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Abstract

Matrix-implicit Krylov-subspace methods have made it possible to
efficiently compute the periodic steady-state of large circuits using
either the time-domain shooting-Newton method or the frequency-
domain harmonic balance method. However, the harmonic bal-
ance methods are not so efficient at computing steady-state solu-
tions with rapid transitions, and the low-order integration meth-
ods typically used with shooting-Newton methods are not so effi-
cient when high accuracy is required. In this paper we describe a
Time-Mapped Harmonic Balance method (TMHB), a fast Krylov-
subspace spectral method that overcomes the inefficiency of stan-
dard harmonic balance in the case of rapid transitions. TMHB fea-
tures a non-uniform grid to resolve the sharp features in the sig-
nals. Results on several examples demonstrate that the TMHB me-
thod achieves several orders of magnitude improvement in accuracy
compared to the standard harmonic balance method. The TMHB
method is also several times faster than the standard harmonic bal-
ance method in reaching identical solution accuracy.

1 Introduction

The exploding demand for high performance wireless products has
increased the need for more efficient and accurate simulation tech-
niques for communication integrated circuits. Designers of such
circuits are interested in some quantities which can be computed
from small-signal analysis, but many, such as harmonic and in-
termodulation distortion, require the accurate computation of the
circuit’s steady-state. The two most commonly used approaches
to computing a circuit’s steady-state are the shooting-Newton me-
thod [1], and the Harmonic Balance (HB) method [5, 3]. Recent al-
gorithmic developments, based on preconditioned matrix-implicit
Krylov-subspace algorithms [4, 6, 8], have made these methods
even more popular as now they can be used to easily analyze cir-
cuits with hundreds of devices.

The advantage of the shooting-Newton method is that it is a
time domain method which can select time-points based on local
error estimation. Therefore, shooting-Newton methods can easily
handle circuits where the solution waveform has sharp transitions.
The advantage of Harmonic Balance is that it is a spectrally ac-
curate method, and therefore the solution converges exponentially
fast with increasing harmonics. However, the effective time-steps
used by the Harmonic Balance method are uniformly spaced, and
this implies that the method requires a large number of harmonics

when the circuit solution contains very rapid transitions.
In this paper we describe a Time-Mapped Harmonic Balance

method (TMHB), a fast Krylov-subspace spectral method utiliz-
ing a non-uniform grid to resolve the sharp features in the sig-
nals. At the core of the method are the grid selection strategies [7]
and their use in construction of a time-map function specific to
the simulated circuit. In the next section we overview the stan-
dard Harmonic Balance method. In Section 3 we detail the Time-
Mapped Harmonic Balance algorithm. We derive the algorithm,
give a Krylov-subspace based solution technique, describe the post-
processing procedure used to obtain the actual Fourier coefficients
from the TMHB solution, and detail the procedure used to construct
the time-map function. In Section 4 we present results on several
examples that demonstrate that the TMHB method achieves sev-
eral orders of magnitude improvement in accuracy compared to the
standard HB method. We also show that the TMHB method is sev-
eral times faster than the standard HB method in reaching identical
solution accuracy. Finally, conclusions are given in Section 5.

2 Standard Harmonic Balance

Consider a circuit described withN nonlinear differential equa-
tions:

q̇(v(t))+ i(v(t))+u(t) = 0 (1)

wherev(t) 2 R N is the vector of node voltages,q(v(t)) 2 R N the
vector of node charges (or fluxes),i(v(t)) 2R N the vector of resis-
tive node currents, andu(t) 2 R N the vector of input sources.

Let the circuit be driven by a single periodic excitation input
source with periodT. Finding the periodic steady-state solution
of this circuit consists of computing theN steady-state waveforms
v(t) on the solution domaint 2 [0;T]. The periodic steady-state
solution of (1) satisfies the two-point constraint:

v(T) = v(0) : (2)

In the standard HB method, the solution waveforms are approx-
imated with truncated Fourier series:

v(t) =
k=K

∑
k=�K

Vkej2πk f t (3)

with K the number of harmonics considered in the truncation. The
method solves for the Fourier coefficientsVk. The approximation
(3), in conjunction with theN circuit equations (1), results in the
residual function:

f (V;t)�
K

∑
k=�K

j2πk f Qkej2πk f t + i

 
K

∑
k=�K

Vkej2πk f t

!
+u(t) (4)

which is to be minimized on[0;T].
The minimization of (4) is typically carried out by enforcing

f (V;t) = 0 on the uniform grid ofM collocation (interpolation)
time-points whereM = 2K +1. This standard HB method is more
accurately referred to as pseudospectral Harmonic Balance [2].
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3 Time-Mapped Harmonic Balance

In contrast to standard Harmonic Balance, Time-Mapped Harmonic
Balance (TMHB) utilizes a non-uniform grid of time-points. The
non-uniform grid is selected such that it has increased resolution in
the high-gradient regions of the solution waveforms, i.e. it resolves
the sharp waveform features in order to obtain greater solution ac-
curacy. We now introduce the notion of pseudo time, were pseudo
time t̂ is related to real time via the time-map functionλ such that
t = λ(t̂), λ(0) = 0, andλ(T) = T. The time-map function maps
a uniform grid of pseudo time-points into the non-uniform grid of
real time-points.

The time-map functionλ(�) is constructed in two phases. The
first phase is computing a grid of non-uniform time-points. These
non-uniform time-points are determined by examining the results
from solving the periodic steady-state problem using a shooting-
Newton time-domain method with a low-order integration scheme.
In the second phase, the non-uniform grid is spectrally interpolated
to yield λ(�). The details of this construction are given in Subsec-
tion 3.3.

To derive the Time-Mapped Harmonic Balance (TMHB) me-
thod, consider that

d
dt

=
1

λ0(t̂)
d
dt̂

: (5)

Replacing the time-derivative in (1) with (5) yields

1
λ0(t̂)

d
dt̂

q(v(λ(t̂))+ i(v(λ(t̂)))+u(λ(t̂)) = 0 ; (6)

and the two-point constraint becomes

v(λ(T)) = v(λ(0)) : (7)

The solution waveforms in TMHB are approximated with trun-
cated pseudo Fourier series:

v(t) = v(λ(t̂)) =
k=K

∑
k=�K

V̂kej2πk ft̂ (8)

whereV̂k are the pseudo Fourier coefficients of the solution wave-
forms. Equations (6) and (8) yield the residual function

f̂ (V̂; t̂)�
1

λ0(t̂)

K

∑
k=�K

j2πk fQ̂kej2πk ft̂ + i

 
K

∑
k=�K

V̂kej2πk ft̂

!
+u(t̂)

(9)
which is to be minimized on[0;T]. The minimization is carried
out by a collocation method, enforcinĝf (V̂; t̂) = 0 on the uniform
pseudo grid of collocation points.

The non-uniform grid in real time in effect “stretches” out those
regions of the solution waveforms with sharp features. As a re-
sult, the TMHB solutionv(t) in real time is the smoother wave-
form v(λ(t̂)) when viewed in pseudo time, as illustrated in Figure
1. Since the waveform is smoother in pseudo time, its features are
more easily resolved with anM-point uniform pseudo grid, com-
pared to resolving the original fast varying waveform in real time
with an M-point uniform real time grid in the HB method. Thus
one expects better accuracy from the TMHB method.

The rapid transitions in the solution waveforms are better ap-
proximated with the pseudo Fourier series (8), whose building
blocks are complex exponential basis functions with smoothly vary-
ing frequencies. The greater accuracy of the TMHB method stems
from the smaller global truncation error of the pseudo Fourier series
for the (smoother) solution waveform in pseudo time, compared to
the global truncation error of the standard HB Fourier series ap-
proximation of the solution waveform in real time.
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Figure 1: The smoothing effect of the non-uniform grid of TMHB:
(A) vCOIL in real time; (B) time-map function; (C)vCOIL in pseudo
time.

3.1 Matrix-Implicit Krylov-Subspace Approach

Equation (9) is now rewritten in the frequency domain yieldingNM
nonlinear algebraic equations

F̂(V̂)� ΓΛΓ�1ΩΓq(Γ�1V̂)+Γi(Γ�1V̂)+Γu= 0 (10)

whereΩ is the diagonal frequency-domain differentiation matrix

Ω =

2
664

j2π(�K) f IN
j2π(�K+1) f IN

...
...

j2πK f IN

3
775 ;

(11)
Λ is the diagonal matrix

Λ �

2
66664

1
λ0(t̂1)

IN
1

λ0(t̂2)
IN

...
1

λ0(t̂M)
IN

3
77775 ; (12)

and IN is the identity matrix of sizeN. The matricesΓ andΓ�1

are DFT matrices that perform the conversions from pseudo time
to frequency and vice-versa

v= Γ�1V̂ ;

Γ�1 =

2
64

ej2π(�K) f t̂1IN : : : ej2πK f t̂1IN
...

...
ej2π(�K) f t̂M IN : : : ej2πK f t̂M IN

3
75 :

(13)

Since the pseudo grid is uniform, the DFT can be carried out in
O(NM logM) operations using the FFT just as in the standard HB.

Applying the Newton method to (10) results in the iteration

J(l)
�
V̂(l+1)

�V̂(l)
�
��

ΓΛΓ�1ΩΓC(l)Γ�1+ΓG(l)Γ�1
��

V̂(l+1)
�V̂(l)

�
=

�F̂(V̂(l)) (14)

wherel is the Newton iteration index. The block-diagonal matrices



C andG are

C�

2
664

C1
C2

...
CM

3
775 ; G�

2
664

G1
G2

...
GM

3
775
(15)

whereCm=
dq(v(λ(t̂m)))

dv =
dq(v(tm))

dv andGm=
di(v(λ(t̂m)))

dv =
di(v(tm))

dv ,
and can therefore be evaluated in real time on the non-uniform grid
of real time-pointstm.

The Newton iteration (14) is a linear problem. Explicitly form-
ing and factoring the dense TMHB JacobianJ is very expensive,
O(NM3). As in standard HB, a preconditioned iterative linear solver
such as GMRES can be used to reduce the complexity toO(NM2).
Further reductions in complexity are obtained by implicitly form-
ing the GMRES matrix-vector product by sequential evaluation us-
ing FFTs, toO(NM logM). The diagonal blocks of the Jacobian
work well as a standard preconditioner in most circuit examples.
Therefore the complexity of TMHB is the sameO(NM logM) as
the state-of-the-art matrix-implicit Krylov-subspace standard Har-
monic Balance [4, 6, 8].

The TMHB yields the pseudo Fourier coefficientsV̂ of the volt-
age waveform solutions that can be related to the real Fourier co-
efficientsV. Note that if time-domain waveforms are desired, due
to (8), an inverse FFT readily yields the voltage waveforms at the
non-uniform grid of real time-points.

v(t)� v(λ(t̂)) = Γ�1V̂ : (16)

3.2 Computing the Real Time Fourier Coefficients

To compute the real time Fourier coefficientsV, we use the fol-
lowing “unmap” procedure. We introduce a non-uniform oversam-
pled grid in pseudo time such thatλ(�) maps this oversampled grid
in pseudo time to a uniform oversampled grid in real time. Since
t̂ = λ�1(t), (8) can be rewritten as

v(t) =
k=K

∑
k=�K

V̂kej2πk fλ�1(t)
: (17)

The summation in (17) is then evaluated to give the solution wave-
forms at the oversampled uniform grid in real time. Note that
the summation cannot be carried out by an inverse FFT since the
pseudo time-pointsλ�1(tm) form a non-uniform grid. Finally, since
thev(t)’s are now known on a uniform grid in real time, we can use
the FFT to compute the real Fourier coefficientsV.

Note that this procedure actually yields more thanM = 2K +1
Fourier coefficients. The additional Fourier coefficients represent
the higher frequencies captured by the non-uniform grid in TMHB.
These coefficients are shown to match the Fourier coefficients of
the “exact” solution quite well (Figure 2). Without oversampling,
these coefficients would be zero and some of the additional accu-
racy obtained by the TMHB method would be lost.

In effect theM pseudo Fourier coefficientŝV “pack” high fre-
quency information content, and in order to preserve it, we must
carry the “unmap” procedure utilizing the oversampling frequen-
cies aboveK.

The rate of oversampling is determined by the Nyquist fre-
quency fσ = 1

2hmin
corresponding to the smallest spacinghmin in

the non-uniform grid in real time, where from

Kσ =

�
fσ
f

�
=

�
1

2hmin f

�
(18)

whereKσ is the number of oversampling harmonics.
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Figure 2: TMHB matching of high-frequency coefficients.

The unmap procedure described above is in essence an over-
sampled Fourier interpolation of the solution waveformsv(t). This
interpolation uses the discrete waveform values ofv(t) at the non-
uniform grid in real time to generate the discrete values ofv(t) at
the oversampled uniform grid in real time. It is crucial to use a
spectrally accurate oversampled interpolation in order to preserve
the accuracy of the solution. Local interpolation schemes (linear or
quadratic) are not suitable for this task as they would introduce er-
rors that are larger than the errors from the Fourier approximation
of the solution.

3.3 The Time-Map Function

The first step in determining the time-map functionλ is to deter-
mine a set ofS non-uniform real time time-points. The success
of the TMHB method is crucially dependent on this time-point se-
lection [7], and the strategies used require an initial guess for the
solution waveforms. In particular, an approximate solution is com-
puted using a shooting-Newton method [5] with a low-order time
integration scheme. TheSnon-uniform time-points for the TMHB
method are then selected based on balancing two criteria: using
small time-steps in the fast-varying regions of the approximate so-
lution waveforms, and insuring that the time-steps do not change
too rapidly. Although using a shooting-Newton method to compute
the approximate solution is expensive, the cost is kept low by loos-
ening the convergence tolerance. In addition, this shooting-Newton
solution is useful as an initial guess for the TMHB.

Given theSnon-uniform real time time-points, the next step is
the construction of the time-map functiont = λ(t̂) that relates the
uniform grid in pseudo time to the non-uniform grid in real time.
In order to preserve the spectral accuracy of the TMHB method,
the time-map function must be smooth, and we must be able to
compute its first derivative with spectral accuracy or better as it
is used in (9). Furthermore, to ensure strict monotonicity of the
non-uniform grid of real time-points, the time-map function must
be strictly monotonic, i.e.λ0(t̂) > 0 for all t̂ 2 [0;T]. Finally, for
unmap purposes, we also need to be able to computeλ�1(t).

We first representλ(t̂) as a sum of a linear part and a T-periodic
partλφ(t̂)

t = λ(t̂) = t̂ +λφ(t̂): (19)

The periodic partλφ(t̂) is chosen to be a Fourier polynomial inter-
polantφ(t̂) of orderSsuch that the interpolatory condition

ts = t̂s+φ(t̂s) (20)



is exactly satisfied at the points(t̂s;ts) where ts are theS non-
uniform real-time time-points, and̂ts areS uniform pseudo time-
points. The interpolantφ(t̂) is the truncated Fourier series

φ(t̂) =
J

∑
k=�J

Φkej2πk ft̂ (21)

where 2J+1 = S. The coefficientsΦk can be computed with an
inverse FFT of sizeS2

4 Φ�J
: : :

ΦJ

3
5= Γ�1

2
4 t1� t̂1

: : :

tS� t̂S

3
5 : (22)

Thus the time-map function is constructed as:

λ(t̂) = t̂ +
J

∑
k=�J

Φkej2πk ft̂ (23)

and this approximation exactly passes through the points(t̂s;ts).
The first derivative of the time-map function is

λ0(t̂) = 1+
J

∑
k=�J

j2πk fΦkej2πk ft̂ (24)

and is exact.
Theλ(�) function (23) and its first derivative (24) are now eval-

uated atM uniform pseudo time-points to yield theM-point non-
uniform grid in real time and the matrix of time-map derivatives
Λ.

Due to the Fourier nature of the representation (23),λ(t̂) may
exhibit high frequency oscillations and violate the monotonicity re-
quirement. In practice, for the grids selected, ifS is sufficiently
large, this violation rarely happens, and can be resolved by damp-
ing the oscillations with an exponential filterµk, yielding a filtered
construction

λµ(t̂) = t̂ +
J

∑
k=�J

µkΦkej2πk ft̂ (25)

whereµk = e�δ( k
S)

γ
andδ andγ are filter parameters. Note that the

filtered approximation no longer passes through the points(t̂s;ts).
In addition, the filtered approximation can introduce an offsetτ
such thatλ(0) = τ andλ(T) = T + τ. While this offset causes no
problems to the TMHB method, excessive filtering can deteriorate
the quality of the approximation.

The values ofλ�1(t) at the oversampled uniform timestm is
required in order to compute the actual Fourier coefficients. This is
accomplished by applying Newton’s method to the nonlinear equa-
tion λ(t̂m)� tm = 0 and solving for̂tm at each time pointtm.

4 Results

In this Section we compare the performance of the TMHB me-
thod with standard state-of-the-art matrix-implicit Krylov-subspace
Harmonic Balance [4, 6, 8]. Both the standard HB and TMHB
methods were implemented in Mica, Motorola’s SPICE-like circuit
simulator.

The best candidates for the TMHB method are circuits whose
solution waveforms undergo rapid transitions. Many highly non-
linear circuits will exhibit such waveforms. For these circuits the
pseudo Fourier series solution representations of the TMHB me-
thod will be much more efficient than the standard Fourier series
used in the standard HB method.

Four strongly nonlinear circuits were simulated with the HB
and TMHB methods: a diode rectifier powered with a 50Hz sine
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Figure 3: DC-DC converter circuit: error in the computed Fourier
coefficients ofvCOIL for K = 50, in dB.
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Figure 4: DC-DC converter circuit,vCOIL computed with: (A) stan-
dard HB; (B) TMHB, at same number of harmonicsK = 50.

input, a DC-DC converter with a 85kHz sine input, a BiCMOS
switching mixer with a 1.8GHz square wave LO, and a BiCMOS IF
preamplifier circuit driven into distortion with a 0.1V 110MHz sine
input. Both the standard HB and TMHB methods in all runs used
the same shooting-Newton solution guess. The Fourier coefficients
V�

k of the “exact” solution were computed using a standard HB
method with a very large number of harmonics.

The four circuits were first simulated with both the standard HB
and TMHB methods at a fixed number of harmonics. A plot of the
frequency-domain pointwise errorε f (k f) = jVk�V�

k j in dB in each
computed Fourier coefficientVk of the computed voltagevCOIL ver-
sus frequency in the DC-DC converter is shown in Figure 3 (the
number of harmonics wasK = 50). vCOIL was chosen because it
is the signal with sharpest features in the circuit. The plot illus-
trates that the TMHB method computes each individual harmonic
much more accurately than the standard HB. A plot of the com-
putedvCOIL waveforms with HB and TMHB atK = 10 is given in
Figure 4 illustrating the smaller TMHB error in the time domain.
Similar results were observed for the computed waveforms in the
other three circuits as well.

Next, the four circuits were repeatedly simulated with the stan-
dard HB and TMHB methods using increasing numbers of harmon-
ics. Figures 5, 6, 7, and 8 show theL∞ norm of the frequency-
domain pointwise errorε f in dB, for the computed Fourier coeffi-
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Figure 6: DC-DC converter circuit:L∞ of the error invCOIL, in dB.

cients of a selected voltage or current waveform versus the number
of harmonicsK. The plots show orders of magnitude improvements
in the accuracy of the TMHB solution compared to the standard HB
solution. For example, atK = 200 the TMHB solution ofvCOIL in
the DC-DC converter is about 100dB (5 orders of magnitude) more
accurate than the standard HB solution. TheL∞ error as well as the
errors in each individual harmonic for the remaining waveforms
show the same superior error convergence properties.

4.1 Runtime Efficiency and Storage Requirements
of TMHB

A logical way to measure the runtime efficiency of the TMHB me-
thod is to compare standard HB and TMHB runs achieving similar
accuracies. Table 1 summarizes these findings. The results were
obtained on a Sun Ultra-2 300MHz workstation. The accuracyε f
was theL∞ norm of the frequency domain pointwise error in the
computed Fourier coefficients for the waveforms used for the error
convergence profile plots.

The total CPU times include the time spent in the non-uniform
grid selection, as well as a complete unmap of all solution wave-
forms in the circuit. The complete unmap of all solution waveforms

0 10 20 30 40 50 60 70 80 90 100
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

K

L ∞
 ( 

ε f ) 
   

[d
B

]

Switching Mixer: error convergence.

HB  
TMHB

Figure 7: Switching mixer:L∞ of the error iniV31, in dB.
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Figure 8: IF preamplifier:L∞ of the error invOUTP, in dB.

is in general unnecessary in practice as only a few waveforms are
of interest. A partial unmap of only the few needed waveforms can
generate significant total CPU time savings for larger circuits with
hundreds of waveforms.

Table 1 shows significant CPU runtime speedups for three of
the four simulated circuits. For both the diode rectifier and the IF
preamplifier, a speedup of 1.6 is achieved. For the DC-DC con-
verter the speedup is a factor of 6.

The total CPU timesT for the HB and TMHB methods in
reaching a specific accuracyε f in vCOIL from the DC-DC converter
circuit are shown in Figure 9 (A). The accuracy measure was again
theL∞ norm of the frequency domain pointwise error in the com-
puted Fourier coefficients. For less stringent accuracies, the total
CPU times for the TMHB method are comparable to the HB CPU
times due to the TMHB overhead in the non-uniform grid selection
and waveform unmap. The situation is drastically different for ac-
curacies better than -50dB: the TMHB becomes up to several times
faster than the HB method. In addition the speedup factor grows
with increases in required accuracies.

The memory storage requirements for the TMHB method are
the same as for the standard HB method, growing linearly with the
number of harmonicsK due to the storage of the Krylov subspace
vectors in the GMRES linear solver. Since the TMHB method can



Standard HB TMHB
Circuit N ε f K T TL IL IN K T TL IL IN

Diode Rectifier 6 -200 650 43.2 33.0 273 16 240 27.2 6.84 187 14
DC-DC Converter 9 -100 1000 1080 1053 2487 14 180 177 156 2112 12
Switching Mixer 105 -130 150 67.3 21.8 37 8 45 62.8 13.1 73 9
IF Preamplifier 289 -155 170 1065 861 417 18 90 662 514 441 17

Table 1: Comparison of the standard HB and TMHB methods at same achieved solution accuracy.N is the number of equations for the
circuit andε f is the achieved accuracy in dB.K is number of harmonics,T is total CPU time,TL is linear solve time,IL is number of GMRES
iterations,IN is number of Newton iterations. All times are in seconds.
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Figure 9: DC-DC Converter: (A) total CPU timeT, (B) number
of harmonicsK for HB and TMHB to reach a specific solution
accuracyε f in vCOIL.

achieve the same solution accuracy as the standard HB method with
a smaller number of harmonics, it follows that significant memory
savings can be achieved by using the TMHB method. In particular,
from Table 1, we can measure the memory savings roughly as the
ratio of the needed numbers of harmonicsK for the standard HB
and the TMHB method respectively. For example, the memory
savings range from a factor of 1.9 for the IF preamplifier, to a factor
of 5.5 for the DC-DC converter.

Figure 9 (B) shows the required numbers of harmonicsK needed
by the HB and the TMHB methods, versus the reached accuracy in
the vCOIL waveform for the DC-DC converter circuit. Since the
storage requirements are proportional toK the plot demonstrates
that the TMHB method storage requirements at same solution ac-
curacy are not only smaller than those of the HB, but also grow less
rapidly for higher accuracy computations.

5 Conclusions

In this paper we described the Time-Mapped Harmonic Balance
method (TMHB), a fast Krylov-subspace spectral method that over-
comes the limitations of standard state-of-the-art Krylov-subspace
harmonic balance method for circuits with rapid transitions. The
non-uniform grid in the TMHB method resolves the sharp features
in the signals. The computational results show that at same num-
bers of harmonics the TMHB method achieves up to five orders
of magnitude improvement in accuracy. The TMHB method re-
tains the same complexity as the standard HB method, is up to six

times faster than the standard HB method in reaching identical so-
lution accuracy, and uses up to five times fewer harmonics and less
computer memory. The TMHB runtime speedup factor and stor-
age savings favorably increase for stricter accuracy requirements,
making TMHB well suited for high accuracy simulations of large
strongly nonlinear circuits with rapid transitions.
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