An Approach for Extracting RT Timing Information
to Annotate Algorithmic VHDL Specifications

Cordula Hansen Francisco Nascimento Wolfgang Rosenstiel
Forschungszentrum Informatik (FZI) University of Tiibingen University of Tuibingen and FZI
at the University of Karlsruhe moreira@informatik.uni-tuebingen.de rosen@informatik.uni-tuebingen.de

hansen@fzi.de

ABSTRACT - This paper presents a new approach for representation of the parallel execution of two events, no
extracting timing information defined in a simulation vector information about the order of this execution is assumed.
set on register transfer level (RTL) and reusing them in th ; .
behavioral specification. Using a VHDL RTL simulationaz'1 Basp Definitions _
vector set and a VHDL behavioral specification as entry, theThe POM is based on the Chu space formalism [3]. A POM
timing information are extracted and as well as the specifica£onsists of a se of events, where each event represents the unique
tion transformed in a Partial Order based Model (POM). instance of an action, g”dﬁ%bf states Fepée?.e“gng the poss't]l'e
; e : ; ; . or permitted states. Further, a state is defined in terms of an

IQ?hZ%Megi);i% r:,[?gll,]ngéhﬁ t.'l_rp]g]?eg]ljﬁrggﬂgi?ls'stﬁgeﬁewgvegrea(?ccurrence relatioR(a,x)that is true when the eveathas occurred

€ SpE e - : n the statex.
specification and the RTL timing and is retransformed ina . ]
corresponding VHDL specification. Additionally, timing _Definition 1: A POM is a Chu spadg given by the tupleA4,
information contained in the specification can be checked R), where
using the RTL simulation vectors. * A={ag &, ..., }is asetof events,

1. Introduction o X={Xg X ..., X} iS @ set of states, and

. e R:(Ax X {0, 1})represents the occurrence relation, i.e.
Up to now, most ASIC or FPGA designers have developed R x) = 1if the eventa has occurred in the stateotherwise
synthesizable register transfer level (RTL) models and the R(a,x) = 0

corresponding stimuli usually implemented in VHDL or Verilog. In Each state x 02 is defined in terms OR as

this context, several approaches have been published to facilitate "y "= r5)(ad A) O(R(a x) = 1)}

the development of RTL specifications and RTL stimuli [7] [8]. I A ) .

More and more, industrial VHDL specifications are implemented ag>OMs can be represented as a matrix or as a logical formula
behavioral descriptions on the algorithmic level. Also already(Figure 1, 2). In the matrix, each entrgX) contains the value of
existing RT specifications are now often integrated in algorithmicthe occurrence relation. Consequently, the matrix rows correspond
VHDL descriptions. Thus, a new question arise: is it possible toto the POM states. Considering the matrix as a truth table, the POM
reuse information defined in the RTL simulation vector set for acan be represented as a logical formula.

specification now on an algorithmic level? This paper addresses thgyefinition 2: The logical tatibnof the POMC is de-
problem of extracting timing information from the VHDL RTL 7f' e(ljnl Ic_)fn _ Dfe oglcha repie‘s;n a@go € ﬂ? |C'.s dlef
simulation vectors for the algorithmic specification. Main feature of Inedas.te = X wherer = _an x ISthelogicaltor-
the presented approach is the integration of the extracted timingiula corresponding ta; LI X, defined as follows:
information into the algorithmic specification using a Partial Order _ _

based Model. Further, already defined timing constraints in the fy = (al(al A O(R(a x) = 1)})

specification can be validated by comparing them with the timing O0(O{ (-a) | (a0 A) O(R(a %) =0)})

information contained in the RT simulation vector set. This allows . . . .
an efficient reuse of already existing timing information and, In the logical representation, the events are defined as variables, the

therefore, a reduction of development time. states are defined as terms of the formula, and the reldion

) i . ) determines whether the variable appears complemented or not. The
The paper is organized as follows: Section 2. describes the basiggical formulaf is true for each state that is permitted in the POM.
definitions and relations of the used Partial Order based Model. Ipye to the fact that a partial order exists between the states, the
Section 3., the design flow and the basic concepts of our approackecution of a POM can be defined using the concept of successor
are presented. Some examples, including experimental results, aggates. It is important to emphasize that if an ewemas occurred in
presented in Section 4.. This paper concludes with a summary ig statex, then this event has also occurred in all successor states of
Section 5. and, consequently, the occurrence relation holds.

2. Partial Order based Model 2.2 Relations Between Events

One model that can be extended to implement the desiredoncerning the POM, four basic relations between events are

characteristics is the Partial Order based Model (POM) [9] [2]. Thisdefined: the independence, the precedence, the conflict, and the
model is event based, and each event is defined as a unique instanggjunctive enable relation.

of an action and can not occur more than once in a computation. )
Further, the POM is a non-interleaving model, i.e. in the2.2.1 Independence Relation

The independence relation represents the independent execution of

two eventsa andb (a [J b) The POM for this relation can be seen

in Figure 1 (a). No order is imposed to the occurrence of the events
Permission to make digital/hardcopy of all or part of this work for persona or @ andb.

classroom useis granted without fee provided that copies are not made or distributed . .
for profit or commercial advantage, the copyright notice, the title of the publication 1 Nere are two reasons to represent the independence relation as a

and its date appesr, and notice is given that copying is by permission of ACM, Inc. tautology. One is related to the use of BDDs [1] for the
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires  implementation of the symbolic representation. The independence
prior specific permission and/or afee. definition makes it possible to handle the state space explosion

(Dc?fggg’ﬂ%?'g?{‘féi%ﬁfgé}% .00 problem, since a high degree of parallelism in the specification




leads to more independence relations and, consequently, to smallem the following, the design flow is described containing the
BDDs. The second point is, that, if necessary, two events can be CADDY-Il synthesis system [4] [5], and the extraction of timing
turned sequentially using one logical operation. A simple information, as well as the generation of the POMs.

conjunction of the logical formula of the independence relation

with the logical formula of the precedence relation implements this Spec Timing (c)

serialization. Constraints

(@) Independence:@ b (b) Precedence: ab

(b)

‘ VHD!
specification

taking = RT Timing VHDL
over | Constraints RT design

fp=ab+ab+ab+ab f.=ab+ab+ab

=1 —a+b
Figure 1. Independence and Precedence Relations ﬂ

2.2.2 Precedence Relation

The precedence relatiq@a < b) represents the occurrence of the
eventa followed by the occurrence of the eveht The POM

representation for this relation can be seen in Figure 1 (b). This |n the first step, a VHDL preprocessing is started. The main task

VHDL
RT simulation vectors P»ﬂ

Figure 3. An Overview of the Extraction and Validation of
Timing Constraints

relation is used to model the sequential execution of events. throughout this phase is the generation of a flow graph description.
: . This description is used to identify the data dependencies of the I/

2.2.3 C_onfhct _Relann ) O signals necessary for the generation of the POM representing the

The conflict relatior(a # b)represents either the occurrenceaafr algorithmic specification (PONpgg. After the generation of the

the occurrence db. The correspondent POM and logical formula  preprocessor results, the PQM:cgeneration is started. This task

are shown in Figure 2 (a). is described in more detail in Section 3.2.2. In the third step, the

2.2.4 Disjunctive Enable Relation high-level synthesis process is executed. This process transforms

et ] - ) the behavioral algorithmic specification into a structural RT
The disjunctive enable relation permits two events to be description. The resulting RT design is usually represented by a
represented, whose executions disjunctively enable a third event,yHDL description. The next step is the generation of the second
i.e.der(a,b,c) means the execution bfor c enables the occurrence  pOM (POM) representing the timing information contained in
of a. This relation, together with the above explained conflict the RT simulation vector set. This task is described in more detall
relation, is necessary to enable the events that follow an "if then jn Section 3.2.3 The last step is the mapping of the different event
else"-statement. Figure 2 (b) represents the POM and thesemantics and the generation of a corresponding VHDL

corresponding logical formula. specification (Section 3.2.4).
(a) Conflict: a# b (b) Disjunctive Enable: den(a,b,c)
VHD VHDL
ab _|abc ™ specification |>4t--4" RT design |
X0l 0 0 Xol0 00 ‘
X010
x1{0 1 L
1 X001 (D) FG
X2[10 X3 011
X101 MG
X511 10 ﬂ RT simulation vectors I—l»ﬂ
f,=ab+ab+ab %6111

=_a+_b fdenza* (b+C) i
Figure 2. Conflict and Disjunctive Enable Relations

3. Extracting and Validating Timing Information

In this section, the design flow and the basic concepts are
explained in more detail. First, the design flow is presented. Then, POMSPEC | POMTC |
the requirements and boundary conditions are described. Next, an

outline of the used POM semantics is given. Finally, the main topic | timing information

of this paper, the extraction and validation concepts are presented.

3.1 Design Flow o _ . N
o . . _ The second task, the validation of timing constraints defined in the
The approach presented in this paper facilitates two different tasks: algorithmic specification can be solved using the same methods.
« the extraction of timing constraints from an RT simulation vec- Instead of generating a PQJdgg a POM is generated
tor set (Figure 3 (a)). The timing information defined there can 'epresenting the timing constraints in the algorithmic specification.
be used to restrict the timing behavior of the specification. Finally, this POM is compared with the PQM

+ the validation of timing constraints defined in the algorithmic Due to the fact, that the POMs internally are represented as BDDs,
specification (Figure 3 (b)-(c)). The timing constraints the implementation of a comparison of two POMs can be
extracted from the specification can be compared with the implemented using a simple conjunction [6].
extracted timing information of the RT simulation vector set

Figure 4. Extraction of Timing Constraints



3.2 Extraction of Timing Constraints by
Generating Partial Order Based Models

When implementing the extraction of timing constraints from a RT
simulation vector set, the following requirements have to be
fulfilled:

« in general, timing information extracted from simulation vec-
tor sets defined for one simulation cycle are sufficient. How-
ever, an extraction from simulation vectors defined for several
simulation cycles are also possible.

« at least, the simulation vector set has partially to implement a
synchronous timing behavior. Timing information can only be
extracted from simulation vectors that are not implementing a
complete handshake protocol.

« the timing behavior in the VHDL simulation vector set has to
be defined using one of the following WAIT construcifg8AIT
FOR <time>; or
WAIT UNTIL <clock_name>‘event AND <clock_name> =
<condition>;

« the VHDL specification can consist of assignments or loops
with a known number of loop passes. For loops with a
unknown number of loop passes, timing information for a sin-
gle loop pass can be extracted.

Following these requirements the extraction of timing information

can be executed in 4 steps:

1. A POM representing the algorithmic specification (PEMJ
is generated using an event execution semantics.
2. A POM representing the timing information of the RT stimuli

set (POM) is created using an event timing semantics.

The event execution semantics of the PN mapped on the
event timing semantics of the PQM:c

The RT timing constraints are assigned to the R@M states.
As a result, the POMpgcis restricted by the RT timing infor-
mation. The modified VHDL specification is produced.

3.2.1 POM Semantics

The basis of our approach is the POM described in Section 2..

signals. Using variables a collection can be created achieving a
dataflow analysis. The dataflow analysis is used to detect the input
signals from which the actual output signal is dependent.

Event Execution

Collection Event Description

SP0123 sp0, spl,sp2| read e0, el, e2
sp3 write x

SP45 sp4, read e3
sp5 write y

SP678 sp6, sp7, read el, e3
sp8 write z

Table 1: Event execution list

Concerning the event timing semantics a further distinction has to
be made. Simulation vector sets can be implemented in several
ways. Most important is the specification of the expected design
results corresponding to the defined stimuli. In VHDL, these
results can be specified by using ASSERT statements. Hence, the
event timing semantics in Definition 4 can be used.

Definition 4: (first event timing semantics)

A POM eventg (i=0,..,n)is defined as a write operation to an
interface signal, as a VHDL WAIT construct or as a VHDL AS-
SERT construct.

A simple example of a VHDL simulation vector set is given in
Program 2. The resulting event timing list is given in Table 2.

PROCESS

BEGIN
e0<=5;el<=7;e2<=13;
WAIT FOR 5 ns;
ASSERT (x = 25);
e3<=09;
WAIT FOR 2 ns;

ASSERT (y = 9); ASSERT (z = 16);
END PROCESS;

Now, event semantics have to be defined that consider the data Example 2. Simulation vector set with ASSERT statement
dependencies between the 1/O signals in the specification and the

timing information contained in the simulation vector set.

Therefore, two different event semantics are necessary: an event

execution semantics (Definition 3) for the P@QMcand an event
timing semantics for the POM.

Definition 3: A POM eveng, (i = 0,..,n) is defined as a read
operation from an interface signal or as a write operation to an
interface signal.

For illustration purposes, Example 1 is used. In this example, 9
different events can be detected. These events are summed up to

Event Execution CollectionsEvery collection consists of one

output signal and the corresponding input signals. The resulting
events and event collections are listed in Table 1, e.g. in column 1,

an event collectior8P0123has been generated consisting of the
eventsspO(read e0)spl(read el)sp2(read e2), andp3(write x).

PROCESS (e0,el,e2,e3)

BEGIN
x<=e0+el+e2
y<=e3;
z<=el +e3;

END PROCESS;

Example 1. A simple VHDL program

It is important to note that afEvent Execution Collectiogan

easily be created when input signals are directly assigned to output

Event Description
tc_ao write e0

tc_al write el

tc_a2 write e2

tc_a3 WAIT FOR 5 ns
tc_ad ASSERT x
tc_ab write e3

tc_ab WAIT FOR 2 ns
tc_a7 ASSERT y
tc_a8 ASSERT z

Table 2: First event timing list

Sometimes the expected design results are not described in the
VHDL simulation vector set but in separate data files. Therefore,
another event timing semantics have to be used (Definition 5).
Definition 5: (second event timing semantics)

A POM event e (i = 0,..,n) is defined as a VHDL WAIT con-

struct or as a write operation to an interface signal.

As stimuli, the vector set described in Program 2 is used but
without any ASSERT statements. The resulting event timing list



consists of events listed in Table 3. After the production of the
different event lists, the generation of the PQb4c and the
POM;¢ can be started.

Event Description

tc_r0 write e0

tc_rl write el

tc_r2 write e2

tc_r3 WAIT FOR 5 ns
tc_rd write e3

tc_r5 WAIT FOR 1,5 ns

Table 3: Second event timing list
3.2.2 Generation of the POMgc

The generated event execution list is used for the generation of the?:

POMgpgc The generation of the POMgcstarts with a first state
(state(, where ,no event has occurred®. The three assignments in
the VHDL specification represented as Event Execution

generation of the PONbgg these relations are used to produce the
POMy states and the logical formula that internally is represented
as BDD. The generation of the PG using Definition 5 is
similar to the already described strategy. The last step is the
mapping of the POM. on the POMypecand the final generation

of the algorithmic VHDL specification.

3.2.4 Mapping of the different Event Semantics

The main problem during the mapping process is the different
semantics of the single events in the P@Mand the POMpgg

Due to this fact, for certain events additional information have
been collected, e.g. the Event Execution Collection sums up read
and write operations in the specification. In summary, there are two
steps to be executed:

1. A mapping file of the event names has automatically to be pro-
duced that indicates which event from the event execution list
corresponds to which event from the event simulation list.

The timing events have to be summed up in Event Timing Col-
lections.

The first step is the generation of the event name mapping (ENM)
file. For illustration purposes, the mapping of our simple

Collections are independent. Consequently, the independentassignment example is shown in Figure 5. In this figure, Definition

relation are usedSP01230 SP45, SP01231 SP67, SP45]
SP67 and the resulting states are generated.

state SP0123 SP45 SP67
stateO 0 0 0
statel 0 1 0
state2 1 0 0
state3 1 1 0
state4 1 0 1
state5 1 1 1
state6 0 0 1
state7 0 1 1

Table 4: POMgpgc

The POMspeccan also be described as logical representation:

(~SP0123] - SP450-SP67 )0
(~SP0123] SP451-SP67 )J
(SP01231-SP450-SP67 )J
(SP0123] SP450-SP67 )0
(SP01231-SP450 SP67 )J
(SP01231SP450SP67 )
(~SP01231-SP450 SP67 )J
(~SP0123] SP451SP67)

3.2.3 Generation of the POM

Using one of the event timing semantic definitions, the generated
event timing list is now applied for the generation of the PRM
Using Definition 4, a POWNL is generated with the relations:

tc_alOO tc_al, tc_a@l tc_a2, tc_alltc_a2, tc_al <tc_a3,
tc_al <tc_a3, tc_a2 <tc_a3, tc |¥_a4,

tc_adlltc_ab, tc_ad <tc_ab, tc_ab < tc_ab,

tc_ab <tc_a7., tc_abtc_a8, tc_a7ltc_a8

from-sPEC

These relations express the following order: the first three write
operationseQ, el and e2 are independent, but they are all
predecessors from the first WAIT constru¢fAIT FOR 5 nk This
WAIT construct has again to be executed before ABSERT x
statement. The write operati@8and theASSERT statement are
executed before the second WAIWAIT FOR 1,5 nsconstruct.

4 is used as event timing semantics. It can easily be stated that
every read operation respectively write operation in the
specification correspond to an write operation respectively assert
statement in the stimuli set.

Event Execution Names Event Timing Names

SP0123 — > tc_a0(write e0)
read e0,el,e2 tc_al(write el)
write X tc_a2(write e2)

tc_ad(assert x)

SP45: — = tc_a5(write €3)

read e3 tc_a7(asserty)
write y

SP678: ——  p  tc_al(write el)
read el,e3 tc_ab(write e3)
write z tc_a8(assert z)

Figure 5. Generation of the Event Name Mapping File

After the creation of the mapping file, for every Event Execution
Collection (EEC) an Event Timing Collection (ETC) is created
(Figure 6).

Event Execution Collection Event Timing Collection

SP0123 — P SP0123
read e0,el,e2 write e0,el,e2
write X waith (event tc_a3)
assert X
SP45: — = SP45
read e3 write e3
write y wait2 (event tc_ab)
asserty
SP678: — P SP678
read el,e3 write el
write z wait5 (event tc_a3)
write e3
wait2 (event tc_ab)
assert z

Figure 6. Generation of the Event Timing Collection

The read and write operations summed up in the EEC are assigned

Further, the second WAIT construct has to be executed before theto the corresponding write and assert events in the event timing list

ASSERT wnd theASSERT statement. These last two ASSERT

(ETL). These events create the first part of the ETC. The second

statements are independent from each other. Corresponding to theart are the timing information contained in the WAIT events.



Using the ETL and the POMSs, every event of the ETC are
examined whether a timing event belongs to it or not. The principal
algorithm is given in the following:

algorithm Find_EventTimingCollectioMggo
Merc:=0;
repeat
take_EEC_and_evaluate_eveMgfEc, ENM, Metcpantd;
take_ETC_and_insert_timing@#cparts ETL MeTCnews
Merc = Mercl Metcnew
until examined_all_EEC;
end Find_EventTimingCollection;

Figure 7. Finding Event Timing Collection

So far, the event timing semantics has been used for this method.

Using the second event timing semantics it is more difficult to
insert the timing information into the Event Timing Collection.
Therefore, the following definition is necessary:

Definition 6: A WAIT event is valid for every output signal
that are reachable from the input signal updated previously.

With this definition and the POM: relations, it is possible to
insert the timing information in the Event Timing Collection. E.g.
the write operatiorwrite x contained in the EEGP0123can be
executed as soon as the read operatia eQ el, e2are executed.
These read operations correspond to the write operatioits eQ

el e2in the ETC. Using the POW relations the three read
operations (tc_r0, tc_r1, tc_r2) are predecessors ofcth® event
(WAIT FOR 5 ns Concerning our definition, the output sigmiab
reachable from the input signaksO el, and e2 which have
previously been updated. Therefore, the event3is inserted in
the ETC. The following algorithm determines the timing
information to be included.

algorithm Insert_TimingInformatiorROM;c,MgecMET0O
for all EECO MEEC do
repeat
take_EEC_output_and_search_inpEE&C, Minpyts);
search_ETC_output¥puts ENM, Moytputd:
traverse_POMc_relationPOMrc, Moytputs Mtc);
ETC:=ETCO Mg
until examined_all_outputs;
end dg
end Insert_TimingInformation;

Algorithm 1. Inserting Timing Information in the ETC

3.2.5 Assignment of the Timing Information to the
POMgpgcstates

The last steps are the assignment of the RT timing information to
the POM;pec states, and the production of the modified VHDL
specification. The first step has nearly solved in the last section.
The Event Execution Collection has only to be extended by the
timing information in the Event Timing Collection, e.§P0123
consists of the eventsead eQ e1, e2 wait5; write x. These timing
information has to be inserted in the algorithmic VHDL
specification. In the following, the timing semantics concerning
the ASSERT interpretation is used. Indeed, this method works
similar using the second event timing semantics .

However, for every read or write operation from or to an interface
signal the corresponding Event Execution Collectigihas to be

WAIT statement is therefore included in the VHDL specification
with a time range from 0 ns to 5 ns.

The next interesting statementyis<= e3; The output signay is
contained in the EE& SP45 In this collection, also a wait event

has been inserted. Due to the fact, that this is the second statement
examined the previous timing information have to be considered.
This can be handled using the relations of the R@Mrhere, the
eventtc_a7(assert y) is a predecessortof a6 (WAIT FOR 2 ny
which is finally a predecessor dic_a4 (WAIT FOR 5 nkx
Consequently, the signglis read after 7 ns (5 ns + 2 ns), and has

to be written to the same time at the latest. A second WAIT
statement with a time range from 0 ns to 2 ns has to be inserted.

PROCESS

BEGIN
--t1 : time range O ns to 5 ns;
WAIT FOR t1;
x<=e0+el+e2
-- t2 : time range O ns to 2 ns;
WAIT FOR t2;
y <=e3;
z<=el +e3;

END PROCESS;

Algorithm 2. VHDL specification with timing information

The last statement in our example B:<= el + €3; In the
corresponding collection two wait events have been inserted.
These waits are again the evetdsa4andtc_a7 This means, the
signalzis read after 7 ns, and has to be written at this time at the
latest. Due to the already inserted WAITS, this time is just reached
and so, no further WAIT statements have to be inserted. The
resulting VHDL specification can be seen in Program 2.

Throughout the whole insertion process it is possible that timing
conflicts occur, e.g. in the simulation vector set the sigeéland
e3are written first, and then the signalsaindz are read. Finally,

the signalse0 and e2 are written and the signalis read. In this
case, the assignment order implemented in the specification has to
be refined. This can be executed by comparing the two POMs
(POMgpgcand POM:c) with a simple conjunction of the logical
formula. Due to space limitations, a more detailed description of
that task is beyond the scope of this paper. For further information
the reader is referred to [6]. However, it is important to note, that
already defined WAIT statements as well as a sensitivity list in the
specification are deleted.

One point that has still to be clarified is the usage of WAIT UNTIL
constructs in the simulation vector set. It is possible to use these
constructs if the clock rate is known. In this case, the clock
statements are transformed in absolute timing values, and are then
handled like a WAIT FOR construct.

4. Results

The proposed technique has been implemented in the POM and the
CADDY-II system, and the timing constraints have been extracted
successfully from several examples. Some of these examples are
listed in Table 5. They are: (1) our simple assignment example (2)
communication example with two processes (3) differential
equation (4) ggt (5) FFT (6) simulated annealing processor. The
CPU time for the POM computation for all examples on an Ultra
Sparc Station 1 was less than 1 millisecond.

In columns 2 and 3, the number of specification (spec) and stimuli

examined. During this examination, timing conflicts eventually events are given. In example (3), (4) and (5), the simulation vector
occurred have to be solved. For illustration purposes, the simple sets consist of several simulation cycles. In columns 4 and 5, the
assignment specification is used again. The first statementnumber of generated POM states and BDD nodes for the
concerning interface signals is:<= e0 + el + e2; The output POMgpgcand the POM¢ are listed. Above all, the number of
signalx is contained in the EEf SP0123In this collection, one specification and stimuli events as well as the used relations are
wait event has been inserted. This wait event indicates that theimportant, because they determine the number of POM states that
signal x is read from the simulation vector set after 5 ns. As a has to be generated. The number of events increase with the
result, the signak has to be written after 5 ns at the latest. A first number of accesses to the interface signals. Therefore, for this



approach a complex example is a design with a large number of
read and write operations from and to the interface signals.

Design Events POM spec POMtc
spec stimuli
(assert) state node state  |node

assignment 9 (3 EEC) 9 135 11 24 14
assignment

communica- P1:4 12 6 7 15 23
tion (3 EEC)

P2:6 13 14
(4 EEC)

differential 6 (6 EEC) 40 39 15 85 80
equation

got 4 (2 EEC) 30 6 7 37 59
FFT 3 (2 EEC) 21 4 6 7 12
simulated 12 13 231 37 42 21
annealing (14 EEC)

processor

Table 5: POM Generation Results

However, the maximum number of POM states, that can be

handled, depends on the implementation of the BDD library.
Usually, in a BDD library several features are contained to handle
huge BDDs, e.g. partitioning, cache. Moreover, special procedures
are available to change dynamically the variable order, and this can
also lead to smaller BDDs. Besides, most of the I/O signals will be
independent, and due to the definition of the independent relation
as a tautology, this reduce the number of BDD nodes (Table 5: 5.
and 7. column). For the examples in Table 5, no BDD optimization
options have been used.

the specification (refinement) due to the timing information was
necessary. This information is listed in column 3. Above all, this
refinement is relevant for designs with a large number of signal
assignments, e.qg. filter functions.

In summary, the presented results show several advantages of our
extraction strategy. The system automatically identify the
extractable RT timing information. WAIT UNTIL statements used

in the RT stimuli set are automatically transformed in WAIT FOR
constructs if necessary. Furthermore, an automated refinement of
the specification are executed.

5. Conclusion

In this paper, a new method has been presented for extracting
timing information from RT simulation vector sets through a
Partial Order based Model. Moreover, timing information defined
in the algorithmic specification can be validated using this
extracting method. A key feature of this approach is the usage of a
Partial Order based model and the definition of event semantics for
the specification and the simulation vector set. The Partial Order
based Models can be represented as logical formula. These logical
representations are implemented as BDDs and, due to the chosen
event semantics, a high degree of parallel read and write operations
to and from the interface signals lead to smaller BDDs. Further, an
automated extraction and mapping process as well as the
generation of a VHDL specification containing RT timing
information have been developed. The RT timing constructs are
automatically adapted and the specification is refined if necessary.
Results from several designs demonstrated the effectiveness of the
approach.

6. References

Bryant, R.E.: Symbolic boolean manipulation with ordered
binary-decision diagramis ACM Computing surveys 24, 3
(September 1993), pp. 293-318.

Garcez, E.; Nascimento, FA'Model Checker for a Partial
Order based Model of ConcurrerigyProceedings of Work-
shop of Beschreibungs-sprachen und Modellierungsparadig-
men, March 1998.

Gupta, V.: ‘Chu Spaces: A Model of ConcurreihdyhD the-

(2]

(3]

(4]

(5]

(6]

sis, Department of Computer Science, Stanford University,
Stanford, CA, USA, 1994.

Gutberlet, P.; Kramer, H.; Rosenstiel, WCASCH - a Sted-
uling Algorithm for High Level -SynthesisProceedings of
the EDAC, pp. 311-315, February 1991.

Gutberlet, P.; Rosenstiel, WTtming Preserving Interface
Transformations for the Synthesis of Behavioural VHDL
Proceedings of EURO-DAC, September 1994.

Hansen, C.; Nascimento, F.; Rosenstiel, Werjfying High-
Level Synthesis Results Using a Partial Order based Model

Extractable Inserted
RT Timing Timing
Design Information Constructs Refinement
assignment; 2 WAIT UNTIL 2 WAIT FOR no
assignment 2 WAIT UNTIL 2 WAIT FOR yes
communication 2*1 WAIT FOR 2*2 WAIT FOR no
2* 1 WAIT UNTIL
differential 2 WAIT FOR 2 WAIT FOR yes
equation 2 WAIT UNTIL 2 WAIT UNTIL
ggt 2 WAIT FOR 2 WAIT UNTIL no
FFT 2 WAIT FOR 2 WAIT UNTIL no
simulated 3 WAIT FOR 5 WAIT FOR no
annealing 2 WAIT UNTIL
processor

Table 6: Extraction Results

In Table 6, for every design the number of extracted timing
information are given. All RT stimuli sets have been specified with
WAIT FOR and WAIT UNTIL constructs (column 2). During the
insertion process the WAIT UNTIL constructs have been
automatically transformed into WAIT FOR statements (column 3).
It is also possible to maintain the WAIT UNTIL constructs
(column 3). This is suitable if the algorithmic description has been
specified using a clock signal. With some designs, a re-ordering of

HLDVT'98, La Jolla (CA), November 1998.

Heinkel, U.; Glauert, W.: An Approach for a Dynamic Gen-
eration/Validation System for the Functional Simulation Con-
sidering Timing ConstraintsProceedings of ED & TC, Paris
1996.

Mayer, C.; Sahm, H.; Pleickhardt, JA Graphical Data
Management System for HDL-Based ASIC Design Préjects
Proceedings of EURO-DAC, September 1996.

Nascimento, F.; Rosenstiel, WP4rtial Order Based Model-
ing of Concurrency at the System Lé&vBloceedings of
CONSYSE, September 1997.

(7]

(8]

9]



	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index


