
Microprocessor Based Testing for Core-Based System on Chip

C. A. Papachristou F. Martin M. Nourani

Computer Engineering Program, EECS Dept.

Case Western Reserve University

Cleveland, OH 44106

Abstract

The purpose of this paper is to develop a 
exible design for
test methodology for testing a core-based system on chip
(SOC). The novel feature of the approach is the use an
embedded microprocessor/memory pair to test the remain-
ing components of the SOC. Test data is downloaded using
DMA techniques directly into memory while the micropro-
cessor uses the test data to test the core. The test results
are tranferred to a MISR for evaluation. The approach has
several important advantages over conventional ATPG such
as achieving at-speed testing, not limiting the chip speed
to the tester speed during test and achieving great 
exibil-
ity since most of the testing process is based on software.
Experimental results on an example system are discussed.

1 Introduction

Recent developments in semiconductor technology have made
possible to design entire systems onto a single chip, com-
monly known as System-On-Chip (SOC) [10]. A related
practice which is evolving is the use of prede�ned logic blocks
called Cores or Macros [1]. A Core is a highly complex logic
block which is fully de�ned in terms of its behavior, also
predictable and reusable [4]. System designers can purchase
cores from core-vendors and integrate them with their own
user-de�ned logic (UDL) [8] to implement SOCs. We refer
to these designs as core-based systems.

Core-based SOCs have signi�cant advantages. Due to
the fact that most of the system is on the same chip SOCs
can operate faster with lesser power. SOCs reduce the num-
ber of discrete components used, thereby reducing the total
size and cost of the end-product. Furthermore, using em-
bedded cores in SOCs has the potential of greatly reducing
the time-to-market because of the design re-use involved.

Testing core-based systems is a major challenge. The
main factor is that the accessibility of the cores and blocks
is greatly reduced. Furthermore, the system designer might
have a restricted knowledge of the core internals due to the
protection of the Intellectual Property (IP) of the cores [3].
The following factors should be considered to determine an
e�ective test strategy when integrating cores into an SOC.
a) Fault Coverage : To obtain a high fault coverage, all the
system blocks should be thoroughly tested. The intercon-
nects between the blocks should also be tested. Other tests
should be done as to whether the individual blocks function
properly when they are interacting with each other.
b) Overall test time : Testers are very expensive thus it is

important that the test time be kept as small as possible.
c) Area Overhead : The amount of additional silicon area
needed to implement the test scheme should also be low.
d) Performance Overhead : Performance penalties should
also be considered. The speed of the system and the amount
of power consumed might be a�ected by the test scheme.

Unlike the way we test smaller designs, we cannot test
SOCs as one whole unit. This is because such a test solution
would give a poor fault-coverage and the overall test gener-
ation is impractical, and often not possible. A better way to
test SOCs is by testing each of the cores separately, along
with other tests to determine whether the system functions
as a whole. Many types of isolation methods have been pro-
posed for testing the SOC cores separately. A direct access
scheme, [6] [2], isolates embedded cores by accessing all the
I/Os of the core in parallel through a test bus. The method
is very e�ective in terms of the total test time, however there
is considerable area overhead in routing of the test bus. In
[8, 9], a method is proposed using isolation rings to test em-
bedded cores together with a serial scan chain to access the
embedded cores. This method requires a much lesser area
overhead, however the overall test time might be very high
due to the serial access of the cores. Some work on using a
microprocessor to test a core-based system is in [5].

� Our Approach. Our test scheme is based on using a micro-
processor in the SOC to test the remaining embedded cores.
Most system designs have some sort of microcontroller (or a
similar component) in them. Hence our test scheme can be
applied to a majority of core-based systems.

Using the microprocessor to test cores has signi�cant ad-
vantages. The testing process could be done at-speed or
near at-speed. Since testing is done inside the chip, the
tester host can be run at lower speeds thereby reducing the
need for high-speed expensive testers. The size of the test
controller, if any, is very small because the microprocessor
performs most of the test controller function. Also since
most of the testing is speci�ed in software the method is
very 
exible. With some modi�cations, the method can be
even used for �eld testing.

2 Key Concept

� Requirements. The major components required for im-
plementing our test strategy can already be found in most
SOCs. The main component required is a microprocessor.
Some memory should be available which can be used during
test. We will refer to this as the test memory. Of course,
this memory will be free for use during normal operation
of the design. A path should be available from the system
I/O pins to the test memory, so that the test data can be
downloaded into the memory.

Testing the microprocessor and the test memory is not
the focus of our work. We assume that the microprocessor
and the test memory are tested by some other method [11].

_

___________________________
Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00



��
��
��

��
��
��

��
��
��

��
��
��

System
Pins

Input
Port

Access Path

Controls

Address Bus
 under test

Core

Signature
Verifier (SV)

Test

Memory

Data Bus

Download
Path

Input  Access  Path

Output

Micro-
Processor

SOC

DMA

Access Path

Host

 Clusters 

Figure 1: Structural test scheme

� Test Scheme. The key concept is illustrated in Fig. 1.
The compressed test data is downloaded into the test mem-
ory from an external host, e.g. an inexpensive tester. In our
example the download is done using a DMA (direct mem-
ory access) technique, so that the microprocessor does not
have to worry about the download. Next, the microproces-
sor tests the cores using the test data in test memory. The
cores can be separated into clusters of cores. Cores in the
same cluster cannot be tested at the same time, whereas
cores in di�erent clusters can be tested in parallel. Cores
in the same cluster can be directly connected to each other,
however, cores from di�erent clusters would not be inter-
connected directly. The advantage of separating cores into
clusters is that potentially we can test cores in di�erent clus-
ters in parallel. In our example, we use the bypass approach
[7] to access the cores. However, any other type of access
mechanism can be used [12]. To test a core in a cluster, we
provide an access path from the microprocessor to the core
inputs and we also provide an access path from the core
outputs to a block called the Signature Veri�er(SV). The
latter is a programmable multiple input signature register
(MISR) with capabilities of verifying the signature with the
data provided by the microprocessor. The microprocessor
enables the access path with the help of a simpli�ed test
controller and sends the test data to the core. After ap-
plying the test pattern to the core, the core outputs are
propagated to the SV.

Figure 1 shows that there are three di�erent paths: the
download path, the input access path and the output ac-
cess path. The input access path includes the path from the
test memory to the microprocessor and the microprocessor
to the core inputs. To make the testing faster, we overlap in
a pipeline form the download and testing phases. The test
memory acts as the bu�er between the two stages (down-
load and test) of the pipeline. It will be seen later that the
ordering of the cores to be tested plays an important role in
decreasing the total test time.
� Testing Issues. The key issue is the synchronization of the
downloading and testing. Since the test memory size is lim-
ited, we should ensure that the amount of data downloaded
does not exceed the test memory capacity. We do this by
packetizing the test vectors into frames. The size of a frame
is smaller than the size of the test memory. Each frame is
downloaded only when there is enough space for that frame
in memory. To read a frame, the microprocessor waits until
the whole frame is downloaded.

In order to understand the test scenario, we will now
describe in more detail the function of the microprocessor.
The microprocessor should perform the following functions:
1) Before accessing each frame, it should be checking whether
the DMA has downloaded already the required frame.
2) It should instruct the DMA to load the next frame as long
as the new frame will not overwrite the frame currentnly be-

ing accessed. This is done using interrupts.
3) While testing a core, the microprocessor should con�g-
ure the bypass paths, so that the correct input and output
access paths to the core(s) under test are enabled. The mi-
croprocessor should also con�gure the SV to compact/verify
the outputs as required.
4) In the case of pseudorandom testing, the microprocessor
could generate the test patterns by itself. Hence a separate
BIST controller is not needed for testing any BISTable cores,
i.e. cores amenable to pseudorandom testing. This is a form
of software BIST and it will done be much faster than any
external pseudorandom testing. However, if there already
exists a BIST hardware scheme for the core under test, the
the microprocessor can control the BIST controller.

The following three aspects are considered for our testing
scheme. They are described in detail later. i) Download
Phase. ii) Testing Phase. iii) Test Management.

3 Download Phase

To download data into the test memory, we should ensure
that there exists an access path the test memory from the
system inputs ports. Usually such a path would exist in
a system design. However, for designs which do not have
direct access to the test memory, we should provide an al-
ternate access path which will be enabled during testing.
As mentioned earlier, the downloading is done using direct
memory access (DMA). In general, DMA is a scheme which
can be used to transfer data to/from the memory without
using the microprocessor. During these non-memory cycles,
the DMA takes control of the memory bus and reads/writes
in the memory. This process of using the memory when the
microprocessor is not using it is known as cycle stealing.
� Test Information Compression. The test vectors are of two
types, deterministic and pseudo-random. For deterministic
test patterns, the entire set of test vectors should be down-
loaded to the test memory. For pseudorandom test patterns,
it is su�cient to download the seed(s) and polynomial(s) to
generate random test patterns. Thus the downloading would
be much faster for the case of pseudorandom patterns. The
microprocessor can use the seed and the polynomial to gen-
erate the psuedo-random test patterns.

Test pattern compression or compaction prior to down-
loading is bene�cial in that it reduces the download time.
The tester memory requirements are also minimized. The
compression is done at the test generation level. Decompres-
sion takes place inside the chip by the microprocessor. In
order to keep the testing process e�ective, the decompres-
sion should take as little time as possible. This compres-
sion/decompression strategy will be very e�ective if the the
microprosessor is much faster than the host.

One form of compression which is very useful is the elim-
ination of duplicate patterns. Test patterns usually contain
many duplicate entries. This is especially true in control-
dominated cores. A series of duplicate input patterns may
apply to the core inputs for several cycles, depending on the
sequential depth of the core. However, in our approach we
do not need to download duplicate patterns in test memory.
We only need to download one pattern out of a series of N
duplicates, as well as the series length N . The microproces-
sor can be instructed in software to reproduce the duplicates
for the corresponding cores.
� Frame Packetization techniques. After the test data is
compressed, it is packetized for download. The basic packe-
tization technique for the test information to be downloaded
is shown in Figure 2. The �rst step is arranging the test vec-
tors of each core in the order they should be downloaded.
This arrangement depends upon the test scheduling which



Frame 1

Frame 2

Download

Frame 1

Frame 2

Frame P

Header

Test Pattern
Set No. 1

Footer
Header

Test Pattern
Set No. 2

Test Pattern
Set No. N

Footer

Test Pattern
Set No. 1

Test Pattern
Set No. 2

Test Pattern
Set No. N

Test Memory

Individual Test Patterns Packetization by FramingAssembling test patterns

Figure 2: Test Data Packetization

is described later. The next step is to add headers and foot-
ers to the test vector set of each core in order to identify
and separate them. The header contains the following in-
formation { the core to be tested, size of the test vector set,
whether the vector is deterministic/pseudo-random, how to
control the test controller and the signature veri�er con�g-
uration. The headers also provide initialization information
to the microprocessor.

The next step is to split the test data of each core into
frames. A frame is a packet of test data which is smaller
than the size of the test memory. The following rules ensure
that downloading and testing synchronize with each other.
1) Each frame is transmitted to the memory in one stretch.
2) After a frame is downloaded, the DMA interrupts the
microprocessor to inform that the frame download has been
done. The microprocessor makes note of this.
3) Whenever the microprocessor starts to use the test data it
veri�es that the corresponding frame has been downloaded.
If the frame is still being downloaded, then the micropro-
cessor waits till the frame has been downloaded.
4) Also when the microprocessor is accessing a frame, no
download should take place which will overwrite the frame
being accessed.

The frame size f has to be decided carefully as it a�ects
the overall testing time. If f is equal to the test memory
size, M , then the microprocessor has to wait till the entire
M has been downloaded. A new download cannot occur
until the microprocessor has �nished accessing the existing
frame. This means both download and testing are never
done in parallel. Hence f = M represents entirely serial way
of testing. On the other hand if f = 1, then the micropro-
cessor starts accessing as soon as one test pattern has been
downloaded. Downloading takes place as long as it does not
overwrite the test pattern currently being accessed. Hence
this represents the highest form of overlapping. However
this means that for every test pattern the microprocessor
should check whether the next frame has been downloaded,
which would clearly slow down the testing process. An ef-
fective frame size is an intermediate value between 1 to M
and should be chosen carefully by experimentation.

4 Testing Phase

In this phase, the microprocessor gets the test data from
the memory, decompresses it and dispatches the data to the
corresponding cores. This is done as follows. First the mi-
croprocessor decodes the header to identify which core it is
supposed to test, the size of the test vector, decompression
details and other relevant information. It then decompresses
the compressed data into its original form. It then con�g-
ures the system so that it can access the primary inputs of
the core to be tested. The outputs of the core are also prop-
agated to the signature veri�er (SV), which is programmed
accordingly to compare the outputs with the given response.
After processing the header, the microprocessor reads in the

......

Source

(a)

Bit-Match

port jport ii_k j_k

1 <= i_k <= Nin_k

Core k

m n

Core p Core q Core s

Signature
Verifier

SinkSource Sink

Output Test PathInput Test Path

b = b_out
1 <= j_k <= Nout_k

(b)

Cluster

Bit length of test data b = b_in

Data Output

Microprocessor

b_in b_out

Core r
(Under Test)

Core A

Figure 3: The Bypass Approach

test vector one by one and sends them to the core inputs.
The outputs are veri�ed/compacted by the SV. If the out-
puts have been compacted, then the microprocessor �nally
veri�es this compacted signature once the footer is reached.
It then proceeds to test the next core.

4.1 Accessing the cores - The Bypass Approach

The bypass approach, adapted from [7], is brie
y illustrated
in Figure 3. The overall objective is to use the existing
wires and topology of a cluster of cores to establish a path
to carry test data between the core under test and the two
test points in the system. Thus, there are two types of test
paths, i.e. input test path accessing core input ports from
the microprocessor data bus and output test path accessing
core output ports from the signature veri�er. Figure 3 shows
a core under test (Core A) and the I/O test paths. Nin k
and Nout k are the total number of input and output ports
of the core k. All the cores shown in Fig. 3 belong to the
same cluster.

Figure 3 also shows a general view of our bypass model,
and Figure 3(b) the blowup picture of a core bypassing data
in the path. We symbolically showed that the inputs are
bypassed to the output without interfering with the core
circuitry which are used in normal mode. The basic idea
of the bypass mode for each core is to have an indepen-
dent route around a core to carry test data (prede�ned test
patterns or core signatures) between porti (mi k bit wide)
and portj (nj k bit wide) of that core. Porti and Portj
represent two ports of a core and mi k and nj k are the bit-
widths of porti and portj of core k. This is shown in Figure
3(b). The objective here is to establish the shortest path
(fastest route) to carry the packed test data between source
and sink. Note that by this formulation, accessibility of the
core inputs from the microprocessor and of the core outputs
from signature veri�er, are similar problems.

Figure 3(a) clearly shows that the bit width of core in-
puts or outputs change in a path between two test points.
This requires a sort of bit matching. Let's assume that we
need to transfer a b bit pattern between source and sink.
In general, to transfer b bit test data from porti(mi k bit)
to portj(nj k bit) of Core k we need to pack the data (to
match the available bit width) and send it in several iter-
ations. For example, a core with a m = 4 bit input port
bypasses b = 16 bit test data in 4 iterations. The time cost
for serial to parallel or parallel to serial transfer is:

T ime Cost : tij k = d
b

minfmi k; nj kg
e cycles (1)

Using these cost values, we �nd the shortest (fastest)
path to access the cores. To do this, the cluster is modeled
as a graph as explained in the following.
� Graph modeling and the shortest path problem. The ob-
jective here is to model the port accessibility of cores within
a cluster as a directed weighted graph in which the shortest
path between any two points (called source and sink) re
ects
the fastest route to transfer packed test data between those
two points. From testing perspective, with such model we



From

16/min{m,n}  ( 4/min{m,n} )

16

4

16

1(1)

1(1)

2(1)

2(1)

1(1)

Core 2Core 1

Core 3 Core 4

2(1) 2(1)

4(1)

4(1)

4(1)

2(1)

4(1)

4(1)

(b)

         processor         µ

Cluster

Signature

Verifier (SV)

16

4

8

Core 2Core 1

Core 3 Core 4

8

816

8

416

16

4

16

16

8

8

16

4

From

         processor         µ

(a)
Time Cost:

 SV

Figure 4: A cluster and its CBG graph.

Core 2Core 1

Core 3 Core 4

1(1)

2(1)

2(1)

1(1)

2(1)

2(1)

1(1)

4(1)

4(1)

2(1) 4(1)

4(1)

4(1)

Time Cost:

Input Test
Shortest Paths:

Output Test
Shortest Paths:

16/min{m,n}  ( 4/min{m,n} )

Figure 5: For input/output shortest paths for Core 2 using
Branch-and-bound Algorithm.

can �nd the fastest route to transfer test data (prede�ned
or random pattern) from the microprocessor to any of the
core input ports. Similarly, we can �nd the fastest route to
transfer test data (signature) from any of the core output
ports to the SV.

In our graph model, a node corresponds to a port and
an edge corresponds to the interconnects between ports or
the bypass possibilities. From Equation 1, the cost of an
edge corresponds to the bypass delay or the transfer time
of the packed data from one point to another. The time
cost of the existing interconnects between cores is assumed
to be zero since no additional circuit/delay for packing or
transfer-control is needed. We call the above graph model
the Core Bypass Graph.

Figure 4(a) shows a cluster, made of four cores with dif-
ferent ports and bit widths, under test. The cluster has two
primary inputs going to Core 1, 3 and three primary outputs
from Core 2, 3, 4.

Figure 4(b) shows the corresponding Core Bypass Graph
(CBG). Depending on the bitwidth of test data (b) dif-
ferent cost values should be used in �nding the shortest
paths. In Figure 4(b) near each edge we show two cost
values. The cost values outside parenthesis are tij k =
d

16

minfmi k;nj kg
e showing the time overhead to transfer 16-

bit test data. Similarly, the cost values inside parenthesis
are tij k = d

4

minfmi k;nj kg
e re
ecting the time overhead to

transfer 8-bit test data. All edges without a cost value cor-
respond to the existing interconnect between cores and are
assumed to have time cost of zero because no packing cost is
involved. We use a branch and bound algorithm to �nd the
shortest path from the microprocessor to the core primary
inputs and from the core primary outputs to the SV.

To show the process, we continue our running example
by applying the branch and bound algorithm to the CBG
graph of Figure 4(b) for testing Core 2 only. The algorithm
found four paths, two to reach the two primary inputs of

}

else {
for i = 1 to testlength {

get(input);
get(expected output);
configure SV with the expected output;
apply the input to the core and propogate the outputs to the SV;
Check SV for correct output response;

}
}

if still more testing to be done go to A;

}
Check SV for correct signature

apply the data to the core and propogate the outputs to the SV;
generate random input data;

for i = 1 to testlength {
get(polynomial);
get(seed);

if (Random pattern testing) {
A:

Structural Test:
get(Header) & set the configuration;

get(footer);

get(Data):
If this is the first time {

}

}

if we reach the end of the frame {

}

if this is a new frame {

Start DMA;

Wait till the frame has been completely loaded;

Read Data from the current frame;

If DMA was suspended then start DMA;

return(Data);

DMA Interrupt:

Configure SV to compact the test responses

}
Program DMA to download the next frame;

if there is space for a new frame {

Record that the frame has been downloaded

else {
Suspend DMA till it is restarted in get(Data);

}

Figure 6: Pseudocode of the test software

Core 2 from the microprocessor and two to observe the two
primary outputs of Core 2 to the SV. Note that Core 2 has
one 4-bit, one 8-bit and two 16-bit ports. So, we consider
the appropriate cost of edges accordingly. That is, the cost
values outside parenthesis when a test point is the 16-bit
port and the cost values inside parenthesis when a test point
is the 4-bit port. The result is summarized in Figure 5. that
shows the shortest paths between microprocessor and core
input ports, with thick solid and broken lines. It also shows
the shortest paths between two output ports of Core 2 and
the SV using the two di�erent lines.

4.2 The function of the microprocessor

The microprocessor acts as the main test controller, coordi-
nating the downloading and the testing of the cores. It also
controls the bypass paths to access the cores. All these func-
tions can be implemented in software. A separate section of
the memory should be allocated for this test software.

A pseudocode of the test software present in the memory
is shown is Figure 6. First of all the module gets the header
of the test data. This is obtained by calling the Get(Data)

procedure. Then the Structural Test module con�gures
itself and prepares to test the required core. If it is ran-
dom pattern testing, it �rst con�gures the SV in order to
compact the output test responses. The random patterns
are generated by the microprocessor and applied to the core
inputs and propagated to the outputs of the SV. After the
required testlength, the SV is then checked for the correct
signature. In the case of deterministic patterns, each of the
test vector is obtained from the test memory and applied to
the cores. Then the core outputs are checked by using the
SV. The Get(Data) block gets the data from the test mem-
ory. During the �rst time, the Get(Data) block starts the
DMA and instructs it to download the �rst frame. When-
ever the Get(Data) is reading from a new frame, it checks
and waits if necessary for the next frame to get completely
loaded. This is done by checking whether the frame marker
has been downloaded. Also when the Get(Data) has �n-
ished reading all the data in a frame, it checks if the DMA
is waiting for the test memory to clear up. If so it informs
the DMA that it has �nished reading the current frame and
that the DMA can download the next one.

The DMA interrupt procedure is called whenever the
DMA interrupts. This happens when a frame has been
downloaded and the DMA wants to signal the completion of
the download of a frame. The procedure instructs the DMA
to download the next frame as long as the test memory has



enough space. If the test memory does not have enough
space, then it suspends the downloading till the DMA gets
activated again by the Get(DATA) block.

5 Test Management

The order in which we test the cores can a�ect the overall
core testing time. Consider tesing two cores C1 and C2.
Suppose the dowload time for the test vectors of C1 and C2

are 100 and 50 milliseconds respectively. This is just the raw
download time i.e. the time taken without considering the
memory size and the microprocessor testing. The time taken
for the microprocessor to test the cores with the downloaded
test data is estimated to be 50 and 100 milliseconds, without
consideration of the download phase. These times can be
calculated analytically or by simulating the download and
testing individually.

Let us also assume a frame size of f = M=10 where M is
the test memory size. If we download and test C1 followed
by C2, then the total test time for both C1 and C2 would
be 210 milliseconds. On the other hand, if we download and
test C2 followed by C1, then the total test time would only
be 160 milliseconds. This is seen in the scheduling chart
of Figure 7. The chart shows when each of the frames are
downloaded and tested. Note that the time to download is a
constant, since we use the same download path for testing all
cores. This is seen by the constant width of the downloads
in Figure 7. We have assumed that a single frame takes 10
milliseconds to download. However, the time taken to test a
frame depends upon the core. This is because the accessing
time due to bypass may vary from core to core. In this case,
for C1 it is 5 milliseconds and for C2 it is 20 milliseconds
per frame. In Figure 7 the widths of the testing for C2 is
longer that that of C1 to re
ect the di�erent testing times.

Number Core
of Frames

Download
Time

Test
Time

1

2

10

5

100 ms

50 ms

50 ms

100 ms

:  A single Frame

:  Idle time

(i)

50 ms 150 ms

(ii)

(iii)

time

Core 1

Core 1

0 ms 100 ms 200 ms

210 ms

160 ms

Download

Test

Download

Test

Core 2

Core 1 Core 2

Core 1

Core 2

Core 2

Figure 7: Test management example (i) Testing and Down-
loading times; (ii) Schedule 1 (iii) Schedule 2

The primary reason why the order in which we test the
cores a�ects the overall test time is because di�erent cores
have di�erent download and test times. For those cores
which have a shorter download than test time, the test
time is the bottleneck. For cores which have download time
greater than their test time, downloading is the bottleneck.
Hence if we schedule the testing in such a way that the
cores with download bottleneck come only after cores with
test time bottleneck, then we would have the shortest test
time possible, if the memory were unlimited. This is shown
in Figure 8. If D represents the download times and T rep-
resents the testing times, �rst we compute the di�erence
g = D � T , then we arrange them in increasing order. This
ordering would give a test schedule with minimal test time.

Core Download
Time, D Time, T

Test D - T

1

2

n

D

D

D

T

T

T

1 1

2 2

n n

g

g

g

1

2

n

(i)

Sort {g , g , . . . g } in increasing order
1 2 n

(ii)

          Test Scheduling Algorithm :

This represents the order of download and testing

(iii)

g

-gDownload

Test

timetime

If g is positive If g is negative

Figure 8: Test Scheduling Algorithm (i) Dowload, Test
times; (ii) The algorithm; (iii) Interpretation of g

Note that we have not considered the test memory size in
this algorithm. The test memory size determines the max-
imum time between the download and testing of a frame.
Hence if the test memory is full, no further download will
take place until a frame has been tested.

6 Experimental Results

A sample design modeling an alarm clock (Synopsys docu-
mentation) was tested using the above methodology. The
top level blocks in this design were considered to be individ-
ual cores. This circuit was assumed to be one of the clusters
of a SOC as shown in Fig. 9.

Test
    DMA I/O  Port

Address / Data  Bus

Microprocessor

bitwidth  16 bits

Memory

CONTROL_FSM CONTROLLER LED_DISPLAY

RINGER_FSM

11

111
Core 1 Core 2 Core 3

Core 4

Core Cluster in the SOC

Reset

Clock

14

14

1

1

1

1

1

1

1

1

3

Figure 9: The Alarm Clock Circuit Embedded in a SOC

The test patterns for each of the cores of the alarm clock
were generated using an ATPG tool from Synopsys. The
fault coverage of the individual cores are shown in Table 1.
The faults at the ports of the cores were removed as they are
considered interconnect faults when the cores are embedded
in the system. Now the structural description of the clus-
ter was analyzed, a core bypass graph was obtained and the
shortest path required to access each core was determined.
The bypass paths for accessing all the four cores of this cir-
cuit are shown in Figure 10. The input and output access
paths for testing Core 2 are also shown. In order to test the
entire cluster of cores, a simple microprocessor model was
assumed. The test software (Figure 6) was simpli�ed for this
example and the software size was estimated. The test pat-



Core Test Total No. Untested % Fault
Length of faults faults Coverg

Control FSM 71 196 2 98.98
Controller 610 1356 39 97.12
Led Display 147 2378 25 98.95
Ringer FSM 435 530 83 84.34

Table 1: Testing Information of Individual Cores

/

/

 /

/

/

 /

1

1

Bypass Paths

Access paths for
testing Core 2

29

4

22

3

Core 1 Core 2

Core 4 Core 3

Figure 10: Bypass paths necessary for testing the cluster

terns for the cores were analyzed for removing the duplicate
patterns that were generated by ATPG. The compression
results are shown in table 2. Column 2 shows the test pat-
tern length of the individual cores. In order to download
them, the test patterns are re-arranged to 16-bit patterns.
This is because the width of the system IO pins is 16-bit.
This is shown in column 3. Column 4 shows the length of
the test patterns after removing the duplicates. While re-
moving the duplicates, the duplicate vectors are replaced by
a pointer which points to the real value. Hence removing the
duplicates might sometimes increase the test pattern length.
This is seen for Cores 1 and 2. However the test patterns for
Cores 3 and 4 could be compressed this way. For the core
test, we compress the test patterns only for cores 2 and 4.
The entire cluster was fault simulated with the patterns

from the microprocessor. The overall fault coverage of the
cluster is 96.23%. The complete result is tabulated in Table
3. The table shows the result when all the four cores were
tested by the bypass approach. The embedded cores have
the same fault coverage as they had individually table 1.

The interconnects are completely tested since they were
used to send the test vectors to test the cores. The test
(bypass) circuitry was also tested well with a fault coverage
of 96.84%. The overall faults and fault coverage is shown in
the last row of Table 3.

In order to compute the overall test time, the follow-
ing assumptions were made: The external tester speed was
taken to be 50 Mhz. The number of microprocessor cycles
necessary to send a test pattern to the core was estimated
to be 4 cycles. The overall test time was estimated for dif-
ferent chip speeds. These results are shown in Table 4. Note
that the the �rst row gives the overall test time if the chip

Core Test Test Compressed Use
(a) (b) (c) Compression

Control FSM 71 26 35 No
Controller 610 190 160 Yes
Led Display 147 248 4090 No
Ringer FSM 435 706 647 Yes

Table 2: Test Pattern Compression. (a) Core test pattern
length; (b) test pattern length using chip I/Os (16-bit); (c)
Compressed test pattern length (w/o duplicates)

Block Total Number Untested Fault
of faults faults Coverage

Control FSM 196 2 98.98%
Controller 1356 39 97.12%
Led Display 2378 25 98.95%
Ringer FSM 530 83 84.34%

Bypass Circuitry 1236 39 96.84%
Interconnects 96 0 100%

Complete Circuit 5792 188 96.75%

Table 3: Test results of the entire cluster

Test Method Tester Chip Overall
Speed Speed Test time

Regular Method 50 MHz 50 MHz 98.16 �sec
50 MHz 50 MHz 101.48 �sec

Our Method 50 MHz 100 MHz 51.24 �sec
50 MHz 200 MHz 27.64 �sec

Table 4: Overall test time

was tested directly from the tester. Hence the tester speed
and the chip speed are the same. The next three rows show
the overall test time, if the chip was tested using the mi-
croprocessor. Note that there is signi�cant advantage, when
the chip speed is increased. By using our method, the chip
can be tested at much higher speeds with a low speed tester
without sacri�cing the overall test time.

7 Conclusion

Microprocessor-based testing has important advantages over
traditional testing methods for core-based SOCs because we
exploit the regular functionality of the chip during test-
ing. Fault coverage also improves, because an embedded
microprocessor has far greater accessibility than an external
tester. Since we divide the testing process into the download
and testing phase, the chip speed is not limited to the tester
speeds. Hence the overall testing time is reduced.

References

[1] F.P.M. Beenker, R.G. Bennetts and A.P. Thijssen, \Testability Concepts

for Digital ICs, The Macro Test Approach," Kluwer Acad. Publishers, 1995.

[2] L. Whetsel, \An IEEE 1149.1 Based Test Architecture for ICs with Embed-

ded IP Cores," Intern. Test Conf. (ITC-97), Nov. 1997.

[3] K. De, \Test methodology for embedded cores which protects intellectual

property," VLSI Test Sym. (VTS-97), pp. 2-9, May 1997.

[4] R. Chandramouli and S. Pateras, \Testing Systems on a Chip," IEEE Spec-

trum, pp. 42-47, Nov. 1996.

[5] I. Ghosh, N. Jha and S. Dey \A Low Overhead Design for Testability and

Test Generation Technique for Core-Based Systems" Intern. Test Conf. (ITC-

97), Nov. 1997.

[6] V. Immaneni and S. Raman, \Direct Access Test Scheme { Design of Block

and Core Cells for Embedded ASICs," Intern. Test Conf. (ITC-90), pp. 488-

492, Oct. 1990.

[7] M. Nourani and C. Papachristou, \Parallelism in Structural Fault Testing

of Embedded Cores," 16th VLSI Test Sym. (VTS-98), pp. 15-20, April 1998.

[8] N. Touba and B. Pouya, \Testing embedded cores using partial isolation

rings," VLSI Test Sym. (VTS-97), pp. 1016, May 1997.

[9] N. Touba and B. Pouya, \Modifying User-defined Logic for Test Access to

Embedded Cores," Intern. Test Conf. (ITC-97), Nov. 1997.

[10] \VSI Alliance", Architecture Document, Version 1.0, 1997.

[11] A.J. van de Goor and Th. J. Verhallen, \Functional Testing of Current

Microprocessors," Intern. Test Conference (ITC-92), pp. 684-695, Sept. 1992.

[12] J. Aerts and E. J. Marinissen, \Scan Chain Design for Test Time Reduction

in Core-Based ICs," Intern. Test Conference (ITC-98), Oct. 1998.


	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index


