Simulation Vector Generation from HDL Descriptions
for Observability-Enhanced Statement Coverage

Farzan Fallah Pranav Ashar Srinivas Devadas
Fujitsu Labs. of America, Inc. CCRL Laboratory for Computer Science
Sunnyvale, CA NEC USA, Princeton MIT, Cambridge

Abstract

Validation of RTL circuits remains the primary bottleneck in im-
proving designturnaround time, and simul ation remainsthe primary
methodology for validation. Simulation-based validation has suf-
fered from adisconnect between the metrics used to measure the er-
ror coverage of aset of simulation vectors, and thevector generation
process. This disconnect has resulted in the smulation of virtually
endless streams of vectors which achieve enhanced error coverage
only infrequently. Another drawback has been that most error cov-
erage metrics proposed have either been too simplistic or too i neffi-
cient to compute. Recently, an effective observability-based state-
ment coverage metric was proposed along with a fast companion
procedure for evaluating it.

The contribution of our work isthe devel opment of avector gen-
eration procedure targeting the observability-based statement cov-
erage metric. Our method uses repeated coverage computation to
minimize the number of vectors generated. For vector generation,
we proposeanovel techniqueto set up constraintsbased on the cho-
sen coverage metric. Once the system of interacting arithmetic and
Boolean constraints has been set up, it can be solved using hybrid
linear programming and Bool ean satisfiability methods. We present
heuristicsto control thesize of the constraint system that needsto be
solved. We present experimental resultswhich show theviability of
automatically generating vectors using our approach for industrial
RTL circuits. We envision our system being used during the design
process, as well as during post-design debugging.

1 Introduction

Simulation is by far the primary design validation methodology in
IC designanditislikely to remain so for the foreseeable future, es-
pecialy in the validation of RTL circuits. A reason for thisis that
thetypical RTL circuit isderived from a heterogeneous, ad hoc de-
scription of the behavior, i.e., thereisno formal model of the behav-
ior for the RTL to be compared against. In fact, even if there were
such a formal model, verification tools available today are gener-
ally not robust enough to perform an automatic, formal comparison
of the RTL against the behavioral model. That leaves some form of
simulation asthe only alternative to comparethe 1/O response of the
RTL against the specification.

Simulation isthe most time-consuming task in the design of mi-
crochips, and simulationtime clearly influencesthe time-to-market.
Vector generation (usually done manually by hordes of “ verification
engineers’ poring over the HDL code) and actual simulation time
both contribute to the time spent in validating the design. Clearly,
thereisaneed for manual generation of simulation vectorsto check

functionality which cannot possibly be covered by any coverage met-
ric. Itisour belief, though, that most functional errors can be de-
tected through the prudent use of a compact set of simulation vec-
tors derived from a suite of quality coverage metrics. The choice
of coverage metrics will influence the computational requirements
of automatic vector generation, and the size of the generated vec-
tor set. However, the most important step here is to help design-
ersto devel op sufficient confidence in the vectors generated in this
manner to cut back on their manual- and random-vector generation
efforts. If one could convince designers that automatic vector gen-
erators produce amajority of the vectors that verification engineers
manually create, that would be a giant step forward, and would re-
sult in significant reduction of design turnaround time.

The key question is what constitutes a reasonabl e suite of cov-
erage metrics? Clearly, in order to detect an error, simulation must
visit the site of the error, and subsequently propagate the effect of
the error to an observable! output. A coverage metric must begin
with some error model and impose observability and controllability
constraints on the simulation to be useful. An additional require-
ment is efficient evaluation of the coverage metric, if it isto be used
in the inner loop of vector generation. It is obvious that the cover-
age of al pathsinthe HDL code or the coverageof al transitionsin
an FSM model of the implementation [1] results in way too many
vectorsto be usable. Approachesthat generate vectorswhich cover
selected transitionsin the FSM model or selected pathsin the HDL
code are much more practical. Coverage of all statements in the
HDL code 2] is moretractablethan path or transition coverage, but
again not very meaningful since it does not address the observabil-
ity requirement.

A recent development in coverage metricsfor simulation-based
validation has been the proposal of an effective observability-based
statement coverage metric along with a fast companion procedure
for evaluating it [3, 4]. Thismetric is more accurate than just state-
ment coverage since it also incorporates observability criteria. On
the other hand, it is also more practical than path or transition cov-
erage sinceit leads to a much smaller number of vectors. The eval-
uation procedure proposed in [4] is computationally very efficient,
more so than other approaches. A feature of this coverage metricis
that it is pessimistic, making it more likely that a vector generated
based on thismetric will in fact uncover areal designerror. Itisour
belief that this coverage metric must be a part of any chosen suite
of coverage metrics used for vector generation.

1.1 Our Contribution

The contribution of our work is the proposal of a vector genera-
tion proceduretargeting the observability-based statement coverage
metric. We use repeated coverage computationto minimizethe num-
ber of vectors generated. For vector generation, we propose novel
techniques to set up constraints based on our chosen coverage met-
ric. To solve the system of interacting arithmetic and Boolean con-
straints, we augment recent algorithms for solving hybrid satisfia-

1 By observablewe mean that amonitor or the designer should be ableto distinguish
between correct and incorrect responses at that location.

bility problems[5]. We present heuristics to control the number of
the constraints generated. Analogous to a fault-list in test genera-
tion, wemaintain a“tag-list” during vector generation. Tagsare as-
sociated with each variable assignment in the HDL code. After the
generation of each vector, coverage by this vector of al tagsin the
HDL code is determined using the efficient coverage computation
procedure from [4]. The corresponding tags are deleted from the
tag-list. The processis continued until all tags under our metric are
covered, i.e., the tag-list is empty.

A review of the observability-based statement coverage metric
along with the coverage computation procedureis provided in Sec-
tion 2. A review of an agorithm for solving interacting arithmetic
and Boolean constraintsis providedin Section 3. Detailsof our vec-
tor generation algorithm are in Section 4. Section 5 provides tech-
niques to enhance the basic vector generation algorithm. Section 6
provides examples of the application of our approach on afew in-
dustrial examples. Section 7 concludes the paper and describes on-
going work.

2 Observability-Based Statement Coverageand its Computa-
tion

The purpose of this coverage metric isto evaluate vectors for their
ability to propagatean error at aspecificlocationinthe HDL codeto
some output. This is much harder to do than computing a control-
lability metric which just determinesif a vector resultsin a state-
ment being visited. A review of previous work on controllability
and observability-based metricsis provided in [4].

In [3], the notion of atag to model the possibility that an incor-
rect value is computed at a location was introduced, where aloca-
tion corresponds to an assigned variable in some statement in the
HDL code. Asthe name suggests, atagisjust alabel. It does not
have a value, and has nothing to do with how the erroneous value
was generated. It is either present or absent. It does have asign as-
sociated with it which helps determine if it can be propagated for-
ward. Aswill become clear, theselimited attributes associated with
thetag lead to an inherent pessimism in the coverage metric. At the
expense of afew extravectors, this pessimism leadsto greater con-
fidencein the ability of vectors satisfying the coverage metric to de-
tect real design errors.

Given avector and alocationintheHDL code, atag at the loca-
tion issaid to be covered by the vector under this coverage metric if
it isdetermined that the tag can be propagated to some output by the
vector. The propagation of atag may be blocked because of interac-
tion between data values. For example, if one input to atwo-input
multiplier has atag on it while the other input is zero, thetag is not
propagated to the output of the multiplier. Successful tag propaga-
tion impliesthat using the vector for simulation will reveal the error
inRTL model. Given avector, thetask of the coverage computation
procedureisto efficiently determineall thetagsthat will be covered
by avector. We useasingletag model inwhich atag isinjected only
on onelocation at atime.

Coverage computation is done by a concurrent algorithm on a
graph extracted fromthe HDL model. Detailsof thetag propagation
algorithm can be foundin [4].

3 Solving Hybrid LP-SAT Constraints

Given aBoolean equation, Boolean satisfiability (SAT) isthe prob-
lem of finding an assignment of variables so that the equation eval-
uates to one, or to establish that no such assignment exists. Typ-
ical SAT algorithms convert the Boolean eguation into a conjunc-
tivenormal form (CNF) and apply abranch-and-bound algorithmto
find the solution, or to prove that none exists. SAT algorithms have
found successful application in CAD in stuck-at fault test genera-
tion [6].

Vector generation from HDL code targeting a chosen coverage
metric can aso, in theory, be set up as a purely Boolean satisfia-
bility problem. Given that HDL code consists of word-level arith-
metic operators in addition to logic gates, this would not be a very
efficient approach in practice. It was demonstrated in [5] that itis
much more efficient to keep the Boolean and word-level domains
distinct, and only model their interaction for the specific variables
shared between the two domains. Linear constraints are solved in
the linear programming domain, while Boolean clauses are solved
using a SAT solver. Completenessis ensured by effectively ensur-
ing that the feasibility of the linear constraints is checked for each
path to a leaf in the branch-and-bound tree of the SAT solver. This
is accomplished in practice by checking the feasibility of the lin-
ear constraints each time a Boolean variableis assigned in the SAT
solver. When thereisachoice of the next variableto assign, either a
Boolean variable, or aword-level variablewith no direct correlation
to a Boolean variable is picked. If aword-level variable is picked,
the feasibility of a solution must be checked for the entire range of
the variable. The feasibility of linear constraintsis checked by re-
laxing the constraint that theword-level variablesbeintegral. If the
problemisinfeasiblewith thisrelaxation, theoriginal problemisin-
feasible. Theintegral constraint isimposed only at the leaves of the
SAT branch-and-boundtree. Because of the correlation betweenthe
Boolean and word-level variables, some optimizations in the SAT
solver algorithm cannot be used in the hybrid problem. Even so, it
was shown in [5] that the hybrid algorithm is much faster than al-
ternatives.

The problem of solving for amixture of Boolean and linear con-
straintswas called the Hybrid SAT or HSAT problemin [5]. Thisis
also the approach we will follow in our effort to generate vectorsfor
the observability-based code coverage metric. Details of constraint
generation and constraint solution can be found in [5].

4 Vector Generation Algorithm for Observability-Enhanced
Statement Coverage

We provide details of our vector generation algorithm in this sec-
tion. The goal of the algorithm is to generate vectors so that each
tag (denoted by A) is propagated to an output by some vector.

Asthefirst step, the HDL description of the design is compiled
into structural RTL. In our prototype implementation, this involved
compiling a Verilog [7] descriptioninto BLIF-MV [8]. A graph
G(V, E) encapsulating the dependenciesbetween operatorsis built
fromthe RTL description. Therearethefollowingtwo typesof nodes
in the graph:

1. Operator nodes, denoted by V,,,,, which correspond to thein-
stantiation of operatorsin the RTL description.

2. Latch nodes, denoted by V;, which correspond to latchesin
the RTL description.

Every edge E corresponds to a variable in RTL description. An
edgefrom V; to V, existsif thereisadata dependence between op-
erators or latches corresponding V; and V5.

4.1 TheBasic Algorithm
The basic a gorithm operates according to the following steps:

1. Atag-listisset up. Thisisanalogoustothefault-listin stuck-
fault test generation. Asthealgorithm proceedsforward, tags
are removed from the list as vectors are found to cover them.
Ideally, thetag-list should be empty when the al gorithm com-
pletes.

2. An upper bound on number of timeframes, ¢,,,4-, that will be
used for vector generation is selected.

10.

11

4.2

. If there is no uncovered tag, the algorithm stops. Otherwise

it selects an uncovered tag to generate a vector for. The vari-
able V; and the operator V,,,, corresponding to this tag are
identified in the graph G(V, E).

. ¢ denotes the number of time frames that the design will be

expanded to in the current attempt. ¢ is set to one.

. Thegraph G(V, E) isunrolled ¢ times. V; and all variables

initstransitive fanout are marked.

. HSAT constraints for both tagged and untagged versions of

the circuit are generated according to the techniques in [5].
For the tagged circuit, we ignore constraints with no marked
variables in them, and replace V; by V; 4+ A in constraints
corresponding to V. . For the untagged circuit, constraints
areonly generated for the portion of thecircuit in the fanin of
marked outputs.

. Constraints are added expressing the requirement that the tag

be detected on at least one of the marked variables which is
also an output of the circuit. For example, if variables F o1
and Eo. are marked outputs, the added observability con-
straint will be the following,

(Eor > Eo1,) V(Eo1 < Eoi,)V
(Eo2 > Eo2;) V (Eo2 < Eoz,).

. The HSAT problem is solved using the algorithm described

in [5], with enhancements as described in Section 5.

. If thereisno solution to HSAT problem and if ¢ < 44, IS

incremented by 1 and the algorithm revertsto Step 5.

If thereisno solutionto HSAT problemand ¢ = ¢4, thea-
gorithmreturnsreporting that thetag cannot be covered within
tmax timeframes.

For the vector generated, tag simulation is performed using
an algorithm akin to [4] to detect all the tags which can be
covered by thisvector. The algorithm updates thetag-list and
revertsto Step 3.

Example Application of the Basic Algorithm

Consider the following Verilog code as an example to illustrate the
above algorithm. The code computes the running sum, sum of the
inputsi n. Theoutputisset equal tothesumif twovaluesofi n > 8
are observed. Clearly, if we want to detect a tag on the statement
sum = sum + in;, wemust wait for at least one cyclefor it to
propagate to the output out . The RTL circuit generated from this
codeisshownin Figure 1.

nmodul e test(clk, in, out)
input clk;

input [3:0] in;

out put out;

reg
reg
reg

out;
[1:0] i;
[3:0] sum

initial
begi n
out = 0;

= 0;

sum = 0;

end

al ways(@ posedge cl k)
begi n

if(in>=8)

|
a
S O
Cc
. h
i
|
a | out’
=
c
= h
sum 5 |
in * -
4 bits |
a |sum
t | —
r c
h

Figure 1. Structural RTL for the Example Verilog Code

i =i +1;
sum = sum + in;
if(i ==2)

begi n
i =0
out = sum
end
el se
out = 0;
end
endnodul e

The following constraints are generated for the various state-
ments (indicated in comments below) and variablesin the untagged
version of oneunrolling of the RTL circuit. Thesubscripts¢0 and ¢1
indicatethetimeframeto whichthe variablebelongs. Thevariables
P! and #? areindicated in Figure 1. ¢17* and c17? are temporary
variables.

/] initialization
outyg = 0

’itOZO

sume = 0

/1l in >=8
ing — 8+ 16(1 — Coto) >=10
ingg — 8 — 16c0; <= —1

Il iflelse (in >= 8)
.pl .

Ty — 4o =1
’ifo—’itozl

ifé - if% 4+ 16(1 — c0s0) >=0
o — tho — 16(1— c00) <=0

— 240 + 16c0;0 >=0
— 449 — 16c04g <=0

.p2
¥y

P
%o

/!l sum = sum + in;
sump — sumgg — ingg = 0

11 (i == 2)
I i >=2
if€—2+4(1—1dfg)>:0
iy —2— 41l <= -1

Il i <=2

-p2 2
2—zf%+4(1—clfo)>:o

2 — P2 — 40172 <= -1

/G >= 2) & (i <= 2)
(C 7t0 + clyo)
(c1 +C1t0)
(c1B5 + clso)

Il iflelse (i == 2)
41 +4(1 — cly)
1 —4(1—61,50)

i — iy +4clio >=0
141 — by —4clyp <=0

outyr — sumyr + 16(1 — clyg)
outyr — sumy — 16(1 — clyg)

outyr + 16¢clyg >= 0
outyy — 16¢clyg <=0

Wewould like to generate a vector to cover the tag on the state-
mentsum = sum + i n; . To achievethat, al constraints corre-
sponding to the operationsin the fanout of sum are duplicated with
each marked variable v in the constraints replaced with tagged_v.
Thetag isinjected by means of the statement t agged_sum =
sum + in + A labeled with the appropriate subscripts for the
number of unrollings. Constraints for detecting the tag at the out-
put in the first time frame are the following:

tagged_out;r — outyy + 16(1 — g1)
outy1 — tagged_outsyn + 16(1 — g2)
gl+g2>=1

Since the tag cannot be detected in the first time frame, the cir-
cuit must be unrolled once to generate a two time frame version.
Thisisachieved by marking variablesin unrolled circuit and gener-
ating constraints for unrolled circuit. For the variables correspond-
ing to the second time frame, the subscripts ¢1 and ¢2 are used in-
stead of ¢0 and ¢1, respectively.

4.3 Reationship to ATPG for Stuck-Faults

Apart from the fact that the constraints generated in our algorithm
areahybrid of linear and Boolean constraints, thismanner of setting
up constraintsfor the tag propagation problem is similar to the way
constraintsare set up intest pattern generation for stuck-at faults[6].
A key difference has to do with the error magnitude. Either we do
not assume any error magnitude as a result of which no constraints
are generated to justify a particular value at the site of the tag, or
we try to maximize the range of error magnitude for which the er-
ror ispropagated. Thisisclarifiedin thefollowing section. Thereis
no corresponding counterpart requirement in the test pattern gener-
ation case. Inthetest generation case, constraints must be generated
to justify a value opposite to the stuck-fault value at the fault site.
We do need to ensure that the statement corresponding to the tag
location is visited during the course of simulation of the generated
vector. That, aswell asthe observability of thetag is ensured by the
constraints generated in our algorithm.

5 Enhancementsto the Basic Algorithm

We use various heuristics to improve the run time and the quality
of vectors. As an straightforward tactic to reduce the vector gen-
eration time, the deterministic vector generation is preceded by a
limited random vector generation phase. In this case, the extracted
graph can be used to compute the values of the variables and after
that concurrent tag propagation can be used as before.

5.1 Improvingthe Performance of the Algorithm

Unrolling the HDL model increases the size of the HSAT problem
rapidly. This can degrade the speed of test vector generation sub-
stantially. It can easily be seen that in order to detect the tag in the
output, the tag should be propagated through a path consisting of
marked variables. In order to simplify the search for a solution, in-
formation about paths can be added to the HSAT problem.

As an example, in Figure 1, in order to have atag on out’, it
is necessary to have ¢1 = 1. Adding this constraint to the origi-
nal HSAT problem can help the HSAT solver find a solution to the
problem more quickly. Inthe previousexample, therewas only one
path between theinjected tag and ou#’, butin general thereare many
paths. Asaresult propagation constraintswill bein digjunctive nor-
mal form. Transforming propagation constraintsto conjunctivenor-
mal form whichis appropriate for the HSAT solver canresult in ex-
ponential growth in the number of clauses or will require the addi-
tion of several intermediate variables. Asaresult, it is not always
practical to use them.

In order to make this approach practical, it is possible to gener-
ate propagation constraints only for a limited number of paths be-
tween the injection point and each variable. This controls the size
of the HSAT problem that must be solved at any given time, usually
leading to a smaller run time. Thisis easily done by modifying the
stepinthe algorithmthat marksthetransitive fanout variables of the
tag location. Under this heuristic, the markings propagate forward
only along specific paths. Correspondingly, constraintsare added to
the HSAT problem which requirethetag to propagateforward along
the chosen paths. If the HSAT problemisfound to beinfeasible, an-
other set of paths is chosen. As avariation on this, short paths are
selected when the HSAT problem is very large. On the other hand,
preference is given to long paths when it is important to cover as
many tags as possible with each vector to minimize the number of
generated vectors.

Note that marking a path or a subset of paths in the circuit can
result in adecreasein the total number of variables and constraints.

5.2 Maximizingthe Tag Magnitude

In order to increasethe likelihood that real design errorswill be un-
covered by thegenerated vectors, wewould liketo maximizethetag
magnitude for which the vector coversthe tag. Idealy, we are in-
terested in finding avector, if such avector exists, which can propa-
gatethetag independent of itsmagnitude. Thisisimportant because
we do not know anything about nature of the error and cannot make
any assumption for its magnitude. We achieve thisin the following
manner.

During the search for finding a solution to the HSAT problem,
the HSAT solver fixesthe value of variable A. This means that the
resulting vector will propagate the tag with some specified magni-
tude to the output. There is no guarantee that a tag with a different
magnitude can be detected by the same vector. Consider thefollow-
ing verilog code shown below.

X = 4;

if (X>Y)
P =1;

else P = 0;

if (Y ==28)
:X’

Y isaninput, and P isan output. A vector with value 6 for Y
will propagate atag injected in thefirst line to the output only if the
tag magnitude is greater than 2. On the other hand, if the value of
Y isset to 8, atag in the first line can be propagated to the output
independent of its magnitude.

The following modifications are made to the HSAT problem in
order to maximize the covered magnitude of the tag.

1. Variable substitution is used to eliminate A from all equality
constraints.

2. All inegualities with A present in them, are rewritten in the
following form
A < linear combination of other variables, or
A > linear combination of other variables.

3. Aisreplaced by A, and Az, in the first and second form
inequalities, respectively.

4. We maximize A, - A, Over HSAT constraints.

The result gives us a vector which can propagate the tag, for all
values between A, and A, inclusive. Note that, this algorithm
converts the search problem from HSAT feasibility to optimization
over HSAT constraints. Theoptimization problemisharder to solve.

An alternative heuristic for maximizing the magnitude of the
covered tag isto select paths on the graph which propagatesthe tags
only through operatorsthat can propagate tags independent of their
magnitude. An HSAT problem requiring propagation through such
pathsarewritten. Thisway, only an HSAT feasibility problem needs
to be solved. If these constraints make the HSAT problem infeasi-
ble, an alternative path must be tried. Consider the example earlier
inthe section. Sincethetagon X = 4; can be propagated through
the statement P = X; independent of the magnitude of the tag if
Y has the value 8, we add the constraint (Y == 8) = 1 tothe
HSAT constraints.

5.3 Undetectable Tags

In some cases there might be tags in the code, which cannot be de-
tected by any vector. For example, atag onthestatementout = 0
in the Verilog code in Section 4.2 cannot be detected sincethe state-
ment is basically dead code. We would like to detect them as early
as possibleto avoid wasting time solving HSAT problemsfor them.

Obvioudly, if no output variable has been marked (as in Step
5 of the basic algorithm) in ¢ unrollings, we do not generate con-
straints for thetag until ¢ + 1 unrollings. Furthermoreif the set of
marked latches within ¢, time frames (¢, < t) is equal to the set
of marked variables within ¢, + 1 time frames, and no output has
been marked in ¢ timeframes, the tag is undetectable. Thisgivesus
an easy method for finding some undetectabl e tags though not all of
them. For example, thetagon Y on Line 2 in thefollowing codeis
not detectable, but that cannot be identified by our heuristic.

Line 1 if((X>4)& (X < 3))
Line 2 Y = 1;
Line 3 P=Y,;

Thistag can be determined to be undetectable by solving HSAT
constraintsfor the tag ignoring initial values on latches, and writing
constraintsfor detecting thetag on an output variableor latch. If we
fail to find a vector, the tag is undetectable. Otherwise it might be
detectable.

5.4 Finding Lower Bounds on the Number of Unrollings Re-
quired for Each Tag

Asdiscussedin the Section 5.3, we can detect the minimum number
of unrollingsrequired for covering atag by computing the number
of unrollingsrequired to obtain amarked output. 1t turnsout that we
can compute lower boundsfor all tags concurrently by starting with
marked outputs and propagating the markings backward to nodesin
their transitive fanin. The backward propagation of the markingsis
continued beyond the latch boundaries by progressively increasing
the number of unrollings. The number of unrollings required for a
marking to reach an operation is the minimum number of unrollings
that will be required to propagate atag at that location to an output.
As an extension, separate markings could be used for each output.

Thelower bounds for each tag are used to sort thetags according to
thelikely level of difficulty in covering thetag, or to determine the
potential of avector generated for atag to cover other tags.

6 Experimental Results

6.1 Performance Comparison

We have implemented the vector generation algorithm proposed in
this paper in a prototype system. The implementation uses the
VL2MV Verilog parser inVISverification system[8]. VL2MV con-
vertsthe Verilog to structural RTL inthe BLIF-MV format. Our im-
plementationinvolved convertingthe BLIF-MV format to our inter-
nal graph representation from which we could generate constraints.
In addition, we implemented a coverage computation (tag simula-
tion) routinewhich operated on the same graph representation. The
combination of linear and Boolean constraints was solved using the
HSAT solver system [5]. Each time a vector was generated, it was
tag simulated to determine the other tags covered by it. We did not
use random vector generation to get a fair evaluation of the vector
generation algorithm. The experiments were performed on a Sun
Ultra 30/300 with 256 MB of RAM running at 300 MHz.

Theexamplesusedin Table 1 correspond to variouscircuitsfrom
industrial and academic sourcesimplementedin VERILOG. FIFOc-
trl isaFIFO controller, DM Actrl isaDMA controller, counter is
an 8-bit counter, port isan interface circuit, arbiter isabusarbiter,
and crd is atraffic controller. Note that counter and port are part
of alarger circuit.

We used topological ordering (see below) for clauses, and en-
abled tag simulation for this experiment. Random vectorswere not
used asindicated above.

The basic numbers highlighting the performance of our vector
generation algorithm are presented in Table 1. Presented are the
number of generated vectors, the number of covered tags, the per-
centage of total tags covered by the generated vectors, and the num-
ber of tags on which the vector generation had to abort.

As one can see from the table, our program was able to achieve
full coverage for some examples. In some cases our program was
unable to find vectors covering atag. The reason is that our algo-
rithm targets tags with small depth. It tries to find a vector within
severa time frames or tries to prove that it does not exist. We are
working on heuristic vector generation methodsfor tagsthat require
alarge number of time frames to be detected.

6.2 Clause Ordering Comparison

The purpose of this section is to show the effect of clause order-
ing on the vector generationtime. Inthis controlled experiment, tag
simulation was disabled so that each heuristic operated on the same
set of tags in each example. The results are presented in Table 2.
Column 3 hasthe CPU timefor the casethat clauses are not ordered.
Column 4 isthe case where clauses are generated in the topol ogical
order of their corresponding operatorsin the graph. Column5isthe
case when clausesfor operatorsin the fanout of theinjected tag are
generated in depth-first search order. Column 6 isfor the casewhen
clauses for operators in the fanout of injected tag are generated in
the depth-first search order, and clausesfor other operators are gen-
erated in topological order. As one can see, using topological order
achieves the best results.

Ordering of clausesin SAT can affect the cpu time. A good or-
dering will help the HSAT solver in selecting good variables for
branching and as aresult decrease the CPU time.

In depth-first ordering, wetry to keep clauses correspondingto a
path from atag to the outputs/latchestogether. Thisway, the HSAT
solver will choose variables corresponding to a path in the circuit.

| Example | #Lines | #Vectors | #Covered Tags | Percent | #Aborted |

FIFOctrl 146 15 21 84% 4
DMActrl 443 19 20 16% 102
port 73 13 20 100% 0
counter 100 10 10 59% 7
arbiter 180 54 54 100% 0
crd 191 21 26 54% 22
Table 1: Performance of the Vector Generation Approach
1 2 3 4 5 6
Topological
Example | #Lines | Random | Topological | Depth-first | and depth-first
FIFOctrl 146 160s 159s 218s 160s
DMActrl 443 188 s 142 s 149 s 143 s
port 73 1s 1s 11s 11s
counter 100 3s 29s 32s 3s
arbiter 180 216s 114 s 190s 113s
crd 191 486 s 408 s 490 s 444 s

Table 2: Comparing Different Heuristics for Ordering SAT Clauses.

In topological ordering, clauses for an operator appear only af-
ter the clausesfor all the operatorsin its transitive fanin. Thisway
the HSAT solver islikely to set values on input variables to an op-
erator early. In turn, thisislikely to imply avalue on the output of
operator.

7 Conclusionsand Future Work

Our work isaconfluence of recent devel opmentsinthe computation
of an observability-based coverage metric, the solution of systems
of hybrid linear and Boolean constraints and novel heuristics for
generating vectors for observability-enhanced coverage. We have
proposed a method for the generation of simulation vectors from
hardware description language (HDL) model stargeting observabil -
ity-based statement coverage which uses a fast coverage computa-
tion procedurein the inner loop to minimize the number of vectors
that need to be generated to cover all statements. The vector gener-
ation itself isdone by setting up interacting arithmetic and Boolean
constraints, and solving them using hybrid linear programming and
Boolean satisfiability methods. Heuristics are presented to control
the size of the constraint system that needsto be solved. A key con-
tribution hasbeen the proposal of atechniqueto maximizetherange
of the error magnitude for which avector coversatag. By targeting
an effective coverage metric and by using deterministic vector gen-
eration, we automatically generate simulation vectors of high qual-
ity.

The development of such asystemwill allow the designer to use
thistool during the design process, and not just in a post-design de-
bugging phase.

There are three directions of work to be explored in improving
the current system: changing the order of tagsin the tag-list, mod-
ifying atest vector to cover more tags, and heuristics for handling
deep sequential designs.

In the prototype system, the tags (assignments) are processed in
the order of their line numbers. In practice it is much better to gen-
erate test vectors that cover many tags early during the test vector
generation, because this resultsin deleting many tags from the tag-
list before trying to generate atest vector for them, and decreasing
the overall tag generation CPU time. Finding aheuristic for chang-
ing the order of tagsin the tag-list is one possible direction for the
future work.

In some cases HSAT problems for covering different tags are

very close to each other. As aresult, their solutions will be close
to each other too. Finding a method for modifying a test vector to
cover some new tags can improve the speed of the test vector gen-
eration substantially.

The current prototype usesacomplete algorithm to generate test
sequences. It isnecessary to add heuristicsto the current algorithm
to handle deep sequential designs.

References

[1] R.C.Ho, C.H. Yang, M. A. Horowitz, and D. L. Dill, “Archi-
tecture Validation for Processors,” in Proceedings of the 29nd
Annual Symposium on Computer Architecture, June 1995.

K.-T. Cheng and A. S. Krishnakumar, “ Automatic Functional
Test Generation Using the Extended Finite State Machine

Model,” in Proceedings of the 30'" Design Automation Con-
ference, pp. 86-91, June 1993.

S. Devadas, A. Ghosh, and K. Keutzer, “An Observability-
Based Code Coverage Metric for Functional Simulation,” in
Proceedings of the International Conference on Computer-
Aided Design, pp. 418-425, November 1996.

F. Fallah, S. Devadas, and K. Keutzer, “OCCOM: Efficient
Computationa of Observability-Based Code Coverage Metrics
for Functional Simulation,” in Proceedings of the 35" Design
Automation Conference, pp. 152—157, June 1998.

F. Fallah, S. Devadas, and K. Keutzer, “ Functional Test Gener-
ation Using Linear Programming and 3-Satisfiability,” in Pro-
ceedings of the 35" Design Automation Conference, pp. 528—
533, June 1998.

T. Larrabee, “ Test Pattern Generation Using Boolean Satisfia-
bility,” |EEE Transactionson Computer-Aided Design, vol. 11,
pp. 4-15, January 1992.

D. E. Thomas and P. R. Moorby, The Verilog Hardware De-
scription Languafe. Kluwer Academic Publishers, Boston,
MA, second ed., 1994.

R. K. Brayton and others, “VIS: A System for Verification and
Synthesis,” in Proc. Computer-Aided Verification, vol. 1102,
pp. 428-432, June 1996.

(2]

(3]

(4]

(5]

(6]

(8]

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

