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ABSTRACT
This work presents an overview of the principles that underlie the
speed-up achievable by dynamic hardware reconfiguration,
proposes a more precise taxonomy for the execution models for
reconfigurable platforms, and demonstrates the advantage of
dynamic reconfiguration in the new implementation of a
neighborhood image processor, called DRIP. It achieves a real-
time performance, which is 3 times faster than its pipelined non-
reconfigurable version
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1. INTRODUCTION
Advanced RISC microprocessors can solve complex computing
tasks through a programming paradigm, based on fixed hardware
resources. For most computing tasks it is cheaper and faster to
develop a program in general-purpose processors (GPPs)
specifically to solve them. While GPPs are designed with this aim,
focusing on performance and general functionality, total costs of
designing and fabricating RISC GPPs are increasing fast. These
costs involve three parts:

a) Hardware costs: GPPs are larger and more complex than
necessary for the execution of a specific task. Developing
application-specific processors for highly specialized
algorithms is warranted only for large-volume applications that
may require high power efficiency at expense of great hardware
design cost;

b) Design costs: functional units that may be rarely used in a
given application may be present in GPPs, and may consume
substantial part of the design effort;

c) Energy costs: too much power is spent with functional units or
blocks not used during a large fraction of the processing time.

For specific applications or demanding requirements in terms of
power, speed or costs, one may rely on either dedicated processors
or reused core processors, which may be well suited to the
application or optimized for a given set of performance

requirements. In the former case, only the necessary functional
units highly optimized for a specific range of problems may be
present, which will result in unsurpassed power and area
efficiencies for the application-specific algorithm. Until recently,
application-specific processors (ASPs) implemented in user-
programmable devices were not feasible, but with increasing
levels of FPGA integration (above 50K usable equivalent gates),
as well as RISC cores and RAM merging into the reconfigurable
arrays, the feasibility picture for user-configured ASPs has
changed dramatically.

By tightly coupling a programmable device (e.g. FPGAs) to a
GPP, we can exploit with higher efficiency the potential of the so
called reconfigurable architecture. This structure can also
aggregate some special on-chip macroblocks, like a shared
memory. The dynamic reconfiguration of the hardware has
become a competitive alternative in terms of performance against
a GPP software implementation, and it offers significant time-to-
market advantage over the conventional ASP approach.

Reconfigurable architectures allow the designer to create new
functions and perform operations that would take too many cycles
of the GPPs. With a reconfigurable architecture, a GPP does not
need to include most of the complex functional units often
designed-in, as well as considerable power and time can be saved.

These units may be implemented on the programmable device,
when demanded by the application. Moreover, we can configure
an application-specific subset of functional units from a larger set
of units or a larger instruction set, and wire them up during
execution time, increasing hardware density. Such density is the
ratio between the sum of the resources used by all function units
that can be mapped and the available resources on the
programmable device.

This work is organized as follows. Section 2 presents a
classification of reconfigurable architectures based on their
execution models and reconfiguration scheme. Section 3 shows
some examples of implemented architectures. The neighborhood
processor is explained in section 4. DRIP Processor is introduced
in section 5. Section 6 discusses the results of DRIP synthesis.

2. EXECUTION MODELS AND
PROGRAMMABILITY
Page [10] reports five design strategies by which programs may
be embedded in reconfigurable architectures: pure hardware,
application-specific, sequential reuse, multiple simultaneous use,
on-demand usage. Each model exploits a different part of the cost-
performance spectrum of implementations and is well suited for a
specific range of applications.
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In a pure hardware model, a given algorithm is converted into a
single hardware description, which is loaded into the FPGA.
There is no relevant contribution of this model to reconfigurable
architectures, since the configuration is fixed at design time. This
model can be implemented using conventional HDLs and the
currently available synthesis tools.

PRISM [3] is an example of application-specific microprocessor
(ASMP) model. In this system, the algorithm is compiled into
two parts (Figure 1.a): an abstract machine code and an abstract
processor. In the next step, the two are optimized to produce a
description of an ASP and the machine code level algorithm
implementation.
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Figure 1. Example of execution models

Very often an algorithm is too large to be implemented on the
available devices or the design is area constrained by engineering
or economic reasons. To overcome this constraint, the design is
splitted into several parts, which are moved in and out of the
devices, increasing the hardware density and producing a set of
reconfiguration steps (Figure 1.b). This model is called sequential
reuse.

If there is a large availability of programmable devices, many
algorithms can be resident and execute simultaneously, interacting
with various degrees of coupling (tightened or loose) with the host
processor. The multiple simultaneous use model (Figure 1.c) is
less common, requires more area than the sequential reuse, but
certainly is an interesting method to exploit reconfigurable
computing.

The last model, on demand usage (Figure 1.d), is very interesting
for reconfigurable computing, and can be applied to a wide range
of applications. This model is suitable for real-time systems and
systems that have a large number of functions or operations,
which are not used concurrently, like the DISC (Dynamic
Instruction Set Computer) implementation.

We generalize the execution models presented by Page, looking at
reconfigurability from the point of view of the reconfigurable
architecture design. This classification divides the design models
in three programmability classes, considering the number of
configurations and the time in which reconfiguration takes place:

a) Static design (SD): The circuit has a single configuration,
which is never changed neither before nor after system reset.

The programmable device is fully programmed to perform only
one functionality that remains unchanged during system
lifetime. This class does not exploit the reconfiguration
flexibility, taking advantage only of the
implementation/prototipation facilities.

b) Statically reconfigurable design (SRD): The circuit has
several configurations (N) and the reconfiguration occurs only
at the end of each processing task. This can be classified as run-
time reconfiguration, depending on the granularity of the tasks
performed between to successive reconfigurations. In this way,
the programmable devices are better used and the circuit can be
partitioned, aiming for resources reusability. This class of
architecture is called SRA (statically reconfigurable
architecture).

c) Dynamically reconfigurable design (DRD): The circuit also
has N configurations, but the reconfiguration takes place at
runtime (RTR, Run-Time Reconfiguration). This kind of design
uses more efficiently the reconfigurable architectures. The
timing overhead associated to this RTR procedure has to be
well characterized within the domain of the possible set of run-
time configurations. The overall performance will be
determined by the overhead-to-computing ratio. The
implementation may use partially programmable devices or a
set of conventional programmable devices (when one process,
the others are reconfigured). The resultant architecture is called
DRA (dynamically reconfigurable architecture).

SRD and DRD run-time reconfiguration advantages depend
largely on the specific algorithm and its partition in sizable grain
tasks. The reconfiguration overhead is heavily dependent on
FPGA microarchitecture, and it will be significantly decreased by
FPGA + RISC core + SRAM integration within the same die, an
area certainly open for recent innovations [7]. The SRD hardware
will certainly show better performance when compared to GPP
software implementation, given the large time overhead incurred
for reconfiguration in current commercial FPGAs. The DRD
hardware will benefit the most from innovations in the fast
reconfiguration arena, while requiring significant more effort in
developing compiler optimization. The main characteristics of all
programmability classes are presented in Table 1.

Design Number of
Configurations

Reconfiguration at

SD 1 Design time

SRD N End of task

DRD N Execution checkpoint

Table 1. Summary of Programmability Classes

3. RECONFIGURABLE ARCHITECTURES
IMPLEMENTATION
Several reconfigurable architectures were designed in the last
decade, showing that this approach is feasible: DISC [13], PRISM
[3], SPLASH [6], PAM [4] and Garp [7].

DISC is a processor that loads complex application-specific
instructions as required by a program. It uses a National
Semiconductor CLAy FPGA and is divided in two parts: a global
controller and a custom-instruction space. Initially, a library of
image processing instructions was created for DISC.

PRISM (Processor Reconfiguration through Instruction Set
Metamorphosis) is a reconfigurable architecture for which specific



tools have been developed such that, for each application, new
processor instructions are synthesized. The tools for the PRISM
environment use some concepts inherited from hardware/software
codesign methods. Two prototypes, PRISM-I and PRISM-II, have
been built using Xilinx XC3090 and XC4010 FPGAs,
respectively.

SPLASH is a reconfigurable systolic array developed by
Supercomputing Research Center in 1988. The basic computing
engine of SPLASH is the Xilinx XC3090 FPGA. The second
version of SPLASH, Splash 2, is a more general-purpose
reconfigurable processor array based on XC4010 FPGA modules.

PAM (Programmable Active Memories) is a project developed by
DEC PRL and consists of an array of Xilinx FPGAs. With
dynamic reconfiguration, it has demonstrated the fastest
implementation of RSA cryptography to that date [12].

Garp is a reconfigurable architecture that sets a trend to
incorporate RISC cores with FPGA arrays. It incorporates a
MIPS-II instruction-set compatible core with a reconfigurable
array that may implement co-processor functions as a slave
computational unit located on the same die of the processor. Garp
simulation results have shown a 24X speed-up over a software
implementation in a UltraSparc 1/170 of the DES encryption
algorithm. In an image dithering algorithm for a 640x480 pixels
frame the speed up obtained by Garp was 9.4 times.

4.  NEIGHBORHOOD PROCESSOR 9
4.1 Array Processors
Array processors are a special class of parallel architecture,
consisting of simpler processor called cells or processor elements
(PEs). This class of processors has a large application on
problems with spatially defined data structures such as
Mathematical Modeling and Digital Image Processing. The PEs
often have [5]:

a) a 2D matrix layout;
b) operation in a bit-serial mode;
c) access to a local memory;
d) connection to their nearest neighbors;
e) a synchronization scheme to execute the same instruction at any

given cycle.
A neighborhood processor is a special device that simulates an
array processor. It processes an input image, generating a new
image, where each output pixel is an image function of its
correspondent in the input image and the nearest neighbors. Using
a standard neighborhood  (e.g.: 3x3, 5x5 or 7x7 pixels), it scans
the image line by line. NP9 [1] is based on the neighborhood
processor architecture and is organized to process 3x3 (nine
pixels) neighborhoods. Its architecture was first proposed by Leite
[9].

4.2 The processor elements
The processor elements (PE) of NP9 are functionally simple and
can execute just two basic operations: addition (ADD),
representing the class of linear algorithms, and maximum (MAX),
representing the class of non-linear algorithms. Each PE has two
inputs (pixels X1 and X2), two weights (W1 and W2) associated
to those inputs and one output S.
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Figure 2. Model of NP9 Processor Element

4.3 Data Flow Graph
 The PEs interconnection matrix of NP9 follows a data flow graph
defined by a class of non-linear filters [11]. This class is widely
used in digital image processing and the kernel of its data
structure is represented by a sorting algorithm. The data flow
graph (Figure 3) is based on the odd-even transposition sorting
algorithm [8]. The hardware implementation of this algorithm is
straightforward. The structure defined achieves a good trade-off
between complexity, parallelism, area cost and execution time.
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Figure 3. NP9 Data Flow Graph

4.4 General Structure of NP9
The general structure of NP9, at a high-level of abstraction shown
in Figure 4, has three basic components: program register
(PrgReg), execution pipeline and output mux. The execution
pipeline corresponds to the data flow graph plus a stage register at
each cell output. The external interface has nine input pixels (X1
to X9)  and one serial output pixel (X_Out).

PrgReg

Pipeline Mux

Cell_Prg Cell_W Sel

Prg_In

Clk

Stat

X1..X9 X_Out

Figure 4. Structure of NP9

There are two possible operation states for NP9 indicated by the
processor status signal (Stat): programming (PROG) or execution
(EXEC). During the PROG stage, NP9 receives, through the
programming channel, the data corresponding to the functions
(Cell_Prg) to be executed by the cells, the input weights (Cell_W)
and the output selector (Sel). The entire program is stored in a
shift register (PrgReg). In the EXEC stage, the previously stored
algorithm is executed, and the output (X_Out) is selected by a
multiplexer.



4.5 Applications
Considering the primitive functions of NP9 and the programming
flexibility associated to the NP9 data flow graph, one can
configure a large number of low-level image processing
algorithms onto its structure. Some algorithms that can be
implemented on this processor are the following [9]: linear
(convolution), non-linear and hybrid filters, binary and gray-level
morphological operations (dilation, erosion, thinning and
thickening algorithms, morphological edge detectors, gradient,
“hit or miss” operator, “top hat” operators), binary and gray-level
geodesic operations (geodesic dilation and erosion, image
reconstruction), etc.

4.6 Implementation
NP9 was completely modeled in VHDL, compiled by QuickHDL
under Mentor Graphics environment, and synthesized with
AutoLogic II. After that, Max+Plus II processed AutoLogic
netlists, generating NP9 architecture, implemented onto Flex10K
FPGAs.

This final structure is a static design, and each algorithm
generated for NP9 is implemented as a program. NP9 did not
obtain the desired performance for real-time processing,
considering 256 gray-level digital images of 1,024 x 1,024 pixels
at a rate of 30 frames/s.

In addition, the resource utilization was also inefficient, and the
processor used 6,526 logic elements in two FPGA devices (1
Flex10K70 and 1 Flex10K100). A dynamically reconfigurable
design approach could reduce the resource utilization, allowing a
cheaper final board, and a better performance was possible using
reconfiguration. With this aim, DRIP was designed as a new
reconfigurable architecture for digital image processing.

5. DRIP Architecture
DRIP (Dynamically Reconfigurable Image Processor) is a
reconfigurable architecture based on NP9. DRIP design goal is to
produce a digital image processing system using a dynamic
reconfiguration (in a SRD scheme) approach. Based on previous
NP9 design, we were expecting to obtain a minimum operation
frequency of 32 MHz for real-time processing.

5.1 Customization of the Processor Elements
The first step in the definition of the DRIP architecture was the
customization of its PEs. As mentioned above, each PE can
implement two functions (ADD and MAX). The current model of
the PE of NP9/DRIP operates with restricted weights, using only
three values: -1, 0 and 1. Such parameters allow us to implement
8 distinct functions from a set of 18 possible configurations, not
considering functions symmetrical on its inputs (e.g.:
max(X1*0,X2*1) is equivalent to max(X1*1,X2*0) with inputs
exchanged). These functions are summarized in Table 2.

With this information, we have designed optimized components,
each one representing a distinct function. All functions together
formed a basic function library, used for algorithm
implementation during synthesis step (Figure 5). According to our
design, the worst-case delay and resource usage in a function
occurs for max(Xa, Xb) and defines DRIP maximum clock.

Original Operation Function

add(0,0), max(0,0) Zero

add(0,X2), add(X1,0) X

add(0,-X2), add(-X1,0) -X

add(X1,X2), add(-X1,-X2) Xa + Xb

add(X1,-X2), add(-X1,X2) Xa - Xb

max(0,X2), max(X1,0) If positive(X) then X else  0

max(0,-X2), max(-X1,0) If negative(X) then X else 0

other possibilities of max Max(Xa, Xb)

Table 2. Customized functions of DRIP PE

5.2 Algorithm Mapping
Algorithm

Synthesis

Configuration

DRIP

Function
Library

Configuration
Library

Figure 5. Design Flow of DRIP system

Typical design flow of the configuration of an algorithm onto
DRIP is shown in Figure 5. First, an image processing algorithm
is specified and simulated to verify its functionality. The
specification can be done graphically, using an interface that
represents the full DRIP/NP9 data flow graph. The algorithm can
also be described using a high level language like C and translated
to an intermediate representation which matches the DRIP
architecture.

After specification, the algorithm is compiled/synthesized using
the previously designed function library, fully optimized to
achieve better performance. During algorithm synthesis, some
optimizations are performed to reduce the complexity of the
functions and to eliminate redundant or unused PEs. The
configuration bitstream that customizes the FPGA for the
optimized algorithm implementation is stored in a configuration
library. The reuse of the modules of this library is essential for
efficient implementation of several image processing functions.

Once the configuration bitstream data is stored, it can be used
repeatedly and over several modules of the entire architecture.
The synthesis and optimization steps for the configuration library
elements may be slow, but this is counterbalanced by the reuse of
the configuration library to implement more complex algorithms.
Like in a software environment, the design and compilation times
are sometimes large, but the massive use of the software can
compensate its design costs and development time. This situation
occurs in low-level image processing, where common algorithms
are employed several times in distinct applications, and the size of
the images and the number of frames require a great number of
iterations.



5.3 Digital Image Processing System
In a complete digital image processing system (Figure 6), DRIP is
connected to a visualization and acquisition system through a
neighborhood generator. The generator receives the image pixels
in serial form, line by line, and sends a complete neighborhood to
be processed by DRIP. The configuration interface connects DRIP
to the host computer and is responsible for the controlling of its
configuration.

Neighborhood
Generator

DRIP
Visualization and

Acquisition System

Configuration
Interface

Host
Computer

Figure 6. A Digital Image Processing System using DRIP

Currently, DRIP is being proposed as part of the entire system of
Figure 6 in order to achieve a high performance image processor,
relying on the dynamically reconfigurable features of DRIP. This
goal is particularly challenging, since the neighborhood generator
is a special memory with a very high bandwidth requirement. The
best solution is to design a single chip containing DRIP and the
generator, including substantial frame buffer memory, similar to
the Garp implementation approach.

5.4 Potential Applications
A dynamic image processing system that relies on DRIP
flexibility can take advantage of a web-based environment for
remote processing. This possibility is not so far from the current
state-of-the-art stage, given the increasing bandwidth available in
the Internet. A Web-based framework can allow the distribution
of the design/execution tasks: algorithm synthesis, program
library storage, image acquisition, algorithm execution, image
visualization. Each of these tasks can be performed on distinct
sites throughout the web. The motivations for using the
reconfigurable hardware herein proposed via Internet may be
explained as an architecture on-demand.

A user may not have a machine with minimum requirements to
execute compile/synthesis tasks or the software is not available for
local use, only in a centralized algorithm server. A user system
may have insufficient speed to perform more complex image
transformations exclusively in software. A system including DRIP
processor can be a server for digital image processing, and remote
users can submit images and receive the visualization in their
client browsers. The feasibility of such implementation depends
on issues that are not addressed in this paper.

6. RESULTS
The customized functions of DRIP were compiled for Altera
Flex10K FPGAs. We individually analyzed the performance of
each function. After that, we choose the worst-case function in
resource utilization and performance to implement a full DRIP
data flow graph. The preliminary estimated performance (51.28
MHz) is 60% greater than the design target performance (32
MHz) and almost 200% faster than the fixed hardware (non-

reconfigurable) NP9 implementation (17.3 MHz). The
comparison between these performances is presented in Figure 7.

On the resource usage, DRIP also achieved much better results. It
used only 1,113 logic elements of a Flex10k30, 83% less area
than the NP9 pipelined implementation. The reconfiguration time
was also reduced due to the FPGA device used, as the SRAM-
based FPGA technology Flex10K used provides for much faster
reconfiguration. Unfortunately, this family does not support
partial reconfiguration yet, as does the Xilinx XC6200 family.
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7. Conclusions and future work
Dynamic reconfiguration can obtain a considerable gain in area,
performance, and cost for an application specific system. We
demonstrate such advantages with the implementation of a
reconfigurable dynamic image processor. Comparing with the
equivalent statically configured (SD) design of NP9, an 80% area
reduction and 3 times faster clock rate was achieved. The DRIP
processor is then suitable for a high performance real-time image
processing.

The design flow emphasizes a fundamental requirement in
reconfigurable design: performance gain and large application life
cycle must overcome the design costs and development time. A
relevant trend in FPGAs and reconfigurable architecture is also
bound to change considerably the picture in favor of DRD as the
integration of ASP, GPP, and memory in one single chip becomes
economically viable.

The future directions of the DRIP project will require an
algorithm/program specification framework to allow a user-
friendly interaction between high-level abstraction and processor
architecture. The development of a system board with full support
for dynamic reconfiguration of the processor and high-bandwidth
memory availability is planned.

We are considering the implementation of a Web-based
framework for remote image processing. This framework will
allow to define a methodology for dynamic reconfiguration on a
widely distributed environment. That could become a relevant
market for reconfigurable computing, for efficient supply of an
architecture on-demand. Hardware upgrading, maintenance, and
adaptation could be performed from a remote host.
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