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Abstract: In this work we propose a technique for spatia
and temporal partitioning of a logic circuit based on the nod
activity computed by using a simulation at an higher level
abstraction. Only those components that are activated b
given input vector are added to the detailed simulation netl
The methodology is suitable for parallel implementation on
multi-processor environment and allows to arbitrarily switc
between fast and detailed levels of abstraction during the s
ulation run. The experimental results obtained on a significa
set of benchmarks show that it is possible to obtain a cons
erable reduction in both CPU time and memory occupati
together with a considerable degree of accuracy. Furtherm
the proposed technique easily fits in the existing industr
design flows.

I - INTRODUCTION

In the last few years the complexity of electronic system
design increased exponentially, thus again outpacing
Moore’s law [1]. At the same time the market pressure
leading to an equivalent fast growth of the number of fun
tionalities integrated in a single chip, associated with alwa
tighter performance constraints. This trend represents a c
siderable dilemma for the designers of portable, low-pow
circuits. The two dimensional (area, timing) design space
quickly expanding to a third design dimension, with powe
constraints becoming of primary importance for reliability
packaging cost and battery life requirements. Dynamic si
ulation still plays a major role for fast, accurate functiona
and performance analysis, but it appears to be a bottlen
in the verification flow. A huge amount of work has bee
done in order to improve large circuits simulation efficiency
at transistor level by exploiting relaxation [2], event drive

techniques [3] and efficient device models [4]; at logic
level by RTL or behavioral language modeling [5]. In th
power domain, efficient power analysis tools [6], [7] an
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high level estimation techniques [8], [9], [10] have bee
introduced to overcome the complexity of the VLSI desig
verification problem. At the same time a generation o
mixed-mode, as well as multi-domain analog simulato
have also been recently introduced, improving the state
the art in this field. In [10] it is described a two level simula
tor for power characterization of macros in which the info
mation available during high level simulation is exploited t
reduce the number of slow, accurate low-level simulation
Saleh [11], described an integrated simulation flow goin
across multiple levels and mixed domains, thus address
the issues of interfaces, inter-domain transformation a
algorithms for various analysis regimes. In [12] existin
simulators at different levels of abstraction are combined
a hierarchical way in order to efficiently reduce the simula
tion time for accurate typical current estimation. In [14],
macro-modeling based gate-level power/timing analysis to
is described, achieving transistor level accuracy with o
order of magnitude efficiency improvement. Parallel simul
tion techniques have been explored as an alternat
approach for complexity reduction. Authors in [15] pro
posed a transformation of the VHDL description of a log
circuit into a parallel discrete event model that is suitable f
concurrent simulation. A pattern partitioning strategy ha
been proposed in [16], [17] for parallel power estimatio
based on Monte Carlo sampling. In our work we exploit th
speed of a logic simulator to perform the simultaneous par
tioning of a circuit into sub-circuits and of the simulation
interval into time windows. This spatio-temporal partition
ing is realized in such a way that only those sub-circuits th
are active in a particular time window are simulated in th
window. At the same time, each of the sub-circuits thu
obtained is independent from all the others, and can be s
ulated in parallel on a computer network. By using any tra
sistor level simulators a corresponding accuracy can
obtained, while at the same time a speed-up factor tha
roughly proportional to the number of available computin
resources is achieved. Another interesting feature of the p
posed system is the possibility of applying the more detail
and computationally intensive level of simulation only t

limited sub-intervals of the entire simulation time, and
applied only to the subset of circuit elements that are active
during that time interval. With respect to previous work, our
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technique does not require any kind of block macro-model-
ing and it does not use statistical sampling methods. The
paper is organized as follows. The methodology for parti-
tioning is described in Section II and the parallel simulation
environment is illustrated in Section III. Section IV shows
the experimental results conducted on industrial designs as
well as on a set of ISCAS89 benchmarks. Conclusions and
future work are given in Section V.

II - NETLIST PARTITIONING

In general the partitioning problem can be described as
the problem of finding a partition of a set of components

into subsets , in such a way that a target

function is optimized, subject to a set of constraints [13]. Of
course the actual expression of the target and constraint
functions is strongly dependent on the particular context.
The netlist partitioning phase in a logic simulation is the step
in which the circuit is virtually split into a set of different
interconnected sub-circuits. The partitioning effort is com-
pensated by the fact that the global complexity of solving all
the individual subproblems is less than that associated with
the solution of the initial problem because the simulation
algorithms are at best superlinear in the number of circuit
elements. Furthermore it is possible to exploit the intrinsic
latency that is typical of logic designs to neglect the inactive
sub-circuits, thus considerably decreasing the simulation
time. Usually logic netlist partitioning is based on static,
topological information. In our approach we propose to use
the activity of the circuit, extracted from a higher level simu-
lation, in order to perform a dynamic partitioning of the
logic block to be simulated. In this way the circuit is mod-
eled as a dynamic combination of components activated in
sequence by the propagation of signals. Therefore the
dynamic partitioning problem is formulated in terms of a set
o f t ime va ry ing subse ts o f componen ts

. At any time, the active subset is the

set of devices that present a non-zero activity. The compo-
nents belonging to the non-active subsets can be functionally
ignored and therefore they only have to be considered as a
load for the active sets. The dynamic evolution of the net-
work is not sensibly modified by assigning the value of the
stable nodes to the driven or loaded devices and by replacing
the inactive devices with a fixed capacitive load. In principle
a different static partitioning could be generated for every
different input pattern, provided that the corresponding set
of active devices can be determined. The partitions thus
obtained will contain the minimum number of elements that
needs to be simulated when applying that particular input
pattern. This holds independently from the absolute time

or any arbitrary subsequence of patterns. Let introduce
following definitions: i ) Cell: a set of primitives (MOS,
capacitors, etc.) enclosed in a block of which the boundary
O is observable;ii ) Active cell: a cell is considered active if
a ‘digital’ transition is detected at any of its ports. Let als
assume that the following information can be extracted fro
the logic simulator, for example by means of a procedur
interface language (PLI):1) the list of all signals;2) for a
given cell, the list of all signals connected to the cell;3) at
any given time, the value of any signal. By using this info
mation, all the cells that become active after a signal tran
tion can be determined at any time. Furthermore the state
inactive signals can be also determined . The pseudo cod
figure 1 illustrates the complete flow of the proposed alg
rithm.

Foreach NET {
if(is_simulated) {

CELL <- Find cells connected to NET
Update List_of_cells(CELL)

}
}
Foreach CELL in List_of_cells {

Foreach port of CELL {
NET <- Find net connected to the port
if(not_simulated) {

Get port direction
Value <- Get value (NET)
if(is_input_port) {

if(Value == 1) Connect port to VDD
else Connect port to GND

}
else {

if(Value == 1)
Set initial condition of port to VDD

else
Set initial condition of port to GND

}
}

}
Create instance of cell
Add subcircuit of Cell

}

Fig. 1:Active cells extraction

In general a cell is included in the sub-netlist to be sim
lated at transistor level if at least one of its ports is connect
to a net that changed its value. Next, all the ports are p
cessed and:i) connected to the net if it is a simulated net;ii )
connected to VDD or GND if are not simulated input;iii )
connected to the corresponding net and initialized if are n
simulated output or inout. In order to achieve the highe
efficiency in spatial partitioning the memory nodes intern
to the cells (e.g. storage nodes of master-slave FFs) are m
visible to the logic simulator. The state of the internal node
that is not observable from the I/O boundary, remain

V

k V1 V2 … Vk, , ,

V1 t( ) V2 t( ) … Vkt
t( ), , ,
once the state of the network is known. The spatial partition-
ing into active and inactive subsets is associated with a tem-
poral partitioning obtained by repeating it for every pattern

unspecified and it is eventually resolved at the electrical
level. A simple example of the dynamic partitioning tech-
nique proposed in this paper is illustrated in figure 2. The
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time elapsed between two consecutive top level input vectors
has been assumed as the time frame for temporal partition-
ing.

Fig. 2:a) circuit, b) input patterns, c) active cells for pattern 1, d)
active cells for pattern 2.

Figure 2c shows how the 50% intrinsic latency that is
characteristic of time frame(1) can be fully exploited to
identify a suitable partitioning reproducing exactly the same
I/O behavior of the complete circuit. During time frame (2)
the circuit has no latency and it can be partitioned, as shown
in figure 2d. It is important to observe that the two circuits
are mutually independent and therefore they can be simu-
lated in parallel on two different processors. By using the
input stream transitions to define the time-domain partition-
ing granularity, it is possible to guarantee the correct propa-
gation of the signal slopes across the cells, without having to
introduce virtual D/A and A/D converters. A reasonable esti-
mation of the transient duration [18], guarantees that the
split is not performed while the internal nodes are switching,
thus preserving the state of the network at its boundary.
Back-annotation of delays and loads from layout is fully
supported by the proposed technique and can be exploited to
better represent the dynamic evolution of the network. The
quality of the partitioning results obviously depends upon
the particular choice of an objective function, which in turn
depends upon the particular problem or application. In our
case we have identified two different applications: mixed

tem for which the actual operating region that has to be ve
fied is preceded by a long initialization phase (e.g. the bo
of a micro-controller). In this case the logical simulator i
simply used to determine the state of the network at t
beginning of the interesting region, then a reduced netl
corresponding to the portion of the system that is sensitiz
in the active region, is dynamically extracted and simulat
in greater detail. The graphs in Figure 3 sketches the CP
time reduction that is achievable in this way.

Fig. 3:CPU time reduction when only a particular section of th
complete simulation is of interest.

The dynamic partitioning, in this case, is obviously dete
mined by the particular user selection of the intervals to
simulated in more detail. The choice of the objective fun
tion is less trivial for the parallel simulation case. One sim
ple possibility is to minimize the total CPU time subject t
the availability of a given number of concurrent computin
resources. As an overhead is involved with the operations
creating an individual netlist for each sub-circuit and o
spawning each concurrent simulation, and since this ov
head is proportional to the number of simulated sub-circui
the global simulation time does not necessarily decrea
monotonically with the number of different spatio-tempora
partitions, and an optimal partitioning exists.

III - PARALLEL IMPLEMENTATION

As an example of parallel simulation let us consider th
temporal evolution of the state of the circuit represented
figure 2. When the first pattern is applied, the portion of th
network that is perturbed (figure 2c) is extracted and its sta
is determined by the logic simulator. Once this step is com
pleted the transistor-level simulator can be invoked to acc
rately simulate the corresponding sub-circuit. This involve
the execution of a start-up phase (netlist parsing, mod
loading, etc.) followed by the actual simulation (figure 3)
Concurrently, the logic-level simulator can process the ne
pattern and extract the sub-circuit of figure 2d, suitable for
new, independent transistor-level simulation. Without losin
generality the high level processing can be performed on
arbitrary number of patterns before triggering the lower lev
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time

late section of interest

Tstart Tstop

Logic
sim.

transistor-level
sim. startup

CPU time reduction

T < Tstop-Tstart

Serial transistor-level

Dynamic
simulation

simulation
level analysis of digital systems, i.e. to allow considerably
different levels of accuracy and efficiency within the same
simulation session, and parallel simulation. As an example
of a mixed level analysis let consider the simulation of a sys-

simulator. Let us assume that P is the total number of pat-
terns in the I/O data stream, M is the number of computing
resources available for transistor-level simulations and that a
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simple partitioning scheme is applied, e.g. such that
patterns are assigned to every transistor level simulation
resource, as shown in figure 4. The total simulation time is
given by the sum of the CPU time required for simulating P/
M patterns at transistor-level, the start-up time of the last
simulation and the CPU time required by the logic simulator
to simulate P patterns, also including the extra time spent by
the PLI to create the sub-circuit netlists.

Fig. 4:Parallel implementation

As the time spent by the PLI to create the netlists can be
larger than the actual logic simulation time for a given inter-
val, the entire process can be further accelerated if the logic
simulation is also concurrently executed by M simulators,
each one targeting the creation of a single subcircuit. In this
case the contribution of the logic simulator is also reduced
by a factor of M. We propose a method for the parallel
implementation of the dynamic partitioning algorithm that is
based on a semi-empirical estimation of the CPU time
reduction obtained by the concurrent vs. sequential imple-
mentation. Let assume that N is the number of primitives in
the circuit, where a primitive can be any of the components
in the transistor-level netlist. The expected CPU time for the
serial electrical simulation can be evaluated as:

(1)

Whereα is platform dependent andβ is bounded by the
worst case complexity of a linear time solver and a Newton
solver [19]. Bothα andβ can be empirically pre-character-
ized by measuring the CPU time required to simulate a given
number of primitives. Let also define by the number of

available computing resources, the total number of differ-

ent temporal partitions, the overhead for netlist extrac-

tion after patterns. The upper bound for the parallel

simulation time ( ) can be expressed as:

obtained from spatial partitioning. The worst case occu
when the spatial partitioning can not be performed in one
more time intervals, that is when at least one interval is as
ciated with a zero-latency condition, or, of course, when n
tempora l pa r t i t i on ing i s pe r fo rmed ( and

). When the extraction overhead is negligibl

will follow the hyperbolic trend of curve B in fig-

ure 5. Otherwise the efficiency will be lower (curve A). Th
advantage of the proposed methodology becomes more
dent when dealing with large circuits and long inpu
sequences. In this case the CPU time can be effectiv
reduced by a factor of M.

Fig. 5:Upper bound for PCPU. A) when overhead is comparab
to the electrical simulation. B) when overhead is negligible.

The optimal partitioning can be found by adaptively dete
mining the value of and the number of simulation vecto
associated with each time interval that minimizes the to
CPU time. This optimization problem can be formulated a
follows:

(3)

In practice the constraint on can be relaxed, thus allo
ing each processor to run multiple shorter simulations
sequence. In principle any of the existing k-way partitionin
algorithms [13] could be applied to the solution of the opt
mization problem described in Eq. (3). As the efficiency an
optimality of the partitioning algorithm are not critical for
the global performance of our method, in our implement
tion we decided to use the sub-optimal adaptive algorith
illustrated in figure 6. The dashed curves represent eq
contour lines for the function . Applying

patterns to a generic circuit with elements will require

CPU time less than if the corresponding poin

P M⁄

time

Logic simulation

Electrical simulations

CPU time reduction

transistor-level startup

P/M patterns simulation and netlist extraction

P/M patterns simulation

P patterns simulation

CPUser α P N
β××= 1 β 2< <

M

k

OV

P k⁄

CPUpar

P P  β 

k 1=

NMax N=

CPUpar

k

PCPU
CPU+αOV

CPU

M1

B

A

i

kOV

k

mink Pi, max α PiNi Pi( )β
iOV+( )( )( )

Subject to:αPiNi Pi( )β
CPUmax≤ i∀ k<

k M≤

k

CPU P N,( ) Ps

Ns

CPU
(2)

Where is the maximum number of primitives
lies below the curve.

The algorithm proceeds by adding one vector at a time to the

CPUpar α kOV
k
---NMax k

--- + = 1 k M≤ ≤

NMax

max

CPUs CPU Ps Ns,( )= CPUmax
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current temporal partition until the corresponding predicted
CPU value exceeds . When this happens the simu-

lation is split at the previous time step, the overhead is added
to the total CPU time and the corresponding subcircuit
netlist is created. This technique provides a simple and effi-
cient adaptive control on the elapsed CPU time indepen-
dently of the circuit size. Shorter simulation sequences will
be applied to larger circuits in such a way that the estimated
CPU time will be always bounded by the pre-defined

 limit.

Fig. 6:Adaptive temporal partitioning algorithm

IV - EXPERIMENTAL RESULTS

The proposed dynamic partitioning algorithm has been
implemented and integrated in a flow for detailed full-chip
power simulation and verification. This system has been
used to accurately determine the power consumed by a vari-
ety of different CMOS digital and mixed-signal circuits,
including memories, combinational and sequential blocks.
The partitioning scheme has been implemented by using the
Verilog-XL PLI [20]. Depending on the circuit complexity
we used either Powermill [4] or ELDO [2] as the accurate
transistor level simulator. The results obtained on a set of
circuits including both ISCAS-89 benchmarks and industrial
products are presented in Table 1. The simulation time
speed-up is shown in column 3. As it can be noted the best
improvement was achieved with the largest circuits (mic2,
bmu). In the first case the theoretical CPU time reduction
coming from parallel simulation has been magnified by a
factor of two thanks to the exploitation of circuit latency
obtained by applying spatial partitioning, whereas in the
other case a less significant improvement was obtained. The
reduction of memory occupation is shown in column 4. The
accuracy of the proposed methodology is evaluated by using
the following formula:

(4)

using the dynamic partitioning and the serial electric
simulation of the full circuit respectively, and is the
expected value of the bracketed quantity. Note that t
average supply current usually represents one of the m
critical parameters for electrical simulation accuracy. In co
umn 6 the overhead is compared with the total simulatio
time in order to show the performance degradation and t
potential gain for small and large simulations respectively

TABLE 1: EXPERIMENTAL RESULTS

The comparison between voltage and currents wavefor
obtained from parallel and serial simulation is shown in figu
1 and 8 for a few nodes of a large SRAM circuit. Th
istantaneous discrepancies are explained by the unkno
value of the internal nodes. Nevertheless the accuracy is s
remarkable in both cases, and it is certainly sufficient f
either timing or power analysis .

CPUmax

CPUmax

Patterns

N

P1 432

αPNβ + 2*OV = CPUmax

αPNβ + OV = CPUmax
C2

1

C3
1

C4
1

C1
1

1 N1,( )

C1
2

C2
2

C3
2

First partition

Second partition

Err E I dyn ∆t( ) I ser ∆t( )–[ ]= ∆t Tsim«

Circuit Primitives Err %

9symml 300 0.75 0.78 +2.8 0.56

moore 75 0.51 0.98 +3 0.35

mic2 15090 0.14 0.82 -2 0

ADCenc 3600 0.72 0.8 +5.2 0.54

SRAM 4250 0.96 0.4 -4.2 0.66

mux 120 0.85 0.88 -0.2 0.61

m8051 1350 0.61 0.05 +1.3 0.46

bmu 22000 0.35 NA +1.6 0.06

E[ ]

PCPU
CPU

----------------- Mdyn
Mfull
-------------- OV

PCPU
-----------------
where and represent the average over

a small time interval of the supply current computed by

Fig. 7: Comparison between SRAM bit lines voltage waveform
obtained by our technique and transistor level simulation. The
curves are not practically distinguishable.

I dyn ∆t( ) I ser ∆t( )

t∆
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Fig. 8:Current Waveform comparison

V - CONCLUSIONS

We have presented a dynamic circuit partitioning method-
ology. The proposed technique allows to split the simulation
time into intervals, and correspondingly the circuit topology
into subcircuits by using the node activity extracted from the
results of a simulation at an higher level of abstraction. The
pairs (sub-circuit, sub-interval) thus obtained, are all inde-
pendent. Therefore the expensive detailed (e.g. transistor
level) simulations can be executed in parallel. By properly
preserving the state at the boundary of each partition both
voltage and current waveform can be computed with a
remarkable degree of accuracy, as confirmed by the experi-
mental results presented in this work. At the same time our
method provides a considerable decrease of both memory
and CPU requirements, sometimes making the difference
between feasibility and infeasibility of a given problem. The
implementation of the proposed technique and its integration
in existing design flows is rather simple, thus making it suit-
able for relevant industrial applications such as power or
timing characterization of large macros, full-chip power
analysis, and mixed-signal simulation.
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