
 ABSTRACT
Today’s complex design processes feature large numbers of
varied, interdependent constraints, which often cross
interdisciplinary boundaries. Therefore, a computer-
supported constraint management methodology that
automatically detects violations early in the design process,
provides useful violation notification to guide redesign efforts,
and can be integrated with conventional CAD software can be
a great aid to the designer. We present such a methodology and
describe its implementation in the Minerva II design process
manager, along with an example design session.

1. INTRODUCTION
The trend towards more complex VLSI designs and increasingly
tight time-to-market constraints requires ever-larger design teams,
where different parts of the design (e.g., hardware and software, or
product and manufacturing processes) are performed in parallel by
different groups of designers. Such concurrent design exploits the
inherent parallelism in the design of a large system. Unfortunately,
most concurrent design methodologies suffer f rom the fact that
conflicts involving multiple parts of the design are often detected
late in the design cycle when the parts of the design are put together
and tested against global specifications. Resolving these conflicts
requires very costly rework.

I f one views the entire design as a network of constraints, i .e.,
relations among the values of design variables, conflicts, then, are
violations of constraints. The si tuation described above occurs
because each group of designers typically considers only a subset of
all the constraints relating the part of the system they are considering
to the other parts of the system. Only when the parts are put together
are al l constraints considered simul taneously. I f , instead, al l
constraints are considered while these parts are being concurrently
generated, then costly rework can be avoided. The large number and
variety of constraints make computer support for this task essential.

This paper presents a constraint management methodology called
CCM (for Col laborative design Constraint M anagement) that
provides automated support for conflict detection and resolution as
an integral part of the design process. This methodology has been
implemented in the Minerva II design process manager [15].

Realizing this constraint management methodology required that a
number of issues be addressed, including:

• the dynamic generation of all constraints among the parts of the
design as it is hierarchically and recursively decomposed;

• evaluation of all of these constraints despite the fact that they are
very numerous and varied in nature, often involving multiple
disciplines;

• handling the interconnectivity of the constraint network caused
by many constraints affecting the same design variables; and

• avoiding designer information-overload by notifying only those
designers affected by conflicts and presenting them only with
information essential for guiding re-design efforts.

While previous work has produced techniques to incorporate data
and meta-data management [3,8] , f low management [13,16],
network infrastructure [2], and design process management services
[10,14] in electronic CAD environments, they have not directly
addressed these issues due, i n part, to the complexi ty of the
knowledge needed to generate and evaluate networks of constraints
of arbitrary form1. However, this previous work, in conjuction with
work in constraint-based systems [1,11] and CAD tools, can be used
as a basis upon which a suitable constraint management capability
can be built.

Specifically, we can make use of the fact that existing CAD tools
essential l y veri f y designs against constraints or synthesize
constraint-meeting designs, and that work in constraint-based
systems [1,11] has produced eff icient sof tware that can detect
conflicts and eliminate infeasible solutions in a constraint network.
To take advantage of these features, we represent each constraint as
an abstract function identifier, while the detai ls of evaluating the
constraint are encapsulated in the execution of a CAD tool or a
constraint-based system. A constraint propagation algorithm can
then be used to detect conflicts as soon as possible. Generation and
evaluation of arbitrarily complex constraint networks is thereby
made feasible without the need to reinvent existing methodology.

We can also take advantage of the ability that existing design process
management tools have to keep track of the design history [15]. This
is achieved by (1) associating with each conflicting value its design
history, and (2) selecting the information to be included in the
violation notif ication from the design history database. We then
provide a mechanism to control the notification policy, including
what history information is selected and which designers receive this
information. The notification thereby includes only information that
i s useful to resolve the conf l ict, and information overload is
prevented.

The remainder of this paper is organized as fol lows. Section 2
descr ibes the CCM methodology. Sect ion 3 descr ibes the
implementation of the methodology in the Minerva I I Design
Process Manager. Finally, Section 4 draws conclusions.

1 Although not focused in electronic design, work in the area of concurrent
engineering [7,9] has produced tools that help designers detect and
resolve violations of some types of parametric constraints. These tools
cannot generate and evaluate constraints of arbitrary form.

Constraint Management for Collaborative Electronic Design
Juan Antonio Carballo

EECS Department, University of Michigan
1301 Beal Ave., Ann Arbor, MI 48109, USA

+1 (734) 936-2828
jantonio@umich.edu

Stephen W. Director
College of Engineering, University of Michigan
1221 Beal Avenue, Ann Arbor, MI 48109, USA

+1 (734) 647-7010
director@umich.edu

2. COLLABORATIVE DESIGN
CONSTRAINT MANAGEMENT

2.1. Background

To faci l i tate the discussion of CCM, we def ine the necessary
concepts to describe design processes and the role of constraints in
these processes. These concepts are based on the design formalism
defined by Jacome [10] and refined by Sutton [14].

The design process history, denoted by Hn, is given by (1) a sequence
of state-transition pairs denoted by { <si, ti>, i=1,...,n-1} , where si
denotes the design process state at stage i, and ti denotes the transition
between si and si+1; and (2) the current design process state sn. Each
state si is composed of three components described below.

• The design object hierarchy is the set of all design objects
currently under design. Objects are design artifact
representations, organized by abstraction level and by
decomposition relationships. Each object is described in terms
of a set of design variables called properties, each of which
represents a characteristic of the object. Making a design
decision implies deriving a property value. The set of values of
a property represent all the alternatives being considered by the
design team for that property, and can take arbitrary forms,
including numbers, strings, vectors, and complex descriptions.

• The design problem hierarchy is the set of all design problems
formulated so far. A design problem is a described in terms of its
objective (i.e., the design function to be carried out), the object
to be designed, the target abstraction level, the input properties,
and the targeted output properties. For example, a design
problem may be formulated by combining the “Synthesize”
objective, the “branch predictor unit” object, the “gate” target
abstraction level, the “2 Watt maximum-power requirement”
input property, and a gate-level description as a target. Each
problem has a status, indicating its level of accomplishment
(e.g., “Solved”).

• The constraint network is a set denoted by Ci={ cj, j=1,..., } ,
where each cj is a constraint and is the number of
constraints in the design. Constraints represent relations that
must be met by groups of properties for the design to be correct.
Each constraint cj is given by (1) the set Aj={ ak, k=1,..., } of
the properties affected by cj; (2) a relation, denoted by ρj;
and (3) a status indicating whether the relation ρj is currently
met by the properties’ values.

A transition ti is a state change from si to si+1. Each transition ti is
caused by a design step, denoted by Ti. A design step is an problem-
solving action taken by a designer. Fig. 1 shows an example of a
transition caused by a design problem decomposition step.

A designer is a human agent capable of making design decisions.
Each designer in the team is represented in the state si by an
identi f ier, denoted by dj . Objects, properties, problems and/or
constraints are associated with designers through ownership or
interest relationships.

2.2. Coordinating the design process

CCM i s based on i nter leaving the desi gn process wi th a
coordination process that is executed every time a design process
step is taken, as depicted in Fig. 2. The coordination process is
aimed at detecting conflicts and communicating these conflicts to
the designers affected by them.

Based upon the chosen design step Ti, the problem and object
hierarchies are updated to reflect the effect of this step (see problem
and object hierarchies in Fig. 1). Then, the coordination process
starts with constraint generation, which takes as input the state si
and the step Ti and derives the constraint network update ∆Ci, i.e.,
the constraints and properties to be added to and/or deleted from Ci
to form Ci+1 (e.g., the “=” constraint and the “ library” properties in
Fig. 1). Constraint evaluation is performed upon completion of
constraint generati on. I t takes as input the new network of
constraints Ci+1, and computes the conflict information ξi+1, i.e., the
status of the constraints in Ci+1 and the property values that are
inconsistent. When constraint evaluation is finished, the transition
from si to si+1 is complete, and the differences between si and si+1
include the modifications due to ∆Ci and ξi+1. Constraint violation
handling is then executed. Each new conflict represented in the new
history Hi+1 is examined in order to determine its noti f ication
policy. Conflicts are then communicated to designers by following
the computed noti f ication policies. Since constraint violation
handling does not modify the design state, i t can be executed in
parallel with the next design step Ti+1

1.

2.3. Architecture

As depicted in Fig. 3, the architecture of the proposed methodology
is based on a set of distributed software modules that communicate
with standardized message protocols, and the designers, who
communicate through a user interface.

The design process manager interacts with an arbitrary number of
designers to help them manage the design process, supplementing
the services of existing tools or f rameworks. However, unl ike
conventional design process managers, CCM ’s carri es out
constraint generation at each step Ti and sends the result, ∆Ci, to the
design constraint manager. This manager then handles constraint
evaluation and returns the conflict information ξi+1 to the design

N i
C

N i
C

N j
A

N j
A

January 25, 1999

Transition t1

Problem hierarchy ConstraintsObject hierarchy

Predictor
logic

Synthesize

Synthesize

=

Decoding

library

Selection

library

Predictor
logic

Power
Area

Synthesize

Properties

... State s1 State s2

Power
Area

Synthesize

Fig. 1. A design state transit ion caused by the decomposition of a design
problem (to “ Synthesize” the “ Predictor Logic”) into two subproblems
(to “ Synthesize” the “ Decoding” and “ Selection” subunits).

1 Note that modeling the design process as a step sequence does not
preclude multiple designers from working in parallel. We only assume
that no two designers commit a design step exactly at the same time.

Constraint
generation

Constraint
evaluation

Constraint violation
handling

Coordination process

Design
Process
Step Ti+1

......

...... Constraint violation
handling

Constraint
generation

Design
Process
Step Ti

Fig. 2. The coordination process.

process manager. The noti fi cati on manager then carri es out
constraint violation handl ing, which ends in notification of new
conflicts.

2.4. Constraint generation

Generation of constraints from “ top-level” specifications must be
automated because it is complex and occurs frequently in leading-
edge design processes. Creating a constraint generation engine is a
difficult task as constraints vary in form and the types of constraints
to be generated are discipline-dependent. We simplify this task by
recognizing that constraints can be categorized into classes, and that
generating a constraint of a given class does not require explicit
knowledge of the form of the constraint.

In ∆Ci, the relation ρj of each constraint cj is represented by an
identifier denoting the generic “ class” of constraints that cj belongs
to. For example, for the ci rcui t board design discipl i ne, the
“ totalCost” class corresponds to al l constraints of the form

costi=Costtotal, with i=1,...,n, where n is the number of parts on a
board. The constraint generation engine is simplified because the
design process manager does not need to send the detai l ed
expression of the relation to the constraint manager. As wil l be
explained below, this identi f ier is enough information for the
constraint manager to handle evaluation of the constraint.

In order for the design process manager to generate constraints for
any given design discipline (i.e., to compute ∆Ci), it needs to have
knowledge about what, and when, constraints must be introduced.
We have extended DDDL [14], a language for describing design
discipline knowledge, to provide the abil ity to embed constraint
generation knowledge within this discipline knowledge1.

We consider three cases when a constraint must be generated. First,
for each newly introduced property, there may be a constraint on its
values. Second, when a design problem is formulated, constraints
may appear among the properties of the object involved in the
problem. Third, when a problem is decomposed into simpler
subproblems, constraints may appear among the properties of the
subproblems’ objects and the properties of the parent problem’s
object. In the first case, constraint knowledge can be embedded
within property class knowledge; in the second, within object class
knowledge and in the third, within decomposition knowledge.

An example of a constraint knowledge description in our extension
of DDDL is shown below, where a description of a class of

constraints (areaConstraint) is embedded in a description of a type
of problem decomposition. When a designer decomposes a design
function (e.g., “ synthesize”) applied on a processor block into the
same function applied on two or more processor blocks, a constraint
that relates the layouts of all subblocks and the area of the parent
block is generated.

The arguments of a constraint, i.e., the properties involved in the
constraint, are selected in DDDL wi th a fi l ter. The DDDL
constructs to define this filter are loosely based on first-order logic
[6] including some specialized constructs, such as PARENT (the
parent object in the decomposi tion) and DESCENDANT (the
children in the decomposition), as shown in the example.

Due to the l arge variety of constraint expressions, expl ici tly
capturing these expressions in DDDL would make its syntax very
complex and knowledge capture time-consuming. Instead, we
replace each complex expression wi th an abstract functi on
identi f ier called the evaluation function (“ areaRelation” in the
example), thereby encapsulating the details of these expressions.
The constraint manager handles the evaluation of these functions.

2.5. Constraint evaluation

Computing the conflict information ξi+1 requires finding property
values or al ternati ves that cannot simul taneously satisfy al l
constraints affecting them directly or indirectly through constraint
network paths. The constraint manager achieves this goal by
running the constraint propagation algorithm shown below on the
network Ci+1. The algorithm is an adaptation of existing constraint
propagation algorithms [1,11] that is applicable to constraints of
arbitrary form and provides the ability to leverage legacy software.

1 DDDL could not describe constraints of arbitrary form.

Designer Design
Process
Manager

Design
Constraint
Manager

Notification
Manager

Design
History (5)

Notification (6)

Constraint network update (2)

Conflict information (4)

Design
problem
solving (1)

CAD Tool/
Framework

Constraint-
based
system

CAD Tool/
Framework

Constraint evaluation (3)

Encapsulation

Encapsulation
Encapsulation

Fig. 3. Architecture of the CCM methodology.

Σ
i

domain processorBlock {...
decomposes into {

components 2+ processorBlock;
constraint areaConstraint {

arguments {
all descendant.layoutDescription;
parent.area;

}
evaluation function areaRelation;

}
}...

}

procedure CONSTRAINTPROPAGATION(network Ci+1)
Constraint queue Q Ci+1; Request queue R ;
while {(Q not empty) and (R not empty)} {

(G, E) SELECTCONSTRAINTGROUPANDEVALUATOR(Q);
/* All constraints in G are selected from queue Q */
/* and can be evaluated by constraint evaluator E */

Q Q-G;
SENDREQUESTTOEVALUATOR(G, E);
ADDREQUESTTOQUEUE(G, R);
CHECKIFANYEVALUATORRESPONDED();
For each (constraint group J with a response) {

UPDATESTATE(J, Ci+1); REMOVEFROMQUEUE(J, R);
Z {∀ constraint cj where cj J and

ak argument of cj such that Xk has shrunk};
Q Q+Z;

}
}
return final state of Ci+1;

← ∅←

←

←

← ∉
∃

←

The algorithm takes as input the initial state of the network Ci+1,
where each property ak has an initial value set, denoted by , and
the status of each constraint is unknown. The algorithm deletes
infeasible values from each . At the end of the execution of the
algorithm, the final state of Ci+1 is returned. This state is identical to
the initial state, except that (1) the value set of each property may
have shrunk (i.e., , where is the final value set), and
(2) each constraint has been assigned a status (e.g., violated
constraints are assigned the “unsatisfied” status).

In order to el iminate infeasible property values, the constraint
manager sends evaluation requests to existing constraint-based
systems or CAD tools capable of evaluating constraints. Each
request is composed of a subnetwork (G in algorithm), i.e., a subset
of the constraint network Ci+1, including constraints, properties,
and their current value sets. In order to leverage existing constraint-
based systems and CAD tools, they are encapsulated, i .e., a
software wrapper is built around each of them providing a standard
interface (see Fig. 4). Each encapsulated system is referred to by the
constraint manager as a constraint evaluator (E in algorithm). This
encapsulation approach does not require modification of legacy
code, allows constraint propagation to be distributed, and simplifies
the constraint manager engine.

Each request includes the f irst constraint in the queue Q and all
other constraints in Q which the selected evaluator E can evaluate.
When a wrapper receives a request, which includes the evaluation
function identifiers for each constraint, it generates input constraint
expressi ons as requi red by the constraint eval uator, and
communicates them along with the property information to the
evaluator1. For example, for the “ totalCost” function identifier, an
expression of the form costi=Costtotal is generated. Using the
output result f rom the evaluator, the wrapper builds a response
message and sends i t to the constraint manager. This message
contains the statuses of the constraints and the new value sets for
each constraint argument after infeasible value elimination2.

The status of each constraint cj after the algori thm has f inished
depends on the value sets of cj’s arguments and belongs to one of
the following:

• satisfied, if cj is not violated, i.e., there can be no conflict, as long
as the values of cj’s arguments belong to their initial value sets;

• unsatisfied, i f cj is violated, i.e., there is a conflict, because at
least one of the final value sets is empty; or

• consistent, if cj may be violated in the future, i.e., there is a
possible conflict, which will happen if a combination of values
from the initial value sets is chosen that violates the constraint.

2.6. Constraint violation handling

The history H i+1 contains the necessary information for the
notif ication manager to handle constraint violations. In order to
learn about newly detected conf licts, the noti f ication manager
examines Hi+1 to f ind the status of each constraint in Ci+1 after
constraint propagation. Since i t is cri ti cal to include history
information in the notification, this manager examines Hi+1 to find
the design steps that led to each conflicting value. Finally, since it is
necessary to f ind who should be noti f ied of each confl ict, this
manager examines Hi+1 to find which designers are associated with
each property value involved in a violated constraint.

We address the problem of controlling the notification policy by
introducing the concept of history query functions, i.e., database
query expressions [12] applied to Hi+1 by the notification manager.
These functions are used to select from Hi+1 which designers must
be notified of a given type of conflict, for example:

In this example, the notif ication manager selects f rom Hi+1 al l
designers “ interested” in the properties “ involved” in a constraint of
type “ PowerRequirement” . Similarly, these functions are used to
select the information that must be included in the notification (e.g.,
the CAD tool executions that led to the conflicting property values).
We have extended DDDL to describe these query functions and
thereby provide the abi l i ty for team members to control the
notification policy. For reasons of space we forego a discussion of
this extension in this paper.

3. CONSTRAINT MANAGEMENT IN
MINERVA I I
We have implemented the CCM methodology by adding constraint
generation, propagation, and violation handling capabilities to the
Minerva II design process manager [15]. As il lustrated in Fig. 3,
Minerva II has been modified by incorporating a Design Constraint
Manager (DCM) module and a Notification Manager (DENIM)
module. The Constraint Manager is an entirely separate program
that could be used with other design process managers, provided
that they fol lowed the standardized protocol expected by the
Constraint M anager. DENIM is conf igured wi th the DDDL
description maintained by Minerva II.

Designers interact with Minerva II to formulate and solve design
problems by fol lowing the problem solving cycle (Fig. 5).
Designers may select any problem that is ready to be solved at any
time, and then solve it with Minerva I I’s support. If the problem
seems too complex to be addressed directly, it may be decomposed
into simpler problems (Decomposition). Otherwise, designers can
ask Minerva II to generate a sequence of CAD tools (called a plan)
sui table for solving the problem. Minerva I I consults available
frameworks and returns all possible sequences (Plan Generation).
Designers choose one or more of these sequences and Minerva II
executes the chosen sequences and returns a result. If the result is
satisfactory, the problem is marked as solved. Otherwise, designers

1 For some tools, constraint expression generation is not required.
2 If the CAD tool accepts just one value per variable, steps (2) and (3) in

Fig. 4 may need to be executed more than once for a single request.

Xk
I

Xk
I

Xk
F ⊆ Xk

I
Xk

F

Constraint-based System or CAD tool

Design Constraint Manager

Evaluation request:

Subnetwork of constraints,

properties and values

Generate constraint
expressions

Arrange values

Mark invalid
property values

Compute statuses

Evaluation result:

Status of constraints

Consistent values

(1)

(2) (3)

(4)

Constraint expressions

Property values

Operation to be performed

Operation result

(tool-dependent)

EncapsulationEncapsulation

Fig. 4. Evaluation of a group of constraints.

Σ
i

select Designer
where InterestedIn(Designer, Property) and

InvolvedIn(Property, PowerRequirement) and
Violated(PowerRequirement)

may backtrack or address another problem (this last option is not
shown for simplicity). The coordination process is inserted at the
points in the problem solving cycle that correspond to design steps,
and is executed in cooperation by Minerva I I , the Constraint
Manager, and DENIM.

To implement the CCM methodology, we have encapsulated a set of
tool s, f rameworks, and constraint-based systems to design
integrated microelectromechanical systems (MEMS) with Minerva
II, including analog design tools (Spice, Koan/Anagram [4], and
Saber), MEMS CAD tools (Intellicad, Mistic [17]), digital design
tools (by Cadence and Design Acceleration), and the constraint
propagation library ConstrLib [5], which operates on most types of
arithmetic and logical constraints, where variables can take both
discrete and continuous values.

3.1. A conflict management session with Minerva I I

Since a key goal of constraint management is to guide smart
redesi gn trade-of f s, an essential el ement of the proposed
methodology is the user interface with which designers interact to
manage conf licts. We describe this interface on the basis of an
illustrative example.

Consider the team-based design of a MEMS system including
pressure microsensors and analog circuitry. Examples of top-level
constraints such a system must meet are timing, yield, resolution,
dynamic range, and cost. Fig. 6 shows a snapshot of the Minerva II
design problem status window at a point in the design process.
Designers may search for areas of the design that are l ikely to
require redesign by examining the right most column (Conflicts),
which shows the number of conf l icts affecting the properties
associated with each design problem. Specific types of conflicts can
be viewed, e.g., only timing constraints (see lower right button). In
Fig. 6, the “Dev. Structure” problem (selected row in white pane),
for example, has 5 constraint violations.

In our example, the estimated yield has fallen below its minimum

required value. Fig. 7 shows the window by which DENIM notifies
the sensor device designer of this constraint violation. The figure
shows that the device cross section and the process module
specification are involved in the conflict. The notification suggests
possible resolution strategies, in particular to reduce the top-layer
thickness in the cross section1.

A crucial element of searching for an effective design fix is to
review the history behind the decisions that cause the confl icts.
DENIM makes such a review possible. Fig. 8 illustrates doing so for
one of the properties involved in the yield conflict, the cross section.
The history indicates that the objective of the design problem whose
solution set the cross section value was to optimize the dynamic
range of the sensor. The goal was to achieve at least 20 psi, and the
achieved result was 25 psi2. This 5 psi margin suggests that it might
be possible to f ix the yield conf l ict by reducing the top-layer
thickness in the cross section, without violating the dynamic range
requirement.

Before making such a change, the designer may want to explore
other effects of changing the cross section, possibly in other design
domains. The constraint and property browser shown in Fig. 9
supports this exploration by providing the ability to dynamically

January 25, 1999

Problem Definition

S
u

cc
e

ss

FailureDecomposition

C

Backtracking

Problem solving

C

C Problem Selection

Constraint
generation

Constraint
violation
handling

Constraint
evaluation

Minerva II

DCM
DENIMCoordination process

Plan generation
execution and
validation

Fig. 5. Design problem solving cycle in improved Minerva I I .

Fig. 6. Design problem status window in Minerva I I .

1 Conflict resolution suggestions can be captured in our DDDL extension.
2 Note that designers do not need to pursue time-consuming manual input

of this design history - Minerva II captured it automatically as designers
designed with its support.

Fig. 7. Constraint violation notification. The history of any of the
conflicting proper ty values may be examined by pressing the “ View
proper ty history” button. The violated constraint was evaluated using
a process compilation CAD tool [17] to compute the yield, resulting in
a value of 0.8. This value was not consistent with the yield requirement,
which required yield to be at least 0.9. Thus, there is a conflict as yield
has no feasible value.

Fig. 8. Property history browsing. The formulation and solution of the
design problem leading to the value of the cross section are shown.

expand at request porti ons of the constraint network graph
involving properties of any given design object. In this example,
expanding the yield portion shows first that the yield depends on the
cross section (via constraint “Yield relation” , i.e., the relation by
which yield is calculated from the process modules and the cross
section). Further expansion (left to right in snapshot) shows that
“ resolution”, too, depends on the cross section. Not visible within
the pane is how the dynamic range also depends on the cross
section. Fig. 9 also shows both the “ Yield requirement” and the
“ resolution requirement” as violated. The fact that both constraints
are violated encourages the device designer to reduce the top-layer
thickness in the cross section, which will affect both constraints (as
well as the dynamic range). The effect of this change on the entire
design can be viewed after constraint propagation. In this case, both
yield and resolution are favorably affected by the change. Thus, in
this example, a tie has been made between product design aspects
(dynamic range and resolution) and a process aspect (yield) when
that tie could enable smart redesign. Although not shown, we can
imagine a process engineer using the same browser to analyze other
options to solve the yield conflict.

3.2. Advantages and applicability

The CCM methodology detects complex conf l icts early in the
design process, and provides critical information to analyze the
underlying reasons and to discover the best solution trade-offs. All
interactions among the various aspects of the design are considered
together throughout the design process, without overwhelming
designers with information.

Implementing this methodology requires developing wrappers for
CA D tools and constraint-based systems for the use of the
constraint manager. To reduce this implementation effort, we have
developed reusable wrapper “ templates” including capabi li ties
required by most wrappers, such as mechanisms to communicate
with the constraint manager. However, the evaluation of some
constraints may not be amenable to automation. Thus, some

constraints may have to be managed the conventional way, i.e., by
running tools and visually comparing results with specifications. In
this case, Minerva II can stil l manage the information related to
these constraints. Final ly, al though constraint propagation is
distributed in CCM, it is computationally expensive. Fortunately,
however, it can be run during off-peak computation hours, e.g., at
night.

4. CONCLUSIONS
Design teams are becoming larger and more multidisciplinary. A
single designer or CAD tool can no longer account for the
complexity of the interactions among the numerous aspects of a
design. The CCM methodology represents these interactions as
constraints, applies constraint propagation to detect conflicting
decisions, guides the attention of designers toward the most
conflicting areas, and helps designers identify promising resolution
strategi es. In doing so, CCM takes advantage of exi sti ng
capabilities in design process management, constraint propagation,
and CAD tool technology, and enhances these capabilities to make
early conflict detection and resolution feasible. Work is currently
underway to (1) improve performance by making the constraint
manager “ reuse” previous constraint evaluations, and (2) notify
designers of events other than constraint violations (e.g., when a
new constraint on cost has been introduced by a manager of the
design project).

5. ACKNOWLEDGEMENTS
The authors are grateful to the reviewers, to Anne Gattiker, and to
Jingyan Zuo for their helpful comments. This work has been
funded in part by a scholarship from Spain’s Science and
Education Department.

6. REFERENCES
[1] C. Bessiere and J. Regin, “Arc consistency for general constraint net-

works: preliminary results” , Proc. IJCAI’97: 398-404.
[2] F.L. Chan, M.D. Spiller, and A.R. Newton, “Weld - an environment for

web-based electronic design” , Proc. 35th DAC, June 1998.
[3] T.F. Chiueh and R.H. Katz, “ Intelligent VLSI Design Object Manage-

ment” , in Proc. EDAC, pp. 410-414, 1992.
[4] J. Cohn et al., “KOAN/ANAGRAM II: New tools for device-level ana-

log placement and routing”, IEEE JSSC, 26(3):330-342, March 1991.
[5] J. D’Ambrosio, ConstrLib: An Interval Constraint Propagation

Library, AI Lab, The University of Michigan, 1998.
[6] M. Fitting, First-Order Logic and Automated Theorem Proving,

Springer Verlag, New York, second edition, 1996.
[7] S.M. Fohn et al., “A Constraint-system Shell to Support Concurrent

Engineering Approaches to Design” , AI in Engineering, (9):1–17,
1994.

[8] S.T. Frezza, S.P. Levitan, and P.C. Chrysanthis, “Requirements-based
Design Evaluation” , Proc. 32nd DAC, June 1995.

[9] D. Kuokka et al., “A parametric design assistant for concurrent engi-
neering”, AI-EDAM, no. 9: 135-144, 1995.

[10] M.Jacome and S.Director, “A formal basis for design process planning
and management” , IEEE Trans. CAD, 15(10):1197–1211, Oct. 1996.

[11] V. Kumar, “Algorithms for Constraint Satisfaction” , AI Magazine,
13(1):32–44, 1992.

[12] A. Silberschatz et al., Database System Concepts, McGraw-Hill, 1996.
[13] P. R. Sutton, J.B. Brockman, and S.W. Director, “Design Management

Using Dynamically Defined Flows” , Proc. DAC: 648–653, 1993.
[14] P. R. Sutton and S. W. Director, “A Description Language for Design

Process Management” , Proc. 33rd DAC, 1996.
[15] P. R. Sutton and S. W. Director, “Framework Encapsulations: A New

Approach to CAD Tool Interoperabili ty” , Proc. 35th DAC, June 1998.
[16] K.O. ten Bosch et al., “Design Flow Management in the Nelsis CAD

Framework” , Proc. 28th DAC: 711–716, June 1991.
[17] M. Zaman, MISTIC User’s Guide, Univ. of Michigan, 1997.

Fig. 9. Constraint and proper ty browser . In the graph, proper ty nodes
are dark, constraint nodes are light-shaded, and selected nodes are
white. The user is cur rently examining the information generated by
the constraint manager about the “ Yield” proper ty and the “ resolution
requirement” constraint.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

