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Abstract

We presemnanovel formulation called the WaMPDE, for solving systens with
forced autonomos components An importart featue of the WaMPLE is its
ability to captue frequerty modulation (FM) in a naturd ard compat man-
ne. Thisis macde possibé by a key new concept tha of warpel time, related
to normad time throuch separag time scales Using warpal time, we obtan a
completey generhformulation that capture compkex dynamic in autonomous
nonlinea systens of arbitray size or compkxity. We preseh computation-
ally efficient numerich method for solving large practica problens using the
WaMPDE. Our approab explicitly calculats a time-varying locd frequery
that matches intuitive expectations Applied to VCOs WaMPDE-basel simu-
lation resulsin speedup of two ordess of magnituc over transiet simulation.

1 Introduction

Oscillatoly behaviour is ubiquitows in natue ard can be found in a

variely of electrica] mechanicalgravitationd and biologicd systems.
In electronicsfor example self-oscillatian manifess itself in voltage-
controlled oscillatos (VCOs), phase-loked loops (PLLS), frequerty

dividers A modulatorsetc. Inthe presene of externd forcing, these
systens can exhibit complex dynamics sud as frequerty modulation
(FM), entrainmenor mode locking, period multiplication and chaos.
Despit their universaliy, it is difficult to predid the respone of a

generhdautonomos system in a satisfactoy and reliable manne.

In this pape, we presemnthe WaMPDE (Warped M ultirate Partial
Differentid Equation) a new approab for analysimg a large class of
forced ard unforced oscillatoly systems The approad is particularly
usefu for oscillatoss exhibiting FM. Conventionad methodsdiscussed
in Sectio 2, are typically erra-prore and computational} intengve
for oscillatosin generalard especialy for forced ones exhibiting FM-
quasiperiodicy.

A key aspet of our method is a compat representatio of FM
signak using functiors of severd time variables somne of which are
“warped” The essene of the time-warping concep is to take an FM
signd and stretd or squeee the time axis by differert amouns at dif-
ferert timesin orde to make the densiy of the signd undulatiors uni-
form. The variation of this stretchirg is mud slower than the undu-
lations themseles hene amultiple time approab is used to separate
the time scales An importart featue of the WaMPDE is that, unlike
previous methodsit automaticaly and explicitly determins the local
frequerty as it changs with time (see Sectim 3). Furthe, our ap-
proad als eliminates the problem of growing pha® erra tha limits
previous numericé techniqus for oscillators AM-quasiperiodiciy,
mode-locking period multiplication, etc, emege naturally as special
cases.

Numericd computatios for the WaMPDE can be performel us-
ing time-doman or frequerty-domain methods or combinations In
particula, existing codes for previous method like the MPDE and
harmonc balane (see Sectim 2) can be modified easiy to per-
form WaMPDE-baseé calculations The use of iteraive linear tech-
niques [Saa96 enablas large systens to be handlal efficiently.
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The remainde of this pape is organizel as follows. Sectio 2 con-
tains a brief review of previous work. Sectia 3 is a tutorial-styke ex-
positian of the main conceps of the WaMPDE formulation the math-
ematicé detaik of which are presentd in Sectim 4. In Sectim 5,
the new method are applied to practicd VCO circuits and compared
agains existing techniques.

2 Previous Work

A vad literature is available on oscillata desigy and analysis here we
provide only a few referencs representate of differert approaches.
Many previous analyse of oscillatoss are from a practicd desig per-
specive; thes investigatios typically apply purely linear concepts
(e.g,[Ven82 Par83 Roh%, Got97]) to obtain simple desigh formulae.
However, linear modek are nat even qualitaively adequat for practi-
cd oscillators sinee nonlineariy is essentikfor orbitd stability (see,
e.g, [Far94]). Nonlinea analyss have largely been of polynomially-
perturbel linear oscillatos [vdP22 Hay64 KC81, Mur9l, Far94],
with sophisticatd studies focussimg typically on mode locking and
transitiors to chaa [Lor63, PC89 NB95]. Relatvely littl e attention
has been paid to phenomea like FM-quasiperiodicy, even though
they are of gred importane in communicatio applications.

A previous analytica techniqwe with similarities to our presethap-
proad is the multiple-variablke expansim procedue (e.g, [KC81]),
usefu for simple harmont oscillatos with smal nonlinea perturba-
tions and without externd forcing. The dependeneon the strengh of
the nonlineariy is typically differert in differert part of the solution,
ard multiple time variables have to be introducel to obtan a tractable
perturbatio theor. Unfortunatey, the methal is intrinsically a per-
turbatian approachand even convergene of the solution seriesis not
guaranteet

For red oscillators as for mog compkex systemsnumericé sim-
ulation has been the predominah mears of predictirg detailed re-
sponses Simulati of oscillators however, presers unique diffi-
culties absen in non-autonomasi systems A fundamenthproblem
is the intrinsic phase-instabilit of oscillators i.e,, the absene of a
time reference As aresult numericé errors grow ard pha® errar in-
creass unbounded} in the coure of numericd ODE solution For
unforced oscillatos in periodc steag state boundaryvalue methods
sud as shootirg [AT72, Ske8, NB95, TKW95] ard harmont bal-
ane [NV76, Haa®B, RN88, GS91 Mar92, MFR95 can be used to ob-
tain both the time period and the steady-sta solution Neithe shoot-
ing nor harmonc balane can be applied however, to forced oscilla-
torswith FM-quasiperiodi responsess they require an impractically
large numbe of time-steg or variables (see Sectio 3). In practice the
separatia of the time scales is often reducel artificially to make the
problem tractable Asillustrated in Sectio 5, suc ad-h@ approaches
can lead to qualitaively misleadiry results.

The warped-tine approab presentd in this pape is a general-
ization of a recern multi-time approab (the Multirate Partid Dif-
ferentid Equation (MPDE) [BWLBG96, Roy97, Roy99]) for non-
autonomos systens with widely separaté time scales Earlier ef-
forts at generalizilg the MPDE to autonomos systens [BL98] used
non-rectangulaboundaris to captue frequerty variation It has been
shown ([Roy99]), however, that thisapproab islimited to oscillations
that eventually becone periodig and cannot for instance accommo-
dake FM-quasiperiodicy.

3 Essentid concepts

In this section we introduce severd conceps at the core of this work.
We first review why it is advantageos to use two or more time
scales for analysirg quasiperiodi signals using amplitude-modulated
(AM) signak for illustration Then we show tha althoudh frequerty-
modulatel (FM) signak can be quasiperiodic the multi-time ap-

1The metha relies on asymptott expansionswhich in generaare nat convergent.
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Figure 3: Path in thg -t; plane
Note thaty(ts,t) is periodic with respect to bothh andty, i.e,

e Y(t1 + T1,t2+ T2) = Y(t1,t2). The plot ofyts,t2) on the rectangle &
t1 <Ty, 0<ty < Ty is shown in Figure 2. Becaugesbi-periodic, this
o 0.2 03 imey O° o8 EX plot repeats over the rest of thet, plane. Note also tha(t1,t) does
Figure 1: Example 2-tone quasi-periodic sigpd) not have many undulations, unlikgt) in Figure 1. Hence it can be

represented by relatively few points, which, moreover, do not depend on
the relative values of{Tand b, unlike Figure 1 Figure 2 was plotted
with 225 samples on a uniform 1515 grid — three times fewer than
for Figure 1. This saving increases with increasing separation of the
periodsT; andT,.

Note further that it is easy to recovg(t) from y(t1,t2), simply by
settingt; = t, =t, and using the fact thatis bi-periodic. Given any
value oft, the arguments tg dre given byt =t modT;. For example:
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Givenylts,tp), it is easy to visualise what(t) looks like. Ast in-
creases from 0, the path given By =t modT;} traces the sawtooth

1 ' path shown in Figure 3. By noting hoychanges as this path is traced
x 10 0 0 ] in the t;-t> plane,y(t) can be visualisedWhen the time-scales are
t1 (fast time) t2 (slow time) widely separated, therefore, inspection of the bivariate waveform di-
Figure 2: Corresponding 2-periodic bivariate foy(iy ;t;) rectly provides information about the slow and fast variations (f y

proaches that work for AM (or immediate extensions thereof) do f§ere naturally and conveniently thaityitself.
confer the same advantages. Next, we introduce the concept of warpedne above discussion has illustrated two important featuretsiel.
time and show how it can be used to remedy the situation for FM. »%(anate form can require far fewer points to represent numerically
discuss the important issue of ambiguities in the concept of local ffaan the original quasiperiodic signayet 2. it contains all the infor-
quency, and show how to obtain a useful definition that is consist8Hition needed to recover the original signal completéljiese con-
with intuition. Finally, as a prelude to Section 4, we outline the ba§@pt5 are the key to the MPDE approach [BWLBG96, Roy97, Roy99]
features of the WaMPDE. or analysing non-autonomous systems. The basic notion is to solve
Consider the waveforryg(t) shown in Figure 1, a simple two-tonedirectly for the compact multivariate forms of a DAE’s solution. To
quasiperiodic signal given by: achieve this, the DAE is replaced by a closely related partial differ-
ential equation called the MPDE. By applying boundary conditions
. (21 . to the MPDE and solving it with numerical methods, the multivari-
y(t) = 5'”<?t> sm<?t> , T1=002s T,=1s (1) ate solutions are obtained efficiently. The univariate solution of the
L 2 original DAE can be easily computed from the multivariate solution
e 1 _ _ 1 _ ofthe MPDE; often, however, information of interest can be obtained
The two tones are at frquencn@_ T~ 50Hz andfp = ¢ = directly by inspecting the multivariate solution. We refer the reader
1Hz,i.e, there are 50 fast-varying sinusoids of periad= 0.02s mod- {4 [Roy99, Roy97] for further details.
ulated by a slowly-varying sinusoid of peridd = 1s. Such multi-rate  “\yhen the DAEs under consideration contain autonomous compo-
waveforms,i.e, with two or more “components” varying at widely,ents 'FM-quasiperiodicity can be generated. FM cannot, in general,
separated rates, arise in many practical situations, including Osc%epresented compactly as in Figure 2. We illustrate the difficulty

tors, mixerts, switched-capacitor filters, planetary systems, combus an example. Consider the following prototypical FM signal:
engines, etc..

When such signals result from differential-algebraic equation —
(DAE) systems being solved by numerical integratioa.,(transient X(t) = cos(2mfot +keos2mhat)), fo> 12 ®)
simulation), the time-steps taken need to be spaced closely enoughf@itinstantaneous frequency
each rapid undulation di(t) is sampled accurately. If each fast sinu-
soid is sampled at points, the total number of time-steps needed for f(t) = fo — kfasin(2mfat). 4
one period of the slow modulation rs% To generate Figure 1, 15
points were used per sinusoid, hence the total number of samplesX{&ds plotted in Figure 4 foffo = 1MHz, f, = 20KHz, and modulation
750. This number can be much larger in applications where the rdfigiexk = 8m. Following the same approach as for (1), a bivariate form
are more widely separated, e.g., separation factors of 1000 or morecarebe defined to be
common in electronic circuits. Also, while the particulzt) in (1) . . .
can be compactly represented in the frequency domaitrgvelith only twé1(t1,t2) = cos(2mfoty +kcog2mfatz)),  with x(t) =% (t,t). (5)
Fourier components, the same is not true for, e.g., the product of a sine . o . .
wave and a square wave. Hence frequency-domain representationg\€ thatxj is periodic int; andtp, hencex(t) is quasiperiodic with
not, in general, solve the problem of inefficient numerical represenfequenciesy and fo. Unfortunatelyxi (ta,tp), illustrated in Figure 5,
tion of multi-rate signals. is not a simple surface with only a few undulatlonsjlke Figure 2. When
Now consider a multivariate representatiory(ify, obtained as fol- k> 21 i.e.,k ~ 2rmfor some large integem, thenx (ta,t2) will un-
lows: for the ‘fast-varying’ parts of(t), t is replaced by a new variabledergo aboum oscillations as a function dj over one periodly. In
t1; for the ‘slowly-varying’ parts, by,. The resulting function, now of practice k is often of the order 0% > 2m, hence this number of un-

two variables, is denoted hyti, to): dulations can be very large. Therefore it becomes difficult to represent
o o %, efficiently by sampling on a two-dimensional grid. It is also clear,
y(t1,t2) = sin(—t1> sin(—t2> (2) from Figure 5, that representing (3) in the frequency domain will re-

T T2 quire a large number of Fourier coefficients to capture the undulations.
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Figure 6:X: warped bivariate representation of FM signal
More generally, any warping function can be chosen, but at the pos-
sible cost of a resulting bivariate representation that cannot be sampled
efficiently. To find an efficient bivariate representation, a crucial step
in our approach is to avoid specifying the functig(t) a priori, but to
impose a smooth “phase” condition instead on the bivariate function,
and use this to calculatg The phase condition can, for instance, re-
quire that the phase of thig-variation of the function should vary only
slowly (or not at all) as, is changed. Alternatively, a time-domain
condition on the bivariate function (or a derivative) can be specified.
As anillustration, consider the requirement thatthelerivative along

Figure 5:x1: unwarped bivariate rézpresentation of FM signal  the linety = 0 be a slowly-varying function ofy:

Figure 4: FM signal

A plausible approach towards resolving this representation prob- 9%3(0,12)
lem is based on the intuition that FM is a slow change in the instanta- B —2msin(21f,12) (©)]
neous frequency of a fast-varying signal. In the multivariate represen- o1y

tation (2), the high-frequency component is the inversg pthe time- th ith
period along thé; (fast) time axis. It is natural to hope, therefore, th4P9ether wi

FM solutions can be captured by making this time-period change along 2 _ —

the slow time axigy, i.e., changeT; to a periodic functionTy(tp), it- %(@s(t),t) = X(t) = cos(2rfot + kcos2mfat)). (10)

self periodic with periodr,. Unfortunately, it can be shown ([Roy99])As is easily verified, these conditions lead to the following solutions
that FM-quasiperiodicity in a DAEannotbe captured by makind:  for %3 andgs:

a function oft,.2 It is easy to see qualitatively why this is the case.

Although Figures 2 and 5 show the signal over only one period in each X3(T1,T2) = coq 2y + 211f)12)
of the two time directions, the bivariate form is actually periodic over Kk (11)
the entiret;-t; plane. However, making the time-peridg a function @3(t) = fot + E{cos(Zthzt) — ot

T (t2) turns the rectangular domdi@, T;| x [0, T,] (of Figures 2 and 5)

into a non-rectangular domain of variable width. While it is possmlﬂthough %3 and g3 are not identical to"and @ in (6) and (7), they

to obtain a periodic function on the-t; plane by placing rectangularetain the desired property of being easy to sample. ‘

boxes side by side to tile the entire plane, it is obvious that this cannotyyheny, andein (6) and (7) are chosen to be the warped bivariate

be done with boxes of variable width. . representation of(t), the instantaneous frequency in (4) is the deriva-
The WaMPDE approach of this work resolves this problem by pigze of ¢(t), as already noted. The derivative @j(t), on the other

serving the rectangular shape of the domain boxes, and bending , differs from the instantaneous frequency by the consténtin

path along whicly(t) is evaluated away from the diagonal line showfenera|, all choices afit) that result in compact representations will

in Figure 3, so that its slope changes slowly. Since along the bent path ) AT

t, =t, butt; is no longer equal to, we refer tot; as a warped time- differ in their derivativesz: by amounts only of the order of the slow

scale. As mentioned in Section 1, this effectively results in stretchifigquencyf;. When the fast frequency is much greater than the slow

and squeezing the time axis differently at different times to even aune, this difference is small compared to the instantaneous frequency

the period of the fast undulations. in (4), therefore the terrocal frequencyfor %‘t" is justified. The utility

mul\t/i\</ea|r|iL;Jtsetrraetgréglgntgﬂrgrt]urnlng to (3). Consider the following N€%t the local frequency is that it is well-defined fany FM signal (pos-

sibly with non-sinusoidal waveforms and varying amplitudes), not just
Ro(T1,T2) = COS2mry) (6) theideal one of (3), yet retains the essential intuition of FM. The ambi-

guity in %—‘t", of orderfy, is quite reasonable, since the intuitive concept
of frequency is only meaningful to the same order. It should be kept
K in mind, of course, that concepts of varying frequency make intuitive
@(12) = foTo+ —— cog2mf,1y). (7) sense only when the fast and slow time scales are widely separated.
2n The time warping concept can also be understood in a different,
visual, manner. The difficulty in using of (5) is due to the fact that
changingty, by even a small amount results in a large change in the
x(t) = %o(@(t),1). 8) phase of the outer cosine function, becakiselarge. Thus the func-
tion is the same on all lines parallel to theaxis, except for a phase
Note that bothz andg, given in (6) and (7), can be easily representdbiat differs substantially for even lines that are nearby. The represen-
with relatively few samples, unlike; in (5). Note further thatp(t) is tation problem that this causes can be dealt with by sliding these lines
the sum of a linearly increasing term and a periodic term, henceugsand down in the; direction till there is no variation (or slow vari-
derivative is periodic. This periodic derivative is equal to the instan@tion) in the phase from one line to another. This results in changing
neous frequency, given in (4), &ft). We will elaborate further on the the rectangular domain box of Figure 2 to a non-rectangular one, but
significance of® shortl whose width isconstant(i.ewith curved but parallel boundaries). In
gnim at Y. . . R .addition, the straight-ling =t, path changes to a curved path because
It is apparent that there is no unique bivariate form and warpigfithe phase adjustment. The doubly periodic bivariate representation
function satisfying (8) — for example, two representati@psanidX>  can be obtained by tiling thg-t, plane with the curved domain boxes
have already been given (the warping function feris @(t) =t). (possible because the width is constant); in fact, after extending the
2Nevertheless, Brachtendorf [BL8] has shown that this concept can be used to andif8€tion to the entire plane, it is possible to redefine the domain box to
transients in the special case of oscillators that eventually beGpiperiodic. be a rectangle once again, resulting in Figure 6.

together with the warping function

We now retrieve our one-dimensional FM signal (i.e., (3)) as




The above discussion has summarized our basic strategy for i&e-note that ifx(t1,T2) satisfies (16), then so does 1 + A, 12),
resenting FM efficiently; it now remains to concretize these notiof anyA € R — this is simply because (16) is autonomous intpe
in the framework of an arbitrary dynamical system defined by DABgsne scale. We remove this ambiguity in the same way as for unforced
This is accomplished in the following section by the WaMPDE, whigf\;tonomous systemise., by fixing the phase of (say) thé" variable
is a partial dlfferegwtlal equation similar to the MPDE, but with a multt-O some valud.e.g., 0. This is the phase constraint mentioned in Sec-
plicative factor ofﬁ‘p modifying one of the differential terms. By solv-tion 3.
ing the WaMPDE together with the phase condition mentioned above, We expand (16) in one-dimensional Fourier series;inand also
compact representations of the solutions of autonomous systemsigelde the phase constraint, to obtain:
be found by efficient numerical methods.

4 The Warped Multirate Partial Differential Equa- . <M+jiw(T2)©'(r2)+ﬁ(T2)> et Zp(t,)  (19)
tion (WaMPDE) izz_m o2 ' '

We consider a nonlinear system modelled using vector differential- 0d %k _0 20

algebraic equations (DAESs), a description adequate for circuits [CL75] {X, (TZ)} - (20)

and many other applications:

Qi(12) and Fi(12) are the Fourier coefficients af(X(t1,12)) and

d q(x(t)) + f(x(t)) = b(t) (12) f(X(t1,12)), respectively.k andl are fixed integersx,k(Tz) denotes

dt thel™ Fourier coefficient of th&" element of™
In the circuit contextx(t) is a vector of node voltages and branch cur- _(19) and (20) together form a DAE system which can be solved for
rents;q() and f() are nonlinear functions describing the charge/fiygolated solutions. In practice, the Fourier series (19) can be truncated
and resistive terms, respectivelyt) is a vector forcing term consist-t0 No = 2M +1 terms withi restricted to-M, --- ,M. In this case, (19)
ing of inputs, usually independent voltage or current sources. and (20) lead td\o + 1 equations in the same number of unknown

; _di ; functions oft».
We now define thép -+ 1)-dimensional WaMPDE to be Applying periodic or initial boundary conditions to the DAE sys-
b — ~ tem (19) and (20) leads to quasiperiodic or envelope-modulated FM
aq(x) aq(x) £ =b 1 solutions, and also captures other interesting phenomena like mode
Z @ (Tp+1) T T 0Tp1 +HR) =0Ty, Tpsa)- | (13) locking and period multiplication. First, we consider periodic bound-
= P ary conditions.

11,---,Tp are p warped time scales, whitg, 1 is an unwarped time 4.1 Quasiperiodic and envelope solutions
scale. Each warped time variable has an associated frequency f

tion wi (Tp+1), which depends on the unwarped time variabteand ) " AR
o Also assume that the solution of (16) is periodic in both arguments,

b are multivariate functions of thp+ 1 time variables. These quans o ¢ f Cnarindi ‘e T narindi
tities represent generalizations of the concepts introduced in Sectiéﬁé’#(n’rz) Is (1, Tz)-periodic andaw(t) is Tz-periodic. w(tz) can

— each warped time corresponds to an independent FM mode of the be written as:
system, while the unwarped one represents a non-FM time scale. Itis W(To) = (T 21
straightforward to extend (13) to more than one unwarped time scale. (T2) = G0+ P (T2) (1)

The utility of (13) lies in its special relationship with (12). Considef harecn is a constant and'(-) is a zero-meaif»-periodic waveform
any solutionx’of (13), together with the condition Using ((Dfl) and (17), we o%t(a)in an expressionqutr))r ’

%\@%'umeb(t) periodic with periodT, or angular frequencyy, = %‘

b(t) =Blen(t), (0,0, (0= [ amdr| (49 )= Py @

wherep(t) is aT,-periodic function.

We motivate these assumptions by showing that such periodic
forms forxX{-,-) andw(-) capture FM- and AM-quasiperiodicity, mode-
locking and period multiplication.

(15) Expandx(t1,T2) in Fourier series:

If we define the functionx(t) as

[ X(O) =X(@a(t), -+ 9p(t),1),

00

K,12) = 5 Xiyelelkern (23)

i k=—o0

then one can show by substitution thét) satisfies (12). Hence, if
we can find any solution of (13), we have automatically found one for
the original problemi.e., (12). As explained in Section 3, solving the
WaMPDE directly for the multivariate functions can be advantageous. - . - -

For concreter}:ess in the following, we now specialize to th% c S@ere the constants are Fourier coefficients. Substituting (23)
when there are only two time variables, and the functiois used INto (17), we obtain:
directly in (13):

) ) K= 3 R ei(@ttp)gikont
P 0= 28 @)
W(T2) =—— + —— + f(X(11,12)) = b(12). (16) .

61'1 aTz
) o Consider, for example, the term of (24) witk 1 andk = O:

Corresponding to (14) and (15), specifying

t Xq 08! (P = Xy o cog ot + p(t)) + j X0 SiN(wpot + p(t)) (25)
X(t) = X(@(t),t), t:/wrzdrz 17)

S R 0 (t2) When w(t) is nontrivially To-periodic, p(t) is also nontrivially T,-

Its | bei luti 12 periodic. (25) can then readily be recognized to be a frequency-
results inx(t) being a solution to (12). . modulated signal with instantaneous frequenaft). Hence the

Next, we describe how (16) can be solved to deterniiiig, t2)  \WaMPDE with periodic solutions can capture not only FM signals,
andw(12). We first assume thadty,12) is periodic inty with period 1t also the more general form of (24).

L We now show that various special casesx) correspond to phys-

o . ical situations of interest. Whew(-) is simply some constanty, i.e.,
o % i
X(11,12) = ) z X (TZ)e] o (18) 3or some slow function ofy; the selection of a slowly-varying phase condition is, in

I=—® fact, the key to compact numerical representatior(af )




p'(-) = 0, then the time-domain solution (24) has no frequency mod-
ulation, but is AM-quasiperiodic with angular frequenciasand w,.

If wp = wy, the response has the same period as the external forcin
frequency, and the system is mode-locked or entrainedy 1§ a sub-
multiple of wy,, the period of the response is a multiple of that of the

forcing. This phenomenon, period multiplication, is not only often de-

signed for (e.g., in frequency dividing circuits), but is also observed in 225N X

dynamic systems en route to chaos. ‘ 51"3‘5?3{‘\\\\\\\\\\\‘\‘\\\?33‘\‘\\
Next, we indicate how (19) and (20), with periodic boundary con- g o S :3‘:3?“3\‘?\\\\\\\‘\\\\\\\\‘\“\?\‘3‘3\

ditions, can be turned into a set of nonlinear equations for numerica £ ii’:f\}&%\\\\ \\\:\\x‘\%‘xﬁ\‘k\ “‘\\\\\\\\‘\\\}\\\\‘?\‘\?“““‘

solutiorf". (19) and (20) is discretized &t points along tha, axis, > “““““‘\‘\“\\\\‘\‘\‘3\‘3\3‘\‘\%‘3‘%\?‘““‘“\\

covering the interval0, T;). The differentiation operator is replaced ‘ \§\\\\\‘§\‘\\\\\§§‘\\§§\\\‘\\\“‘“‘

by a numerical differentiation formula (e.g., Backward Euler or Trape- \‘\‘\‘\\\\\\‘“

zoidal), and when the periodic boundary conditi¥{0) = Xi(Ty)

is applied, a system df1(Np + 1) nonlinear algebraic equations in
N1(Np + 1) unknowns is obtained. This set of equations is solved ) 05
with any numerical method for nonlinear equations, such as Newton- ~ x10
Raphson or continuation, to obtain the solution of the WaMPDE. Fur-

0 0
ther, when iterative linear algebra and factored-matrix methods are em- gigyre 8: VCO: bivariate representation of capacitor voltage

oscillation (warped) time scale forcing time scale

ployed, computation and memory requirements grow almost Iinea%y

with size, making calculations practical for even large systems. Cn ) ; .
P L L lifficult to tell the two waveforms apart; however, the thickening of
_ By applying initial conditions rather than penoglc boundary Coffhe jines at about 46 indicates a deviation of the transient result from
ditions, (19) and (20) can be solved for aperio{e; (TZ)}v‘_*)(T2)); the WaMPDE solution. Frequency modulation can be observed in the
These envelope-modulated solutions can be useful for investigatjagying density of the undulations.
transient behaviour in systems with FM. To obtain envelope solu-

Figure 8, are shown in Figure 9. The match is so close that it is

tions, (19) and (20) are solved by time-stepping4rusing any DAE -

solution method, starting from (sayp = 0. An initial condition el i
({X(0)},w(0)) is specified. For typical applications, a natural initial . - [Ty
condition is the solution of (12) with no forcinge., with b(t) con- 0.5 A M‘\H“ il “\ f\ \

i
stant. The procedure for discretizing of the WaMPDE for quasiperi- ‘UNW‘ { /
odic or time-stepping solutions is similar to that for the MPDE; further (1Rt N “ \U} H‘U
details may be found in [Roy99]. WL i ! \}x /

voltage
o

5 Applications Casl

A voltage-controlled oscillator (VCO) was simulated using the new .| . . )
WaMPDE-based numerical techniques. The oscillator consisted of al. ) ] ) Bme . ) 10
LC tank in parallel with a nonlinear resistor, whose resistance was neg- Figure 9: VCO: WaMPDE vs transient simulation

ative in a region about zero and positive elsewhere. This led to a stable

limit cycle. The capacitance was varied by adjusting the physical plate The vco was simulated again after two modifications: the damp-

separation of a novel MEMSMicro ElectrdViechanicalStructure) jng of the MEMS varactor was increased to correspond to an air-filled
varactor with a separate control voltage. The damping parametegQfity and the controlling voltage was varied much more sloiady,

the mechanical structure was initially assumed small, corresponding ) t'1000 times slower than the nominal period of the oscillator. The
anear vacuum. controlling voltage remained sinusoidal but with a period of 1ms. Fig-

ure 10 shows the new variation in frequency; note the settling be-
haviour and the smaller change in frequency, both due to the slow
dynamics of the air-filled varactor.
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Figure 7: VCO: frequency modulation o o.as|
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An envelope simulation was conducted using purely time-domain . e . x10
numerical tec?miques for both andt, axes. The ?nﬁial c)c/mtrol volt- Figure 10: Modified VCO: frequency modulation
age of 1.5V resulted in an initial frequency of about 0.75MHz; the
Contr0| V0|tage was then. Varied $inusoidally Wlth time-pe_riod 30 tlmeS Figure 11 depicts the new bivariate Capacitor Voltage Waveform_
that of the unforced oscillator. Figure 7 shows the resulting changenBte that unlike Figure 8, the amplitude of the oscillation changes very
local frequency, which varies by a factor of almost 3. _ little with the forcing. This was corroborated by transient simulation,

. Figure 8 depicts the bivariate waveform of the capacitor voltaggs fyll results of which are not depicted due to the density of the fast
(i.e, one entry of the vectax(fy, T2), with the warped:; axis scaled oscillations. A small section of the one-dimensional waveform, con-
to the oscillator's nominal time-period ofi4). It is seen that the CON-sisting of a few cycles around 0.3ms, is shown in Figure 12. The one-
trolling voltage changes not only the local frequency, but also the agimensional WaMPDE output of (14) is compared against two runs of
plitude and shape of the oscillator waveform. _ irect transient simulation, using 50 and 100 points per nominal oscil-

The circuit was also simulated by traditional numerical ODE metRgtion period, respectively. It can be seen that even at an early stage
ods (“transient simulation”). The waveform from this simulation, toyf the ‘simulation, direct transient simulation with 50 points per cycle
gether with the 1-dimensional waveform obtained by applying (1gy)ilds up significant phase error. This is reduced considerably when

“We outline a time-domain method for thg axis, leading to a mixed frequency-time 100 points are taken per cycle, but further along (not shown), the error
method; purely time-domain or frequency-domain methods are equally straightforward@ccumulates again, reaching many multiples nfo® the end of the




simulation at 3ms. In contrast, the WaMPDE achieves much tighfgar94]
control on phase because the phase condition (a time-domain eqli' t97]
lent of (20)) explicitly prevents build-up of error. To achieve accura
comparable to the WaMPDE, transient simulation required 1000 points

per nominal cycle, with a resulting speed disadvantage of two ordepS91]

of magnitude.

2 [Haa88]
[Hay64]

[KC81]

[Lor63]

o5 > 25 3 3.5
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x10°° -
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Figure 11: Modified VCO: bivariate capacitor voltage [Mar92]

[MFR95]

WaMPDE

1 ODE: 50pts/cycle [Murgl]

[NB95]

voltage (V)

| ODE: 100pts/cycle
[NV76]

[Par83]

15 . . . . .
3 3.01 3.02 3.03 3.04 3.05 3.06
time (s) x10™

Figure 12: Modified VCO: WaMPDE vs transient (a few cycles at 1088 C89]
of the full run; phase errors from transient increase later)

[RN88]

6 Conclusion

We have presented a new, efficient, approach for analysing the dyng% 97]
ics of oscillatory systems. The approach uses multiple time scales nc;n
time warping functions to obtain a partial differential formulation (the
WaMPDE) for autonomous dynamical systems. Solving the WaMP[Roy97]
by efficient numerical methods enables us to predict complex phe-
nomena, such as frequency modulation, in large autonomous systems
quickly and accurately. We have extended the notion of instantanepigy 9]
frequency to general settings and provided methods for calculating it
explicitly. We have applied our methods to VCO circuits and shown
that they have significant speed and accuracy advantages over p[gvi-
ously existing techniques. aagf]
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