
A Two-State Methodology for RTL Logic Simulation
Lionel Bening

Hewlett-Packard Company
P. O. Box 833851

Richardson, TX 75083-3851
 +1-972-497-4013

bening@rsn.hp.com

ABSTRACT
This paper describes a two-state methodology for register
transfer level (RTL) logic simulation in which the use of the X-
state is completely eliminated inside ASIC designs. Examples
are presented to show the gross pessimism and optimism that
occurs with the X in RTL simulation. Random two-state
initialization is offered as a way to detect and diagnose startup
problems in RTL simulation. Random two-state initialization (a)
is more productive than the X-state in gate-level simulation, and
(b) provides better coverage of startup problems than X-state in
RTL simulation. Consistent random initialization is applied (a)
as a way to duplicate a startup state using a slower diagnosis-
oriented simulator after a faster detection-oriented simulator
reports the problem, and (b) to verify that the problem is
corrected for that startup state after the design change intended to
fix the problem. In addition to combining the earlier ideas of
two-state simulation, and random initialization with consistent
values across simulations, an original technique for treatment of
tri-state Z's arriving into a two-state model is introduced.

Keywords
RTL, simulation, 2-state, X-state, pessimism, optimism, random,
initialization.

1. INTRODUCTION
Whether it is VHDL or Verilog or C, designers are using register
transfer level (RTL) of abstraction [3][6][9][12] as their source
language for their detailed design work and design verification
simulation. As elsewhere, this is true in our design laboratory,
where we design large-scale high-performance systems.

In our most recent design work, the systems that we simulated
were scalable ensembles of 2 to 512 CPU's in a ccNUMA (cache
coherent nonuniform memory access) architecture. To support
the scalability and ccNUMA features of this architecture, the
systems included 7 to 512 instances of 5 ASIC types.

Four of these ASIC types designed in our laboratory provided
data path and control interfaces to the CPU's, memory, I-O, and
sets of CPUs. A fifth ASIC type provided the crossbar interface
between the other four ASIC types. Each ASIC averaged about
500K gate-equivalents.

Our system simulation model consisted of:

• RTL models of our ASICs.

We simulated the ASICs within our system model as standard
Verilog using either the vendor compile with full accessibility
to internal logic, or our own cycle-based compile with limited
accessibility to internal logic.

• Bus functional models of the CPU's and main memory.

• Board level logic, consisting of:

a) Power-on, environment, JTAG, and boot up sequence
control.

b) Board-level clock fan-out.

Though very small compared with the ASICs in terms of
the amount of logic, the board level control logic had an
intimate tie-in with the start-up logic within the ASIC
instances.

In this design project, we used a two-state RTL simulation design
verification methodology. It began with each ASIC type in its
individual simulation test bench, and continued into all of our
system simulations.

Two-state in this paper refers to eliminating the X, and using
only 0, 1 and Z states. Although tri-state busses had an important
place in our system design and simulation, the bulk of the logic
and nodes were only two-state, not tri-state. Most of this paper
discusses the two-state simulation method, but it does include a
discussion of our original technique for treatment of tri-state Z's
arriving into a two-state model.

Our initial purpose in eliminating the X was simulation
performance. We are not alone in eliminating the X. In the past
two years, new vendor simulator releases [4][11] have provided
the option of simulating without an X-state in order to achieve
greater simulation performance.

However, we believe that using the X state in RTL simulation is
a bad idea, even without the performance penalty that it causes.
Section 2 of this paper describes how RTL simulation can be
both excessively pessimistic and optimistic, and how attempts at
overcoming these shortcomings are impractical. Section 3
introduces some aspects of start-up state design in our ASICs.
Section 4 describes the application of two-state simulation in our
design process. Section 5 tells about the results of our experience

with two-state simulation. Section 6 presents suggestions about
further developments needed to better support two-state
simulation.

2. RTL X-STATE PROBLEMS
2.1 Pessimistic
Arithmetic operations are one example of gross pessimism in X-
state RTL simulation. Consider the following example.

reg [0:15] a,b,c;
...
begin

b = 16'b0000000000000000;
c = 16'b000000000000x000;
a = b + c;
$display(" a = %b",a);

end

The result for “a” in a 4-state Verilog simulator will be

"a = xxxxxxxxxxxxxxxx".

In RTL simulation of arithmetic operations, fast simulators map
these operations into host computer instructions. These fast
simulators detect any x-bits in the input operands by checking an
extra “flag word” for each input operand. Bits that are “1” in the
“flag word” mark bit positions that are x in the input operand. So
if the flag word is non-zero for either input operand, the
simulator skips the addition instruction, and assigns all X’s to
the result. Note that the overhead added by the check for x-bits in
an input operand is a single-instruction step, and therefore
closely matches the performance of a single host-machine
arithmetic instruction.

At the cost of reduced simulation performance, a Verilog gate-
level simulation can more accurately handle this addition,
resulting in "a = 000000000000X000". The gate level simulator
can propagate the X more correctly because it pays the
performance cost of visiting each bit in each operand, and
generates a result bit-by-bit.

Another example of pessimism is the following case statement.
reg [0:1] d,e;

...
begin

d = 2'b0x;
case d

2'b00 : e = 2'b01;
2'b01 : e = 2'b11;
2'b10 : e = 2'b10;
2'b11 : e = 2'b00;
default : e = 2'bXX;

endcase
$display(" e = %b",e);

end

Consider the situation where the control variable "d" is "0X."
Interpreting the “X” as a possible “0” or “1,” only the first two
case branches should be reachable. So, less pessimistically, only
the left bit of "e" is ambiguous, and the result should be "e =
X1." However, a 4-state Verilog simulator will give "e = XX”
when control variable "d" is "0X."

2.2 Optimistic
More insidious is the way that RTL simulation of case
statements and if-else statements with an X-state can lead to
optimistic results, and thereby hide real start-up problems in a
design.

Given an XX as the start-up state for d, the following case
statement will take the default branch. That only tests one of the
four possible branches the start-up condition could actually take,
if we consider the four possible two-state interpretations of the
XX bits.

reg [0:1] d,e;
...
begin

case d
2'b00 : e = 2'b01;
2'b01 : e = 2'b11;
2'b10 : e = 2'b10;
default : e = 2'b00;

endcase
$display(" e = %b",e);

end

2.3 Impractical
As a thought exercise, it is possible to envisage an RTL style that
would intercept and process X states more accurately,
moderating both the pessimism and the optimism.

Here is a case statement that intercepts X states and propagates
their affect on the result more accurately.

reg [0:1] d,e;
...
begin

case d
2'b00 : e = 2'b01;
2'b0X : e = 2'bX1;
2'b01 : e = 2'b11;
2'bX1 : e = 2'bXX;
2'b11 : e = 2'b00;
2'b1X : e = 2'bX0;
2'b10 : e = 2'b10;
2'bXX : e = 2'bXX;

endcase
end

Here is an if-else statement similarly modified to intercept and
propagate an X state.

if (f = = = 1'b0)
g = 2'b00;

else
if (f = = = 1'bX)

g = 2'b0X;
else

g = 2'b01;

These reductions to absurdity illustrate how RTL usage that
attempts to intercept X's everywhere is a not a good idea. Here
are some reasons for not intercepting X's.

• Simulation performance. All the extra tests for X's add to the
CPU processing that the simulator has to do.

• Labor content. Someone has to do the work of adding the
extra statements.

• Complexification. A good feature of RTL design is that it can
present a designer's intent more clearly than gate-level
design. Intercepting X's detracts from the clarity.

• Completeness. There is no current method of guaranteeing
that the designer's X interception and propagation is complete
enough to avoid the pessimism and optimism.

• Synthesis. Doing this makes the RTL a ternary logic design,
which has to be thrown out of mapping the design through to
binary logic gates in synthesis.

We prohibited use of X-intercepting and X-assignments
anywhere in our RTL logic design. This included the X-
intercepting default in fully specified case statements as shown
in [10].

...
case (select)

2'b00 : mux = a;
2'b01 : mux = b;
2'b10 : mux = c;
2'b11 : mux = d;
default : mux = 'bX;

endcase

Our RTL design style for our ASICs required that all case
statements be fully-specified, so assigning an X in a default was
never needed for telling synthesis about don't-care situations.

Contemporary logic synthesis technology allows for greater
optimization of generated gates for case statements in which
certain input control variable state values are impossible. For
these case statements, the designer doesn’t care about what
output states the gates generate for those control state values.

On this project, we felt that the extra gates saved by allowing
synthesis to optimize don't-care logic were not worth:

• precluding running our gate-based ATPG1 test vectors against
the RTL ASIC models.

• the challenges it would present to fast RTL-to-gate boolean
equivalence checking between the RTL and the gate [5].

3. START UP STATE DESIGN
Because some aspects of our start up state design may be
unusual, some discussion of the topic is in order.

In the ASICs for our system design, we combined reset signal
and ASIC instance “personalization” input ports to bring their
registers to an acceptable start up state.

Some registers did not connect to either reset or input ports. They
were designed to be acceptable in any state, or arrive at an
acceptable state given a few clock cycles and being fed by the
states of the registers that did connect to reset or personalization
input ports.

Why not fan out the reset to all the registers?

1 Automatic Test Pattern Generation, for manufacturing tests.

• Routing area. Reset fanout takes routing area, adding to the
cost of physical design, or reducing the total amount of logic
that can be fit on a given ASIC. Note that for full reset, reset
has to go everywhere that the clock goes.

• Timing. Considering the start of reset, reset timing does not
immediately seem to be critical. However, the time when
reset signal goes away has to be carefully tuned so that it
happens everywhere within the intended clock cycle.
Otherwise, some state machines may start "moving" a clock
cycle before the others that are still reset. The interaction
between them will likely lead to bad outcomes.

• Design verification test. For some free-running counter
registers, any start-up state should be acceptable.

4. APPLYING TWO-STATE SIMULATION
4.1 Two RTL Simulators
We used two simulation models for our ASICs in our system
development RTL simulation work.

1. vendor (Verilog-XL™ , VCS™) models.

2. in-house cycle-based models.

We generated both types of ASIC simulation models from the
same RTL Verilog source code.

Figure 1 illustrates the transition from standard vendor ASIC
models to cycle-based ASIC models in our system simulation.

Figure 1. System simulation models
Early in our design process, there were plenty of bugs, and
simulations failed in the first few cycles. At this stage, designers
used the vendor simulation models, for the debug accessibility.

As design refinement progressed, simulations began to run for a
long time between bugs. Simulation performance became
increasingly important.

At this point in the design process, our designers sacrificed
debug accessibility for the greater performance of the cycle-based
simulation of their ASICs. Our cycle-based simulation had many

Verilog
System Interconnect

Verilog
ASIC

models

Verilog
System Interconnect

Cycle-
based
ASIC

models

a) Vendor Verilog
 ASIC models

b) Cycle-based
 ASIC models

Translator

of the features of cycle-based simulation described elsewhere
[1][7]:

• bypassed update of internal nodes.

• limited accessibility to internal nodes.

• evaluate multi-bit buses instead of individual bits.

• two-state simulation i.e. no X state.

4.2 Zero Initialization Experience
Our progression to two-state RTL methodology began when our
five ASIC designs started passing their tests using the vendor
Verilog RTL simulation model. It started with registers in an X
state.

We then tried running the same tests on the ASICs using our
cycle-based two-state simulation that started with registers in an
0 state. All of the ASICs failed their tests.

We suspected that there was a bug in our cycle-based two-state
ASIC simulation, because it was newer and not as widely used
on different designs as the vendor simulator.

To verify this, we added PLI2 calls to the ASIC RTL Verilog that
initialized all registers and memory arrays to zero, and simulated
them using the vendor simulator. They all failed their tests!

The problems were in the designs and not in our simulation.
What the designers found was that they had tuned their RTL
designs to simulate with registers initialized to X. Their if and
case statements tested their control variables against two-state
constants. With registers initialized to X, in the first simulation
cycles if-else statements took the else branch and case
statements took the default branch.

With registers initialized to 0, wherever if-else and case
statements compared control variables with zero, the statement
took that branch. In effect, initializing registers to zero amounted
to a different test for the ASIC than initializing to X.

Designers found that design problems brought to light by
initializing registers to zero were relatively easy to track down,
compared with whatever gate-level X-initialization problems
they had faced in the past. This was a result of working with
"real" 0 and 1 states that occur in the hardware, not the X, which
only occurs in simulation.

4.3 Random Initialization Added
Because we had used PLI calls in our ASIC RTL to initialize
registers to zero, it was a simple matter of programming to add a
simulation run-time option to our PLI functions that loaded the
ASIC registers with random values.

The PLI functions used a time-of-day or user-specified seed for
generating random values. When using the time-of-day seed, the
PLI functions reported that seed, so a user could re-create any
problems detected with the time-of-day seed by specifying that
seed in subsequent simulations.

2 Programming Language Interface. A standard Verilog HDL

feature that provides for calls with parameter passing between
HDL and C functions.

A random state initialization feature is not new. Describing the
DEC Alpha functional verification methods and experience in
[9], mention a bug that got through to silicon due to insufficient
randomization of the RTL simulation model initial state. Random
state initialization was built into the HILO simulator [8].

A unique random state initialization feature that we added as we
progressed from vendor-based ASIC simulation models to cycle-
based ASIC simulation models was consistent random
initialization3. The consistent result aspect is important for two
reasons. Given the same seed, it allowed us to duplicate the
machine state for a design problem:

1. between the cycle-based based ASIC simulation model and
the vendor-based ASIC simulation model. A design problem
detected by detection-oriented simulation model could be re-
created and diagnosed by the other simulation model, given
the same seed.

2. after a design change intended to fix the problem. This
allowed the designer to verify that a design problem for a
given state had been fixed after the design change. Given the
same seed, all register state bits started in the same state as
before the design change, except for new register bits that
were added in the with the design change.

4.4 Random Initialization Verification Test
One important fact to note is that by NOT fanning out reset
everywhere and NOT scanning a defined state into every register
bit, random state initialization became a design verification test
feature in some cases.

If we designed our ASICs in a way that all register states were
defined at start up, it might take many clocks of a directed or
random test sequence for the interacting state machines to arrive
at states which brought out a design problem in their interaction.

By leaving registers open to random states at start up, we were
able to find some state machine interaction design problems at
the beginning of a simulation.

One example of this was a refresh counter. Each time we ran a
simulation test, the timing of the refresh cycles interrupted the
test sequence at different times. As the test passed for each run,
it provided additional assurance that the interacting state
machines in our design could handle the test refresh interruption
correctly.

4.5 Tri-state Buses
To simulate tri-stated buses in our system design, we set up
boundaries between the two-state simulation regions and the tri-
state signal lines. The tri-state signal lines used 0, 1, Z and X
values, while the remainder of the system signals used only 0 and
1.

The bus drivers consisted of a two-state enable signal, and the
two-state signal being enabled.

The tri-state bus receivers had to deal with the situation of
interfacing the potentially inactive bus signals at a Z state with
two-state logic and registers. A correct logic design would not
enable the bus at a Z state into any two-state region, but we

3 Hewlett-Packard patent pending.

wanted to somehow expose the situation where a design problem
caused the bus signal receiving logic to be active when the bus
signal was at a Z state.

For the same reasons (simulation performance, labor content,
complexification, completeness, synthesis) we didn't extend our
RTL Verilog to watch for the X state in if-else and case
statements, we did not extend them for Z state either.

We added a Z state trapping PLI call right at the tri-state to two-
state bus receiver boundary. So, given a tri-state pin on one side
of the boundary, and a two-state ipin on the other side, the

$TrapXZ(ipin,pin);

function passed through 0 and 1 values on pin to ipin, but put
random 0 and 1 values on ipin for any bit(s) that were Z (or X)
on pin.

The intent in the random values is to cause design problems to
manifest themselves because of bad data or invalid control
signals.

Including the X in the Z trapping feature was close to free in
terms of labor and affect on simulation performance. In addition
to dealing with the bus driver conflict problem (which would
have caused the bus to resolve to X), the X trapping feature
allowed us to use the same function in our system simulation
model. In the system model, there were non-tri-state interfaces
between commodity part models written to start at X, and our
models expecting only 0 or 1.

4.6 Undetected Reset Problems
Even with the RTL two-state initialization methodology, a few
initialization problems remained to be found at the gate-level
using X initialization in our ATPG vector simulations.

One reason is that X-state gate-level initialization is pessimistic,
and will show problems where there are none [2]. These are not
real design problems that would show up in the hardware, but an
artifact of X-state gate-level simulation.

Another reason is even though we performed RTL simulation
with many initial machine states, some real machine states
covered by gate-level “X” initialization had reset problems. Only
a subset of all combinations of initial states were reached in our
RTL simulations.

In spite of the fact that a few reset problems did get through to
gate-level, designers found a majority of their reset problems
using random two-state initialization in RTL simulations.
Designers were happy with this, because they found most reset
problems early, and these reset problems were based on real 1-
and-0 machine states, not the pessimistic gate-level X-state.

5. RESULTS
5.1 Acceptance
Our designers have completely eliminated X-state from all of
their RTL ASIC simulations. They use an in-house lint checker
to ensure that all registers in the ASIC designs have the
initialization PLI calls that initialize them to two-state values.

Unlike other HDL dialect and policy recommendations where
there has sometimes been lingering disagreement, acceptance of
the two-state simulation HDL style among our design team has

been one hundred percent. Some designers with long-time gate-
level experience simulating using the X state expressed
reservations at the start. But with a couple of hours of experience
debugging RTL designs with random 0 and 1 initialization, they
all made the mental mind-set conversion away from using the X
state.

5.2 Assertion Checkers
It is possible to envisage assertion checkers as an alternative or
complementary method to two-state simulation and inserting
random values. Here are some examples:

• the default in a case statement that checks for all possible
two-state values could issue a diagnostic message when the
case control variable has X bit values.

• bus Z-states arriving at an active input

Compared with assertions, design problems expose themselves
differently when found by random values. The random values at
startup and substituted for Z-state signals coming into a two-state
register introduce data path parity errors and control state
machine sequence malfunctions. Though a little harder to
diagnose than an assertion that “talks to” the test engineer, the
random values provide more complete coverage with less labor
content than assertions.

As with other verification methods that may overlap in terms of
what they can detect and diagnosis, assertion checkers are
acceptable in a two-state methodology. However, it should be
noted that we have eliminated X-detecting assertions from our
RTL style.

5.3 Usage
Over our six-month peak simulation period, our design and
verification engineers performed about 0.5 * 106 simulations.
Except when repeating a simulation to track down a bug, they
ran each of their simulations with a different UNIX “time”-based
seed. So in addition to their directed or random test sequence,
they verified that the ASICs would start up correctly in 0.5 * 106

start up states. This number of start-up states tested is far smaller
than the more than 2200,000 possible start-up states for our system.
However, identifying the startup design problems that we were
able to find through RTL two-state simulation early in the design
process was a win, compared with RTL or gate-level simulation
using an X state.

For all new ASIC design work, our design and verification
engineers started with two-state RTL on a conventional vendor
simulator for all directed and random testing from the very
beginning of their simulations. They abandoned X-state RTL
simulation from the beginning of their design work, starting their
first RTL simulations with all storage elements set to zero. After
tests began passing with zero initialization, they tested their
designs with random initialization of all storage elements.

The only RTL simulations that we ran with storage elements in
an X state at start up were for manufacturing test vectors. On our
most recent project, this amounted to around 500 simulations,
and resulted in one design change for reset in each of our 5 ASIC
types. These X-starting-state simulations were run at the end of
the design cycle, just prior to going to silicon.

Two release cycles of our five ASIC types have made it to silicon
and into our V2250 and V2500 products with no start-up state
reset problems. This was unlike prior ASIC projects where X-
state RTL simulation had hidden start-up state problems that
made it to silicon. Zero and random two-state initialization
would have caught these problems in simulation, according to the
designers on those earlier ASIC projects.

Table 1 summarizes the V2250/V2500 project startup state
experience, including the approximate project cost per problem.

Test phase Startup problems Cost/problem

RTL ASIC 2-st ~18 Hours

RTL System 2-st 2 Days

RTL/Gate ATPG 3-st 5 Days

Post-Silicon 0 (Weeks)

Table 1. V2250/V2500 project startup problem experience

The “~18” for RTL ASIC 2-state simulation in the table is
approximate because it is based on designers’ memories.
Designers did not log every design change needed to make their
ASIC pass their first tests.

6. NEXT STEPS
Training. Future editions of textbooks on RTL HDL usage
should discuss “X” optimism and pessimism, and remove X-
assignments from default branches of case statements.

Models. Commodity part models are still delivered that start at
X values and send X values out. Just as there is a need for cycle-
based commodity part models for fast simulation in system
design, there is also a need for two-state RTL simulation-
oriented commodity part models.

Standardization. Random initialization has proven to be a very
useful method in our RTL simulations. However, our PLI call
implementation is tightly linked to our design group's entire CAD
tool flow. It cannot be picked up and inserted into other design
groups, even within our own company, unless they carefully craft
it into their scripts and programs.

The better way is for Verilog simulation vendors to add
simulation run time random initialization options to their
simulators. To be done right, the random initialization must be
done according to a standard, so that designers can repeat their
simulation tests using the same random seed. This repeatability
should span different simulators, even from different vendors, as
well as before and after design changes.

Ideally, this feature should be built into Verilog and VHDL
simulators, so that users could get the benefits of RTL (and
other) simulation random initialization in a standard manner with
consistent results, without the PLI calls.

7. Conclusions
We have presented the case for eliminating the X from RTL
simulation, and our experiences in using 0 and random value
start-up register and memory states in ASIC and large system
simulation. We discussed how we enhanced our random
techniques to support (a) consistent random values across
simulators, as well as before and after design changes, (b)
transformation of Z (and X) inputs to random two-state values,

and (c) test coverage with free-running registers. We explained
that even though the random state coverage is incomplete, it
brought to light many design problems early in RTL simulation.
This experience completely convinced our designers that two-
state and random techniques are the right way to do RTL
simulation.

To the extent that others are convinced of the value of two-state
RTL simulation and the random techniques discussed here, we
would expect expanded support in these directions in future (a)
releases of vendor simulation tools, (b) commodity part libraries,
(c) standards, and (d) textbooks.

REFERENCES
[1] Ashar P. and Malik, S., "Fast functional simulation using

branching programs," Proc. IEEE ICCAD-96, pp. 408-412,
November, 1996.

[2] Breuer, M. A., “A note on three-valued logic simulation,”
IEEE Trans. Computers, vol. C-21, pp. 399-402, April,
1972.

[3] Evans, A., Silburt, A., Vrckovnik, G., Brown, T., Dufresne,
M., Hall, G., Ho, T. and Liu, Y., "Functional verification of
large ASICs," Proc. Design Automation Conference, pp.
650-655, June, 1998.

[4] Fitzpatrick, T., “Verilog modeling style guide for the Cobra
cycle simulator,” Cadence Design Systems, Chelmsford,
MA, Rev. 2, pp. 11-12, August 17, 1998.

[5] Foster, H. "Techniques for higher performance boolean
equivalence verification," Hewlett-Packard Journal, August,
1998, pp. 30-38.

[6] Hoehne, H. and Piloty, R., "Design verification at the
register transfer language level." IEEE Trans. Computers,
vol. C-24, pp. 861-867, September, 1975.

[7] McGeer, P. C., McMillan, K. L., Saldanha, A.,
Sangiovanni-Vincentelli, A. L. and Scaglia, P., "Fast
discrete function evaluation using decision diagrams," Proc.
IEEE ICCAD-96, pp. 402-407, November, 1996.

[8] System HILO - DWL Reference Manual, document 2523-
0103, page 9.6, VEDA Design Automation Inc., Campbell,
CA 95008, January, 1991.

[9] Taylor, S., Quinn, M., Brown, D., Dohm, N., Hildebrandt,
S., Huggins, J. and Ramey, C., "Functional verification of a
multiple-issue out-of-order, superscalar Alpha processor --
the DEC Alpha 21264 microprocessor," Proc. Design
Automation Conference, pp. 638-643, June, 1998.

[10] Thomas, D. E., Moorby, P. R., The Verilog Hardware
Description Language, Kluwar Academic Publishers,
Norwell, MA 02061, pp. 136, 4th Edition, 1998.

[11] VCS User’s Guide, Synopsys Inc., Mountain View, CA, pp.
2-19 – 2-30, December, 1998.

[12] Yim, J. S., Hwang, Y. H., Park, C. J., Choi, H., Yang, W.
S., Oh, H. S., Park, I. C. and Kyunge, C. M., "A C-based
RTL design verification methodology for Complex
Microprocessor," Proc. Design Automation Conference, pp.
83-88, June, 1997.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

