed.

5. Conclusion
In this paper, a new method has been presented for extrac
timing information from RT simulation vector sets through
Partial Order based Model. Moreover, timing information define
in the algorithmic specification can be validated using th
extracting method. A key feature of this approach is the usage o
Partial Order based model and the definition of event semantics
the specification and the simulation vector set. The Partial Ord
based Models can be represented as logical formula. These log
representations are implemented as BDDs and, due to the cho
event semantics, a high degree of parallel read and write operat
to and from the interface signals lead to smaller BDDs. Further,
automated extraction and mapping process as well as
generation of a VHDL specification containing RT timing
information have been developed. The RT timing constructs a
automatically adapted and the specification is refined if necess
Results from several designs demonstrated the effectiveness o
approach.

6. References
[1] Bryant, R.E.: "Symbolic boolean manipulation with ordered

binary-decision diagrams", ACM Computing surveys 24, 3
(September 1993), pp. 293-318.

[2] Garcez, E.; Nascimento, F.: "A Model Checker for a Partial
Order based Model of Concurrency", Proceedings of Work-
shop of Beschreibungs-sprachen und Modellierungsparadi
men, March 1998.

[3] Gupta, V.: “Chu Spaces: A Model of Concurrency”, PhD the-
sis, Department of Computer Science, Stanford University,
Stanford, CA, USA, 1994.

[4] Gutberlet, P.; Krämer, H.; Rosenstiel, W.:„CASCH - a Sched-
uling Algorithm for High Level -Synthesis“, Proceedings of
the EDAC, pp. 311-315, February 1991.

[5] Gutberlet, P.; Rosenstiel, W.: “Timing Preserving Interface
Transformations for the Synthesis of Behavioural VHDL”,
Proceedings of EURO-DAC, September 1994.

[6] Hansen, C.; Nascimento, F.; Rosenstiel, W.: „Verifying High-
Level Synthesis Results Using a Partial Order based Mode“,
HLDVT‘98, La Jolla (CA), November 1998.

[7] Heinkel, U.; Glauert, W.: „An Approach for a Dynamic Gen-
eration/Validation System for the Functional Simulation Co
sidering Timing Constraints“, Proceedings of ED & TC, Paris
1996.

[8] Mayer, C.; Sahm, H.; Pleickhardt, J.: “A Graphical Data
Management System for HDL-Based ASIC Design Projects”,
Proceedings of EURO-DAC, September 1996.

[9] Nascimento, F.; Rosenstiel, W.: “Partial Order Based Model-
ing of Concurrency at the System Level”, Proceedings of
CONSYSE, September 1997.

Design Events POM SPEC POMTC

spec stimuli
(assert) state node state node

assignment1
assignment2

9 (3 EEC) 9 135 11 24 14

communica-
tion

P1: 4
(3 EEC)

P2: 6

(4 EEC)

12 6

13

7

14

15 23

differential
equation

6 (6 EEC) 40 39 15 85 80

ggt 4 (2 EEC) 30 6 7 37 59

FFT 3 (2 EEC) 21 4 6 7 12

simulated
annealing
processor

12
(14 EEC)

13 231 37 42 21

Table 5: POM Generation Results

Design

Extractable
RT Timing
Information

Inserted
Timing
Constructs Refinement

assignment1 2 WAIT UNTIL 2 WAIT FOR no

assignment2 2 WAIT UNTIL 2 WAIT FOR yes

communication 2 * 1 WAIT FOR
2 * 1 WAIT UNTIL

2 * 2 WAIT FOR no

differential
equation

2 WAIT FOR
2 WAIT UNTIL

2 WAIT FOR
2 WAIT UNTIL

yes

ggt 2 WAIT FOR 2 WAIT UNTIL no

FFT 2 WAIT FOR 2 WAIT UNTIL no

simulated
annealing
processor

3 WAIT FOR
2 WAIT UNTIL

5 WAIT FOR no

Table 6: Extraction Results

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

