
1. ABSTRACT
This paper summarizes the verification effort of a
complex ASIC designated to be an “all in one”
ISDN network router. This ASIC is unique because
it actually consists of many independent compo-
nents, called “cores” (including the processor). The
integration of these components onto one chip
results in an ISOC (Integrated System On a Chip).
The complexity of verifying an ISOC is virtually
impossible without a proper methodology. This
paper presents the methodology developed for veri-
fying the router. In particular, the verification
method as well as the tools that were built to execute
this method are presented. Finally, a summary of
the verification results is given.

1.1 Keywords
Systems on chip,verification, test and debugging.

2. INTRODUCTION
The rapid progress of chip fabrication technology has given rise to
new hardware solutions consisting of chips that contain whole
systems. On the one hand, the fabrication technology makes it now
possible to fit several chips, that were previously fabricated stand-
alone, onto a single silicon chip. On the other hand, the design of
complicated chips has not advanced as rapidly. That is, efficient
utilization of such fabrication ability can only be truly exploited in
very high performance projects such as state of the art central
processor units. However, even without a large design team, the
simplest way to exploit the ability to fabricate a bigger chip is to
combine many existing chip designs into a single ISOC (Integrated
System On a Chip). The design effort is not much greater than the
combined effort required for a set of stand-alone chips. The designs
are now called “cores” instead of chips - meaning that they do not
constitute an end product by themselves. Thus, the integration of
the system units which was previously done externally on several
fabricated units is now performed inside the ISOC. The payoff is
immediate, the fabricated ISOC will be much smaller, faster and
cheaper than an equivalent product built from several components.

The design of an ISOC is not a large step from the design of the
components that compose it. However, the impact on verification is
significantly large. ISOC type designs are not common yet. Our
particular ISOC verification problem was considered challenging
because of the lack of prior experience and existing solutions.
There was only one previous attempt to build an ISOC in IBM that

we knew of and it was not finished yet. We did have some
experience with the verification of systems but they were all built
from different components. Our approach was to rely on this
experience. The end result, based on the invested effort and the
verification quality, was a good reasonable solution. The first thing
to be understood was the difference of this chip from past ones.

2.1 Why is an ISOC Different From an ASIC?
An ISOC is first and for all a single chip but unlike an ASIC
(Application Specific Integrated Circuit), its specification is not
confined to its external behavior, but also to internal
communication protocols among the chip blocks. The internal
communication protocols are methodically defined and these
definitions are rigid. The designers of these blocks have to conform
to the protocols and they can not expect a change in them to make
their designs easier (in ASICs, when a problem arises with internal
interfaces - you can modify them). In fact, having such well defined
boundaries inside the chip makes the overall design effort much
simpler (e.g. you can not create complex logic that spans over many
blocks). Defined interfaces also allow the easy migration of cores
from one ISOC to another.

2.2 Why is an ISOC Different From a System?
The difference between an ISOC and a regular system is clearly
stated in its mnemonic: it is integrated. This means that problems in
the end system require a fix to the whole product. Problems
between components cannot be patched by adding glue logic as
done in externally integrated systems. If a design problem is
discovered in an ISOC component or in its integration, the only
solution is to re-manufacture the whole chip. This increases the
importance of the system verification effort and the cost of fixing a
bug substantially rises. Therefore, the complexity impact of an
ISOC is first and foremost on the verification task. The advantages
of ISOCs (as system solutions) are in other areas. For example the
synthesis and pin distribution is done for a single chip, instead of
for several components.

This paper describes the verification effort of an ISOC consisting of
a PowerPC [6] processor based system, consisting of a CPU, two
busses (a CPU bus and an IO bus), a memory controller, a
sophisticated DMA controller, several communication controllers
on the IO bus, and several other small components such as an
interrupt controller, bus arbiters, etc., all fabricated on one chip.

Initially there was no solution for the verification problem. The
methodology and tools to support it were formed hand in hand with
the chip itself. Our experience with this methodology has shown
this approach to be of high value in the verification of ISOCs. We
were able to cover a good portion of the system functionality with
limited resources and time. The approach taken here was to
examine how systems are verified and to adapt an existing system
verification scheme to the verification of the ISOC. In most part we
found that system verification and ISOC verification are similar but
that the relative effort invested in system verification compared to
the verification of the units is much greater for an ISOC than for a
non-integrated system. There were also a few more requirements
(such as verification of different system configurations).

The rest of this paper is organized as follows. Section 3describes
the chip. In Section 4, we describe the methodology. Section 5
describes the various tools that were developed to support this

A Methodology For the Verification of a “System on Chip”
Daniel Geist, Giora Biran, Tamara Arons, Michael

Slavkin, Yvgeny Nustov, Monica Farkas, Karen Holtz
IBM Haifa Research Lab

MATAM Advanced Technology Center
Haifa, Israel

+972 4 8296286
dannyg@vnet.ibm.com

Andy Long, Dave King, Steve Barret
IBM Field Design Center

Essex Junction, VT
U.S.A.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

methodology. Section 6 contains results from our experience. A
summary and conclusions are presented in Section 7.

3. THE NETWORK ROUTER
Monkton, the network router is depicted in Figure 1. Monkton
contains an embedded 32-bit PowerPC 401 processor. The
Processor Local Bus (PLB) [9] is connected to a memory
controller and a programmable packet DMA controller (MAL) for
transferring data back and forth from various communication
channels that are connected to the I/O bus. The PLB comprises
separate 32-bit read and write data buses, and is architected for
pipelined, burst and bus-locked transfers to maximize bus
utilization. On the PLB is a bridge to the on-chip peripheral bus
(OPB) [8], which implements many of the same features as the
PLB, but employs a single 32-bit read/write data bus to handle the
lower bandwidth requirements of peripheral devices such as serial
and parallel interfaces: CODECs and networking communication
macros (ComMacs). The bridge gives the processor access to the
OPB and is used for programming the channel ComMacs, etc.
Each ComMac handles a different communication Protocol: the
EMAC [7] core connects to an Ethernet line, the HDLC core
connects to an ISDN line and can communicate over 4 different
channels in either SCC or TDM mode, the UART cores connect to
two RS-232 ports. The SCP is a simple 1 byte transfer protocol for
accessing and programming local peripheral hardware.

Figure 1. The Router

Perhaps the single most important architectural feature of this chip
is the DMA controller or Memory Access Layer (MAL) [3], which
transfers data between system memory (connected to the PLB via
the EBIU) and the ComMacs. Since the OPB Bridge is a slave on
the PLB, OPB devices must use an interrupt mechanism to gain
access to system memory. In order to balance the interrupt latency
with the amount of FIFO buffering required at each
communications port, the Memory Access Layer (MAL) combines
the function of interrupt service with a DMA controller. The MAL
maintains buffer descriptor structures in system memory for each
communication transmit and receive channel. When required, the
MAL requests access to the PLB to effect DMA transfer of data
from a protocol handler FIFO to system memory via the OPB
Bridge and EBIU. The ISOC contains other small blocks: an
interrupt controller, general purpose I/O ports and some glue logic.
All these reside on a single chip.

The specification of this ISOC was not limited to the external pin

behavior: the PowerPC architecture was also specified, both
internal busses were specified, all the internal controllers (memory,
DMA, interrupt) were specified, the DMA programming model
was specified as well as the DMA communication protocol with
the ComMacs on sideband signals.

For verification, Monkton served as quite a challenge. It was not a
single unit, but rather a complex system of units connected to each
other via different bus or channel protocols. It required the
development of a different verification methodology, detailed in
the following section.

4. METHODOLOGY
Our solution to the ISOC verification problem was to use a random
biased test generator - SysGen (Section 5.2). IBM has been using
this technology for several years and in particular, SysGen has
been used to verify a variety of IBM server systems. The previous
ASIC verification methodology was to build an extensive reference
model of the verified ASIC that would check on-line for possible
errors during simulation. This solution was recognized as too
expensive in the case of an ISOC. Since there were similarities
between current systems verified with SysGen and the ISOC, the
verification team decided on converting the methodology used in
IBM server systems verification.

Figure 2. Verification Methodology

The solution was based on the above principles:

• Covering mainly system-wide functionality and directing test-
ing only to what is likely to be used in actual software.

• A test generator that also generated “expected results” per test.
(See Section 5.1.)

• Embedding specific ISOC testing knowledge in the generator
to achieve quality coverage with random generation.

• Basing most test writing on biased random generation with
automatic testing, and writing a minimal number of tests man-
ually.

• Coverage analysis. Recording all test execution paths and ana-
lyzing them for missing untested features.

The verification methodology depicted in Figure 2 was formed
gradually as the project evolved. Not all of the project was
executed according to it, rather the later stages were. Therefore the
methodology presented is what we would have done if we had to
do it over again.

4.1 Test Goals
The first phase of the methodology was to decide on the focus of
testing since it was apparent that covering the functionality of the
entire chip was not possible given the allocated time and resources.
The ISOC was viewed as a system and the verification team
primarily looked at the task as system verification, not unit
verification. However there were differences in the overall strategy.
In other systems verified, the effort of verification is much higher
on the units than it is on the system. System bugs can usually be

arbiter

arbiter

MAL

PPCEBIU GPIOINT

EMAC

M2STDM

SCP UART

PLB

OPB

+Compress.

SCC SCC SCCSCCUART
Core Core Core

Core

CORE

Bridge

Test Sim.

Test

Coverage

Simulation Review
Test
Goals Plan

Generator

Env.

 Analyzer

easily fixed with software patches. Also, unlike for this ISOC, the
system software configuration is well known in advance (being the
end product), while this ISOC was intended to support several
configurations. This required a substantial portion of the testing to
exercise different system configurations which is done in a very
limited manner (or not at all) in regular system testing. On the
other hand, integration of the cores inside the ISOC limited their
functionality which made unit testing simpler: only the
functionalities available after chip integration were required to be
tested for the ISOC.

1. Testing was mainly on end to end data transfers and MAL
interrupts (in different configurations). The tests tried to cause
contentions in time (requirement of busses and MAL by two or
more operations). Contentions in space were also tested but
with specific scenarios (described in Section 5.2), e.g. the
shared memory locations between MAL and the CPU.

2. Chip and block configurations tested were mainly the ones
used in the software applications. Information from the device
drivers and initialization software was used to guide the test-
ing. Note: this did not imply a single configuration, only how
and when configurations can be programmed.

3. The PowerPC 401 was assumed tested. No testing was targeted
towards the PowerPC 401 specifically.

4. Bad machine path (error handling and recovery e.g., timeout)
were tested partially. The responsibility on testing bad machine
path comprehensively was on unit simulation unless agreed
otherwise for specific error conditions.

5. System testing only checked unit registers and configurations
partially and randomly. Comprehensive unit register and con-
figuration testing was done in unit simulation. Writes to regis-
ters were performed randomly in such a way that they were not
expected to change the existing configuration (e.g. writing to a
register its current existing value). This only tested the configu-
ration write mechanism intermixed with regular writes (and
not individual registers).

4.2 The Test Plan
The test plan, derived from the specification and test goals, was
targeted for a random biased test generator. Instead of writing
specific tests to cover, we wrote event tables that described
combinations of events that should be covered during simulation.
The test plan would then direct three activities:

1. The encoding of testing knowledge to the test generator in
terms of test variants (what possible inputs can vary in the test
and in what ranges). Different events meant different features
to be generated randomly. In addition, biasing on events was
specified and encoded into the test generator. In a sense instead
of writing tests, we wrote test templates to be exercised ran-
domly. The random test generator also gave us control over the
frequency of events as described in Section 5.2.

2. The test plan directed writing behavioral models (behaviorals)
for the simulation environments. Events described in the test
plan had to be supported by the simulation environment input
(i.e. environment behaviorals).

3. The test plan also directed coverage analysis. Since most of the
tests were generated automatically we needed feedback to
make sure that we were indeed generating what we intended.
We used a coverage tool (see Section 5.3) to analyze traces
from simulation and to report on coverage according to cover-
age models we coded in from the test plan.

After simulating the tests, the results were analyzed for failures,
coverage, bug rate, etc. As a result of feedback from the review,
modifications could be made to the test plan, coverage simulation
environment, test generator and test coverage generator, in order to
fix problems by adding more testing, correcting wrong
assumptions, etc.

5. TOOLS
In addition to enhancements to SysGen, we built a few simulation

environment tools to support the methodology:

5.1 The Simulation Environment
Figure 3 shows a high level view of the Barbados system
verification environment. The SysGen system test generator
creates tests that include the following components:

1. The instruction stream for the PowerPC 401.
2. Commands for ComMac bus behaviorals.
3. Initial memory state.
4. Expected memory state at the end of test.
5. Expected packet transfers for each ComMac during the test.
This test is then read by Simulation Control (built from a few
modules) which performs the following tasks:

1. Parses the test.
2. Initializes the memory behavioral locations to be set up for the

test. This includes the CPU instructions, descriptors for buffer
packet transfers, data, etc.

3. Initializes the PowerPC 401 registers.
4. Submits the test for simulation.
5. Controls the ComMac bus behaviorals during simulation time.

The behavioral commands parsed from the testcase are sent to
the relevant ComMac bus behaviorals when required.

6. Stops the test on ending condition.

Figure 3. A detailed view of the environment

The results of the test are collected from the memory behavioral
and ComMac behaviorals and compared with the expected state
predicted in the test. Additionally a trace is produced from the test
and submitted to Comet, the coverage tool, which accumulated
coverage statistics on the chip simulation in order to measure the
overall quality of the testcases.

The above process is almost entirely automatic, enabling a massive
amount of test cases to be submitted and checked. The verification
staff have to manually intervene only when a test fails (for
debugging) and to review the coverage analysis.

M

UART

HDLC

SCP

Emac

GPIO

memory

test
loader

expected results
checker

S Y S G E N

simulation
control

401

parameters configuration

test

configuration

PASS/
FAIL

SIMULATION

COMET

trace
Coverage
Analysis

Fail

O
N
K
T
O
N

5.1.1 ComMac bus behaviorals
All the ComMac bus behaviorals were tailored to have a common
interface in order to make simulation control as simple as possible.
The behaviorals’ responsibility was to accept commands from
simulation control in order to drive data into the network router
and to dump all packets transmitted from the router to a file. The
behaviorals requested all commands from simulation control.
Simulation control supplied a command according to the test.
When a behavioral finished executing a command, it requested
another one until all the commands for it were executed.
Additionally, all behaviorals produced a common format dump file
containing all the packets transmitted to them throughout the test.
This made both behavioral control and checking generic.

5.2 The Test Generator
The test generator, SysGen, was the heart of the verification
solution. SysGen is a tool dedicated to system verification based on
a generic system approach. SysGen builds a reference model
according to a configuration file in which the user describes the
contents and capabilities of the system under test. The
configuration file includes the address spaces that exist in the
system, the units that are active and which address spaces they can
access, the system working modes, etc.

SysGen generates tests consisting of system transactions i.e., data
transfers, interrupts, configuration transactions or scenarios. A
scenario is a specific set of transactions (e.g. data transfers) used to
generate a more complex transaction (e.g. a communication
protocol transfer which may require multiple processor writes), or
a specific set of transactions that exercises a specific system
situation (e.g. back to back transactions of two units on the same
bus).

SysGen’s generation driver chooses transactions to run on the
reference model guided by a user parameter file. The user has the
ability to specify the test size and very explicit requirements for
each transaction generated, such as the data transfer length, the
target address space, and more. If the user does not specify
choices, SysGen attempts to fulfill required choices randomly. The
random choices are usually controlled by weights that bias the
probability of choosing some possibilities over others. SysGen
may also bias its choices on previous choices during the history of
the test generation (e.g reuse of cache lines) and on given biasing
rules. The user may control biasing by turning rules on/off or by
assigning weights to them. SysGen can also choose to randomly
insert scenarios in the test. Scenarios are usually not completely
specified. While they ensure their purpose will be fulfilled, there is
still ability to partially control them by the user or if not random
biased choices are made.

SysGen views a system as composed of agents (active units in the
case of Monkton, the CPU and ComMac behaviorals), targets
(usually address spaces) and the relations among them defined by
accessors. We call an accessor the set of information describing a
transaction type. This information can be classified into
information needed to run a transaction on the reference model,
and information needed to build the directives for the simulation
environment in order to run the same transaction on the simulated
model. Sysgen uses the information contained by the accessor of
each transaction type to update an internal simplified reference
model of the system that it maintains. SysGen uses the test
simulation directives contained in the accessor to add the
corresponding transaction to the test itself.

Biasing is an important component of testcase generation since the
level of novelty that each random test brings can decrease such that
newly generated tests and the verification soon becomes
inefficient. A method for increasing the quality of system tests is to
force interesting sequences of events. This mechanism is used to
focus system testing upon areas in which it is highly probable that
system bugs occur, for example, system resource contentions.

Scenarios are added to SysGen’s generation base, in cases where
exercising system functions requires more than one basic

transaction or in cases where the probability of hitting specific
system conditions is extremely low (even with biased generation).
In scenarios, the transactions are partially ordered and
interdependent. Scenarios include aborting packets, reconfiguring
the TDM in the middle of a test and resetting a channel while a
buffer is being transferred. For example, the channel reset scenario
was as follows:

1. A packet is placed on the chosen channel.
2. Both the transmit and receive channels of a ComMac are dis-

abled. This causes the packet transfer to be corrupt.
3. After a delay the channels are re-activated and the ComMac

reconfigured.
4. Another packet is sent to check that the channel operation has

been restored properly.
The expected results are modified to reflect the fact that part of the
corrupt packet may have been lost but the packet sent after the
restore should be correct.

5.2.1 Adaptation for the network router
SysGen as a tool is adapted by the developers to the particular
system it is applied on. The following work was performed in
order to adapt Sysgen to Monkton.

1. Preparing packets for MAL : One of the biggest areas of con-
cern was the functionality of MAL. Without its correct func-
tionality the chip would not work. The challenge in verifying
MAL was due to the many possibilities of data transfer
descriptors. Packets are divided into buffers with each buffer
having a buffer descriptor. The buffer descriptor stores data
about the buffer, such as the address of the buffer, the length of
the buffer, whether this is the last buffer in the packet, whether
the buffer is “ready” etc. Some interesting variants to check
were:
• Differing packet formats: Packets which are transferred

must have a certain format, depending on the ComMac and
its configuration. Thus, for example, Emac packets always
have a header and depending on the Emac configuration,
the CRC may or may not be transferred into memory.

• Single and multiple packet modes: ComMacs can transmit
packets in multiple packet mode, in which case the Com-
Mac, once activated, transmits all ready buffers until a
buffer which is not ready is encountered. Alternatively, in
single packet mode the ComMac transmits only one packet
at a time and must be reactivated for each transmission. In
single packet mode, the CPU checked that the previous
packet had completed its transmission before reactivating
the ComMac. In multiple packet mode, the CPU wrote to
the relevant buffer descriptor changing its status to “ready”
before activating the ComMac.

• Buffer and packet lengths: The lengths of buffers and pack-
ets were randomized so as to ensure the widest range of
testing of buffers. Thus, for example we allowed buffers
and packets of zero length, buffers which were flush
together, and buffers which were placed at different align-
ments in memory. The packet lengths varied for different
ComMacs so as to allow optimal throughput in the simu-
lated environment where some behaviors are significantly
faster than others.

During generation the descriptors were updated with
information about the packet’s transfer, for example whether
the packet was terminated by a special character or by time
out, whether a collision occurred during the packet transfer.
SysGen prepared the initial descriptor buffers and predicted
what their final values would be.

2. Random biased configuration: The system can work in a
number of modes. There are global configurations (for exam-
ple, which agents are in the TDM, whether interrupts are
enabled) and configurations local to an agent (different tech-
niques for starting packet transmission, using request-grant

mode, adding a CRC). As the project progressed, more config-
uration possibilities were added with the biasing prescribed by
the user. Many configuration options could also be decided by
the user for each test. For example, consider the configuration
of a SCC. If not specified by the user, a number of configura-
tion options were chosen randomly (subject to system con-
straints and interdependencies between the options), including:
Single vs. Multiple packet mode, Transparent vs. HDLC mode,
SCC or TDM mode, etc. The simulation environment behav-
iorals were also configured in accordance with the chip config-
uration. The descriptor buffers generated and expected were
also in accordance with the configuration chosen.

3. Error generation : SysGen also allowed certain errors to be
created, checking that they were correctly identified in the
buffer descriptors. Such errors included CRC mismatches, loss
of carrier sense during packet transmission, length in header
not matching length of packet. This, however, was limited due
to the requirement to produce expected results with the test. In
tests wiith errors, it is difficult to predict results.

5.3 The Coverage Analyzer
Coverage played an important part in the methodology. Since most
test generation was done automatically, it became necessary to
monitor test progress automatically. The tool used was Comet[5].
Comet (coverage measurement tool) is a generic coverage
measurement tool which receives as input many samples of static
and dynamic event combinations. It returns statistics on them, such
as how many times a combination was covered, what percent of the
combinations were covered, etc. It can also be easily controlled to
return statistics on a defined partial set of the combinations (e.g. all
combination where the first entry value is 1).

In order to connect the simulation environment to Comet, a simple
trace format was defined and a small utility was written to generate
traces in this form after each simulation was run. This trace was
later submitted to Comet as raw data.

Coverage measurement was defined in the test plan. About 30
small coverage models were defined to measure combinations on
various functional areas of the chip. These included bus
interactions, DMA interactions and concurrency of activities. For
example, Table 1 below depicts such a model. This model
measured MAL simultaneous arbitration requests from two
ComMacs (including channels on the same ComMac),
incorporating checks that each ComMac was configured to a
different arbitration group priority, that each ComMac raised its
priority level and that all combinations of ComMac pairs occurred
at the same time.

Table 1: MAL arbitration coverage model
The most important coverage models of this category were models
that measured back-to-back transactions on the PLB and especially
OPB busses. These models gave us a good measure that we were
exercising the system well with our tests.

Different types of models were written for measuring the coverage
of different chip configurations. For a given configuration register,
a configuration model was written to simply measure coverage of
the different values that the register was initialized to in all the
different tests. Their purpose was to measure that we were

randomizing the configurations well enough.

Once the chip was mature enough, we started a process of review
every few days: the coverage results were discussed and when
coverage was missing, action items were taken. Sometimes the test
generator was enhanced, sometimes manual tests were added and
sometimes the missing coverage was check marked as OK, e.g.,
when we knew that we didn’t have to cover a feature.

6. EXPERIENCE
The system verification work lasted for about 6 months. The
verification work started earlier than what would be considered
efficient because of tight project schedules. As a result the
verification environment bring-up was harder than it should be.
Nevertheless, since we based our checks on expected results, we
could very quickly do basic testing and checking. In fact the
expected results checking, once in place, required negligible
maintenance (but there were also disadvantages, see Section 6.2).

The verification tasks that were covered were:

1. Memory to Channel data packet transfers.
2. End of Packet interrupts.
3. MAL programming options.
4. Specifically chosen configurations of operation (we could not

and did not want to check all).
Figure 4 depicts the rate of hardware bugs each week. The shaded
falling curve and bars are the number of bugs per week found,
while the dark rising curve and bars are the number of packets
simulated. As can be seen, we were seeing many bugs at the
beginning due to the premature entry into the verification process
(in fact this curve does not include some bugs which we attributed
to this). Later the bug rate steadily dropped. Hand in hand, the
number of simulation cycles increased, this had to do with the
stabilization of the system. Since we were generating tests
automatically there was no limit to the number of tests we could
run. However, in the beginning most tests were failing. The packet
drop in week 10 was due to a bug in the simulation environment
when hardly any simulation was done.

Figure 4. Simulation results

The bottleneck therefore became debugging and fixing bugs. Since
we decided to perform most of our checks at the end of the
simulation, we received very little information as to the failure
cause. Debugging problems could take days due to the complexity
of the chips. Eventually an expertise was achieved by the
verification team and we reduced debugging time dramatically.
There was a non-trivial resource investment here, but as time
progressed this cost dropped sharply (to less than 1/2 hour). This
was due to two reasons: firstly, the debugging expertise developed
(it was quicker to pinpoint which unit or transaction were at fault);
and secondly, due to the drop in failure rate (we had a lot of

Bus Id
for

ComMac
1

arb
group

ComMac
1

arb
group

ComMac
2

arb req
level for
ComMac

1

arb req
level for
ComMac

2

Emac,
HDLC,
UART1,
UART2

1,2 1,2 low, high,
urgent

low, high,
urgent

BugsPackets

1K

2K

3K

4K

5K

6K

7K

1

2

3

4

5

6

7

21 3 4 5 6 7 8 9 10 11 12 Weeks

failures which were not hardware, but rather, simulation
environment bugs).

6.1 Tool Experience
The generator proved to be a very effective method for creating
tests. It was impossible to manually perform the testing that we
obtained with the generator. We also found very interesting bugs in
corner cases:

Sample Bug #1: The CPU did a configuration read from EMAC:
When the EMAC macro got two reads back-to-back by the MAL
and bridge, it supplied the same data to both incorrectly.

Sample Bug #2: When MAL processed a packet with varying
buffer lengths, it sometimes lost data.

In fact, it was a relatively low cost task. We had one programmer
full time adding testing knowledge. We did not really have any test
case writer per say (except for a small number of manual tests).
There were however disadvantages.

The distribution of Comet models is depicted the table below. The
first column is the domain. The REG domain depicts the
configuration coverage models. The number of rows per trace
specifies the amount of information the models had to process per
simulation trace. There were about 60 new traces per day and a
total of about 3000 traces analyzed.

Table 2: Coverage model distribution
Comet result reviews led us to three missing features in the
hardware. However, hardware for those was not fixed because of
time pressure. The reviews however gave us confidence in the
quality of our tests and that the generator was doing its job. The
test plan and SysGen testing knowledge were updated accordingly.

The back to back coverage models and the concurrent MAL
request for service model gave us a good level of confidence that
we were exercising the system well. Also the fact that coverage
was constantly increasing on all the various modes of operations
(we could only cover a fraction) showed us that the randomization
was working well.

Comet as a tool cost more resources than we expected, but this was
largely due to the fact that it was a first time experience. A lot of
infrastructure was missing, but our continuing projects can now
benefit from the work on Monkton.

6.2 Drawbacks
Using expected results for verification resulted in high debugging
time and generation of tests limited to those where we could
unambiguously determine the expected results. In some cases such
as channel reset, we “patched” the expected results by marking
memory locations as “undefined”.

Using expected results as a means for checking the system made
generation easy when testing Good Machine Path (GMP), i.e.,
execution paths of normal operations. However, this method made
it difficult to test events whose occurrence in time is difficult to
predict, such as exceptions and interrupts. In most cases we
refrained from testing Bad Machine Path (BMP). Our strategy was
that these would be tested in the unit simulation environment. In
the case of MAL interrupts we decided that it had to be verified in
the system platform since it a very basic feature of normal system

operation. The work on this feature within SysGen was
substantially bigger than work on other features.

This was not a big difficulty in our case due to the fact that we did
not verify the entire ISOC functionality. We prioritized the BMP
features and invested resources in adding testing knowledge for
those BMP features we were interested in.

6.3 Bugs Missed
A few hardware problems were found in the lab after the chip was
fabricated. In most cases except one, the problems could be
circumvented and software for the chip could proceed in
development. A quick analysis of those bugs determined that most
of them could not be found in system simulation. However, one or
two could have been found, and the main reason we did not find
them was due to the limits of our simulation resources. A typical
simulation could take between 1-2 hours. The bugs missed were in
the slower components (SCC). It was difficult to simulate long
packet transfers for them (in the system simulation). Only a few
modes were tried, since such simulations could take between 6-8
hours. These bugs could also be found in unit simulation where the
simulation overhead was much smaller. The conclusion was that if
the cost in system simulation of specific features is high, the
system test plan should forward specific tests to the simulation
environment of the units.

7. CONCLUSION
This paper describes a methodology for the verification of an
ISOC, as well as our experience in one such project. ISOCs are just
starting to emerge in the market and it is still an open question
what is a good methodology for their verification. We believe the
experience we depicted in this paper presents a reasonable solution
to this question. The solution depends primarily on automatic
generation of testcases and automatic checking of simulation
results, similar to methods used in processor and system
verification[1, 2, 4].

We found that for the most part, ISOC verification is a variant of
system verification, but that the verification focus in an ISOC
shifted from unit to system. The assumption we took in the
verification plan is that the units (cores) have all been verified
separately. Therefore, we can confine ourselves to verification of
functionality that involves the interaction of several units such as
date transfers. The verification of this functionality is largely
covered by this methodology. On the other hand there are some
drawbacks to this methodology such as debugging time for failed
tests and covering BMP functionality. Additionally, some testing
needs to be forwarded back to unit verification when the
simulation resources required in system verification are too great.

8. REFERENCES
[1] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka,

C. Metzger, M. Molcho, and G. Shurek. Test program generation for
functional verification of powerpc processors in ibm. DAC, 1995.

[2] A.Aharon, A. Bar-David, B. Dorfrman, E. Gofman, M. Leibowitz,
and V. Schwartzburd. Verification of the IBM RISC System/6000 by a
dynamic biased pseudo-random test program generator. IBM Systems
Journal, 30(4), April 1991.

[3] G. Biran. MAL Functional Spec.. HDG, Haifa, ISRAEL, 1997.
[4] A. Chandra, V. Iyengar, D. Jameson, R. Jawalkelar, I. Nair, B. Rosen,

M. Mullen, J. Yoon, R. Armoni, D. Geist, and Y. Wolfsthal. AVPGEN
- A Test Case Generator for Architecture Verification. IEEE Transac-
tions on VLSI Systems, 6(6), June 1995.

[5] R. Grinwald, Harel E., M. Orgad, S. Ur, A. Ziv. User defined cover-
age-a tool supported methodology for design verification. DAC 1998.

[6] C. May, E. Silha, R. Simpson, and H. Warren, editors. The PowerPC
Architecture. Morgan Kaufmann, 1994.

[7] A.Mesh, EmacII Functional Spec., HDG, Haifa, ISRAEL, 1997.
[8] M. Schaffer and E. Green. On-Chip Peripheral Bus Specification.

PowerPC Embedded Proceesor Solutions, RTP, NC, Mar. 1996.
[9] M. Schaffer and J. Revilla. PowerPC 4XX Local Bus Specification.

PowerPC Embedded Proceesor Solutions, RTP, NC, Oct. 1996.

Domain Num coverage models Rows per trace

PLB 5 ~15K

OPB 5 ~1.5K

MAL 8 ~1K

REG 31 ~50

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

