
Test Generation for Gigahertz Processors Using an Automatic

Functional Constraint Extractor�

Raghuram S. Tupuri

Texas Microprocessor Division

Advanced Micro Devices

Austin Texas 78741

raghuram.tupuri@amd.com

Arun Krishnamachary and Jacob A. Abraham

Computer Engineering Research Center

The University of Texas at Austin

Austin Texas 78712

arun, jaa@cerc.utexas.edu

Abstract

As the sizes of general and special purpose processors

increase rapidly, generating high quality manufacturing

tests which can be run at native speeds is becoming a

serious problem. One solution is a novel method for

functional test generation in which a transformed mod-

ule is built manually, and which embodies functional

constraints described using virtual logic. Test genera-

tion is then performed on the transformed module using

commercial tools and the transformed module patterns

are translated back to the processor level. However, the

technique is useful only if the virtual logic can be gener-

ated automatically. This paper describes an automatic

functional constraint extraction algorithm and a pro-

cedure to build the transformed module. We describe

the tool, FALCON, used to extract the functional con-

straints of a given embedded module from a Verilog RTL

model. The constraint extraction for embedded modules

of benchmark processors using FALCON takes only a

few seconds. We show that this method can generate

functional patterns in a time several orders of magni-

tude less than one using a conventional, at view of the

circuit.

1 Introduction
The trend in processor architectures is towards the use

of super-pipelining and super-scalar operation to in-

crease the clock frequency and to reduce the number

of clocks per instruction. This translates to circuits

�This research e�ort was supported by the Semiconductor Re-

search Corporation under contract 98-DJ-483.

with increased sequential depth and many internal in-

teracting state machines, both of which tend to make

testing more di�cult. Automatic test generation tools

are generally geared to models at the gate level. How-

ever, gate level test generation for these processors will

be impossible without any signi�cant design for testa-

bility incorporated into the designs. The e�ort among

researchers has, therefore, been to develop techniques to

add testability to the design, with scan being the most

commonly used technique. The scan features also help

with debugging the manufactured chips.

In deep sub-micron process technologies, faults other

than stuck-at faults, such as bridging faults and delay

faults, are also becoming dominant. Experimental data

presented in [1] show that the defect level of at-speed

functional vectors with 75% stuck-at fault coverage is

the same as the defect level of scan vectors with a higher

fault coverage. Therefore, even when chips are designed

with scannable memory elements, at-speed functional

tests are used to reduce the defect rate. Unfortunately,

we will not be able to achieve desired fault coverage lev-

els for at-speed vector generation on complete proces-

sors by using current sequential ATPG tools [2]. Manual

generation of functional vectors is an alternative, but

the process is tedious and time consuming if we want to

achieve high fault coverage for complex processors.

There has been some prior work in generating func-

tional tests targeting structural, stuck-at faults in pro-

cessors. Lee and Patel [3] describe a hierarchical level

test generation using a two step process. First, a mod-

i�ed gate level PODEM algorithm is used to generate

module level test vectors and the module level vectors

are justi�ed and propagated using an architectural level

test generator. During the architectural level vector

generation conicts are handled using heuristics, rather

than generating a new vector at the module level. A

synthesis based ATPG method was proposed in [4]. In

this method, an RTL model of a complete design is syn-

thesized, and during the synthesis process, functional

constraints are extracted and used to guide a custom

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

ATPG tool which is tightly coupled with the synthesis

tool. Automatic functional constraint extraction from

VHDL RTL using a tool called ATKET was proposed

in [5]. ATKET extracts propagation and justi�cation

modes through a given embedded module, and provides

them to a custom test generator. These approaches have

several drawbacks. The test generation system must be

custom designed, it needs to deal with the complete chip

model, it is not possible to synthesize a modern design

in a single piece, not all blocks in a design are synthe-

sized, and the storage requirements for the constraints

grow rapidly with the size of the circuit.

A novel functional test generation method which

shows promise for large designs was published in [2].

This method targets one embedded module at a time

and uses a commercial ATPG tool to derive tests for

faults within the module. Functional constraints are

extracted manually for inputs and outputs of the mod-

ule. The extracted constraints are described in Ver-

ilog/VHDL and synthesized to the gate level. Then

a transformed module is built using the synthesized

virtual gates (these gates are not part of the design)

and the embedded module, which is not changed. A

commercial sequential ATPG tool is used to generate

transformed module level vectors for faults within the

module. Finally, these module level vectors are trans-

lated to processor level functional vectors. Although

the approach shows promise, the manual generation of

the functional constraints precludes its use in real ap-

plications. In addition, the reported times did not in-

clude the time needed to generate the constraints, so

the comparisons with automatic test generation are not

meaningful.

In this paper, we will describe an algorithm for auto-

matic functional constraint extraction, called FALCON,

and a method for automatically building the trans-

formed module. An RTL description of the circuit is

used to extract constraints for each module. During

the analysis for constraints, testability bottlenecks can

be identi�ed and the design can be modi�ed, if desired,

early in the process. In particular, we are able to iden-

tify locations where accessibility of internal registers can

be improved for testability (called PIERS in the �gure).

As the circuit is implemented, we automatically extract

the constraints for each module and generate virtual

logic for the constraints. As will be shown in this pa-

per, the embedded module along with its constraints is

of a size that can be handled by any commercial test

generator tool.

The functional constraint extraction (FALCON) algo-

rithm is explained in Section 2 and the implementation

details are described in Section 3. Section 4 presents re-

sults on benchmark processors which include the times

for extraction of constraints. Conclusions follow in Sec-

tion 5.

2 Automatic Extraction of Mod-

ule Constraints (FALCON)

A VLSI design (including micro-processors) can be rep-

resented as a set of interconnecting state-machines, or-

ganized as modules and controlling data ow between

the datapath elements. Each module can have a com-

bination of state-machine(s) and datapath element(s).

When these modules are instantiated in the design, not

all states of the module can be reachable. In this sec-

tion, we will describe functional constraints and then

describe a methodology for building an ATPG view of

the module under test. An automatic functional con-

straint extraction algorithm is then presented, and we

show that it will scale with design sizes, so that the

process can be successfully applied to large designs.

2.1 Functional Constraints

Let a sequential circuit Ci with corresponding state ma-

chine Si be instantiated in a design . The test generator

has to use the state space, Si, de�ned by the instantiat-

ing constraints and generate tests for all the detectable

faults. Approaches which use patterns generated at the

module level without these constraints will not be able

to justify or propagate the vectors to the boundary of

the full chip.

For example, a data cache block, designed for a high-

end processor, Ph, is used in a low-end processor, Pl

to save the design time. This happens commonly to

reduce both product development time and also to in-

crease reliability since the block was already debugged

and tested. To support multi-processing, the processor

Ph implements a MESI protocol [7] but the low end

processor does not have the support for data coherency.

A write-back protocol is used by the data cache. The

state diagram of the MESI protocol is shown in Figure

1.

The data cache instantiated in the low-end processor,

Pl, has some of its inputs tied and the state machine

is modi�ed as shown in the �gure . The dotted lines

indicate the unreachable functionality of the state ma-

chine. Functional test vectors that are generated for

the high-end processor cannot be used to test the data

cache instance in the low-end processor. For example,

the transition from exclusive to invalid can be tested us-

ing a Snoop Hit in the high-end processor, but can only

be tested using a Flush in the low-end processor. These

are example functional constraints that are de�ned by

the instantiation environment.

Invalid

Snp Hit o
n Rd

Exclusive

Shared

Read Miss
Rd Hit

Wr HitRd Hit

Wr Hit

Wr Hit

Snp Hit

Rd Hit

Snp Hit or Flush

Rd Miss

Wr Miss
Fl

us
h

Sn
p

H
it

Sn
p

H
it

on
 R

d

W
r H

it

Modified

Snp Hit or Flush

Flush

Figure 1: The MESI State Machine with No shared state

and No Snoop

2.2 Primary Input/Output Accessible
Registers (PIERs)

Processors and other complex VLSI designs generally

have several internal registers accessible through pri-

mary inputs/outputs, i.e., using the processor instruc-

tion set (public or private instructions). The register �le

and con�guration registers are examples of such regis-

ters. These registers can help in reducing the sequen-

tial depth of the transformed module and thus reduce

ATPG di�culty. A PIER consists of one or more se-

quential elements, whose values can be initialized to a

given value from the primary inputs and outputs.

A PIER is orthogonal if its contents cannot be dis-

turbed by performing any operation other than writing

into the PIER(eg. any register in the register �le), it is

non-orthogonal if it can be initialized but can hold the

initialized contents only for a limited number of clock

cycles (eg. program counter).

In general, PIERs are accessed using special register

mechanisms in microprocessors. All accessible registers

have an assigned address and during the special regis-

ter operation this address is given along with a read or

write request. In general the special register operations

do not disturb the state of the processor. If necessary,

even the program counter can also be maintained. The

PIERs are de�ned during the architectural level spec-

i�cation and their access mechanisms are part of the

speci�cation.

2.3 ATPG View Abstraction
Because of design sizes, it is not possible to use an

ATPG tool on the full chip without any design for testa-

bility. Our goal is to reduce the size of the ATPG

view without a�ecting its ability to detect the faults

in a given module. Using PIERs as the boundaries, we

extract the transformed module which is given to the

ATPG tool. It is also assumed that the design has a

known initialization sequence since the design becomes

untestable if there is no initialization sequence [8].

2.4 Transformed Module

We de�ne the transformed module to be the ATPG view

of the embedded module under test which includes its

instantiating constraints. In order to explain the nature

of the transformed module, let us consider a processor

represented as a Moore machine, where there is no path

from an input to an output which does not pass through

a sequential element(the arguments can be easily ex-

tended to Mealy machines). Then the output function,

fo, depends only on the sequential elements, Vp. The

next state logic (fp) is a function of both the sequential

elements in the design and the primary inputs.

The Moore machine can be divided into three inter-

connected state machines (Figure 2) with logic func-

tions denoted by fi and state elements by Vj . The em-

bedded module targeted for the test generation is part

of f2; f3 and fo. If the sequential elements in V1 can

be initialized from the primary inputs by using special

register load procedures then, the function f1 is inde-

pendent of the sequential elements V2 and V3. Then

we can eliminate the next state logic, f1 from the trans-

formed module. Similarly, if we can unload the contents

of the sequential elements, V3, then the output logic,

that does not depend on V2 can be eliminated from the

transformed module. In Figure 2, the logic that is part

of the transformed module is bounded by the dotted

line. All the signals that are crossing the boundary will

become inputs and outputs of the transformed module

for the test generation phase.

Test generation on the transformed module(with

PIERs and PI/POs as ports) ensures that we take into

account the instantiating constraints of the module.

The ability to load/unload the PIERs from the PI/POs

easily, enable us to transform the tests that we gener-

ate (using a commercial ATPG tool on the transformed

module) to the full processor level. We ensure good fault

coverage by simulating the tests on all possible faults in

the Module Under Test.

2.5 FALCON

As described above, constraint extraction serves to de-

crease ATPG di�culty by reducing the sequential depth

and the size of the ATPG view. FALCON extracts

propagation paths from the module either to PIERs or

to primary outputs. Similarly, it extracts justi�cation

paths to the module inputs either from the PIERs or

from the primary inputs. Once the constraints are ex-

tracted, they are written out in Verilog format. The

f1
f2

f3

fo

V1 V2 V3

Next State Logic

Primary Inputs

Next State Logic

Next State Logic

Primary Outputs
Output Logic

Transformed Module Boundary

Sequential ElementsSequential Elements Sequential Elements

Figure 2: Sequential Circuit with Transformed

Module Identi�ed

constraint Verilog (output of FALCON) is then synthe-

sized to generate virtual logic. A transformed module

(which becomes the ATPG view of the module under

test) is formed by combining the virtual logic and the

module under test.

FALCON uses Verilog constructs to determine con-

straints. The algorithm is independent of processor ar-

chitecture and can be applied to any design.

2.6 Reduction of ATPG Complexity
ATPG complexity is a function of the sequential depth,

S, and the number of gates, G [6]. The sequential

depth of a design is de�ned as the maximum number of

sequential elements between its inputs and outputs. Let

Sp and St represent the sequential depths of the com-

plete design and the transformed module, respectively.

Similarly, Gp is the number of gates in the design and

Gt is the number of gates in the transformed module.

If the design has no PIERs then St = Sp. Most designs

have internal registers that are PIERs, and then the se-

quential depth of the transformed module is reduced by

the PIER sequential depth, k, i.e., St � Sp. In addi-

tion to the sequential depth, the state search space is

also reduced for the transformed module because of the

reduction in the number of gates. In the worst case,

the transformed module will be no worse than the orig-

inal design i.e., this method does not make the problem

worse.

3 Implementation of FALCON
FALCON is implemented in C++. The internal data

structure of the connectivity tree is described in Fig-

ure 3. This data structure supports both gate level and

Table 1: Reduction of Sequential Depth

Module Trans. Original Red.

Name Module Circuit %

Viper-ALU 1 8 87.5

DLX-Ex Stage 1 8 87.5

DLX-IF Control 2 8 75

DLX-WB Control 2 8 75

ARM-DP 3 10 70

Table 2: Processor Level Test Generation

Module Fault ATPG Time Coverage

Name Cov. E�. (secs) per sec

Viper-ALU 77.17 80.84 74782 .00103

DLX-Ex Stage 82.06 85.94 78852 .00104

DLX-IF Control 38.99 50.58 53707 .00072

DLX-WB Control 49.78 49.78 26877 .00185

ARM-DP 17.66 17.66 316199 .000055

RTL level Verilog and provides a convenient way to tra-

verse the tree. The leaf nodes of the connectivity tree

are either Verilog statements or library primitives.

During the extraction of constraints, a new connectiv-

ity tree is constructed which represents the constraints.

The constraints are merged as we extract them from

the processor connectivity tree into the constraint con-

nectivity tree. Once the constraint connectivity tree

is constructed, we can perform an optional constraint

minimization to reduce the size of the ATPG view.

4 Results
We have performed constraint extraction and build-

ing of the transformed module for several embedded

blocks (Viper-ALU, DLX-IF Control, DLX-EX Control,

DLX-WB Control) from the three benchmark proces-

sors, Viper, DLX and ARM. Viper is a simple processor,

DLX is a RISC processor with a 5-stage pipeline, and

ARM is a model of the commercial ARM-6 processor

(but without the multiply unit).

FALCON was provided with the Verilog RTL mod-

els for functional constraint extraction. A transformed

module was constructed from the extracted constraints

by synthesizing the constraints to gates. The trans-

formed module was used for test generation and the

generated test patterns were translated to full chip level.

Table 3 below describes the complexity of the modules

that are used as test cases. Prior work [2] wrote the

constraints manually and the indicated test generation

times do not reect the constraint extraction and syn-

thesis times to create the transformed module.

Module

always assigns I/O Nets Instances

Begin-End Ports

Case For if-Else

Statement
Begin-End

Figure 3: Connectivity Tree

Table 3: Processor/Module Details
Processor/ Combinational Sequential Primary Primary Stuck-At

Module Gates Elements Inputs Outputs Faults

Viper 5863 438 34 53 15358

Viper-alu 1784 104 72 34 6696

DLX 15177 1610 69 100 97556

DLX-Ex Stage 4776 64 77 32 28148

DLX-IF Control 1802 96 67 32 9114

DLX-WB Control 42 32 32 2 230

ARM 16029 1270 63 67 99198

ARM-DP 8893 295 199 161 51824

4.1 Extracting Functional Constraints

Table 4 presents the constraint extraction times (us-

ing FALCON) and synthesis times (using a commercial

synthesis tool). Note that the time for this step is dom-

inated by the synthesis time rather than the time for

extraction. Also presented in this Table is the reduc-

tion in the number of gates seen by the ATPG. The

smaller number of gates reduces the ATPG di�culty as

discussed earlier. This reduction in ATPG complexity

is reected in the reduced ATPG run times.

4.2 Test Generation

To compare our method with conventional test gener-

ation, sequential ATPG is performed on the complete

processor using the same commercial tool. Only the

faults in the embedded module are targeted in each case.

Table 1 shows the reduction in the sequential depth as

seen by the test generator. In Table 5, test generation

times using the proposed approach (including constraint

extraction and synthesis times) are shown when using

the same commercial test generator on the transformed

modules. The proposed approach lowered the test time

by several orders of magnitude, even when including the

times for constraint extraction, synthesis and mapping

back the tests for the transformed module to the orig-

inal design. The reduction in the time for ATPG on

the transformed module (Table 5, column 5) over the

time for conventional ATPG (Table 2), and the improve-

ment in the fault coverage indicate that the transformed

module greatly reduces ATPG di�culty. Comparing the

Tables 2 and 5 we see that we obtain several orders of

magnitude improvement in the coverage per unit time

Table 4: Time for Building Transformed Module
Module Extraction Synthesis Original Gates in Reduction

Name Time (secs) Time (secs) Gates Virtual Logic %

Viper-ALU 1.27 143 4413 357 91.9

DLX-Ex Stage 1.33 488 11947 5160 56.8

DLX-IF Control 0.98 439 14889 1622 89.1

DLX-WB Control 0.84 128 16713 691 95.9

ARM-DP 13.84 642 8111 719 91.1

Table 5: Test Generation using Proposed Method

Module Fault ATPG Test Gen. Total Time Coverage Improvement

Name Coverage E�ciency Time per sec. factor

(secs) (secs)

Viper-ALU 92.81 99.07 81 225.27 .41199 399.25

DLX-Ex Stage 96.25 99.68 85 574.33 .16759 161.04

DLX-IF Control 88.41 97.38 1017 1456.98 .06068 86.58

DLX-WB Control 97.17 100 2 130.84 .74266 400.97

ARM-DP 81.14 99.42 3956 4612 .01759 315.00

by using the proposed approach.

5 Conclusions
We have presented an automated technique for func-

tional test generation using constraint extraction. This

method reduces overall test development time dramat-

ically and, at the same time, increases the test quality

with no DFT overhead. The results presented in Table

4 indicate that the functional constraint extraction does

not add a signi�cant time to the test generation. These

constraints reduce both the sequential depth and ATPG

gates by a large amount. This, in turn, reduces test

generation time by several orders of magnitude with-

out a�ecting the test quality. The proposed approach

decouples constraint extraction and ATPG. This allows

us to use the best available ATPG tool without requir-

ing any modi�cation in the ATPG tool.

6 Acknowledgments
We would like to thank Dinos Moundanos of the Univer-

sity of Texas at Austin, for providing us a Verilog Parser,

and Professor TrevorMudge, University of Michigan, for

the DLX and ARM models.

References

[1] P. C.Maxwell et al., \The e�ect of di�erent test sets

on quality level prediction: When is 80% better than

90%?," Proceedings of the International Test Confer-

ence, October 1991, pp. 358{364.

[2] R. S. Tupuri and J. A. Abraham, \A Novel Functional

Test Generation Method for Processors," Proceedings

of the International Test Conference, November 1997,

pp. 743{752.

[3] J.Lee and J.H.Patel, \ARTEST: An Architectural

Level Test Generator for Data Path Faults and Control

Faults," Proceedings of the International Test Confer-

ence, October 1991, pp. 729{739.

[4] R.S.Ramachandani and D.E.Thomas, \Behavioral Test

Generation using Mixed Integer Non-linear Program-

ming," Proceedings of the International Test Confer-

ence, October, 1994, pp. 221{229.

[5] P. Vishakantaiah, J. A. Abraham and M. Abadir,

\Automatic Test Knowledge Extraction From VHDL

(ATKET)," 29th ACM/IEEE Design Automation Con-

ference, April 1992, pp. 273{278.

[6] T. E. Marchok, A. El-Makeh, W. Maly and J. Ra-

jski, \Complexity of sequential ATPG," Proceedings of

the European Design and Test Conference, March 1995,

pp. 252{261.

[7] D. Anderson and T. Shanley, \Pentium Processor Sys-

tem Architecture," Addison-Wesley Publishing Com-

pany, 1995.

[8] A. Miczo, \The sequential ATPG: A theoretical limit,"

Proceedings of International Test Conference, October

1983, pp. 143{147.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

