
ECL: A Specification Environment for System-Level Design

Luciano Lavagno Ellen Sentovich
Cadence Berkeley Laboratories, 2001 Addison Street,3

rd floor

Berkeley, CA 94704-1103, USA

Abstract

We propose a new specification environment for system-level de-
sign called ECL. It combines the Esterel and C languages to provide
a more versatile means for specifying heterogeneous designs. It can
be viewed as the addition to C of explicit constructs from Esterel for
waiting, concurrencyandpre-emption, and thus makes these oper-
ations easier to specify and more apparent. An ECL specification
is compiled into areactivepart (an extended finite state machine
representing most of the ECL program), and a pure data looping
part, thus nicely supporting a mix of control and data. The reac-
tive part can be robustly estimated and synthesized to hardware or
software, while the data looping part is implemented in software as
specified.

1 Introduction

System-level designs are typically conceived as a set of communi-
cating processes. The processes may communicate synchronously
or asynchronously, may be control- or data-dominated, may have
hard real-time constraints, and may be used in embedded systems
with a mixed hw/sw implementation. Such a wide variety of char-
acteristics and requirements implies that there is no single language
that can be efficient for specification. Nonetheless, it is desirable
to be able to specify such designs in an integrated environment,
so that the design as a whole can be both treated with a common
semantics, at least at the communication level, and automatically
synthesized, at least to the extent possible.

A framework in which different parts of an embedded system
or system-on-a-chip specification, to be implemented on hetero-
geneous hardware and software resources, can co-exist thanks to
this common inter-process communication semantics is described
in [6]. It assumes that processes communicate viasignalsusing
various buffering and synchronization mechanisms, which can be
efficiently implemented in practically relevant special cases (e.g.,
when synchronization is static as in Static Data Flow networks [9],
or when buffering is bounded and small as in Codesign Finite State
Machine networks [1]). It also assumes thatfunction, communica-
tion (“untimed synchronization”) andperformanceof a system are
kept as separate as possible, by enabling one to

� integrate parts of a system specified using different Models
Of Computation, each best suited for an application domain
or flavor,

� keep the functional specification and the communication struc-
ture independent of the implementation architecture,

� derive, at least in part, timing, power and area figures from a
mapping of the functional specification and communication
onto the architectural and communication resources chosen
by the designer, in order to perform quick architectural ex-
ploration.

In this paper we assume that an infrastructure for the specifica-
tion, analysis (performance, safety, liveness, etc.) and synthesis
of embedded systems satisfying the above requirements is avail-
able. Several non-commercial prototypes exist, as well as a few
industrial developments [5]. This view is also at least partially con-
sistent with those of the System Level Design Language definition
committee [11].

In this paper we focus of the definition of a specification lan-
guage forprocesses, which are the communicating entities that de-
scribe thefunctionalityof the design. This language is especially
targeted atcontrol-intensiveprocesses, in which decision and quick
reaction to unpredictable inputs dominate over lengthy computa-
tions on regular data streams. The language can also be used to
specify data-dominated computation fragments embedded within
the control structure, and it has a rigorous semantics for this coor-
dination.

The language is called ECL, for Esterel/C Language. The main
idea is to combine two existing languages to create a specification
medium that can benefit from the features of both languages and
their existing well-developed compilers. We have selected some
convenient and concise constructs from a synchronous control-ori-
ented language called Esterel [7]: namely those for waiting, con-
currency, and pre-emption. We have added these constructs, with
their precise synchronous semantics, to C, which is already widely
known and often used for embedded system programming. The re-
sulting language combines the full power of ANSI C and its facility
for constructing and manipulating complex data types, with a clean
communication model based on the exchange of signals between
and within modules. Since Esterel has anextended Finite State
Machine (EFSM) semantics, which lends itself to both hardware
and software implementation, ECL can also be used to evaluate
different hardware/software partitioning trade-offs [1].

The choice of C as the main language is, of course, somewhat
arbitrary. C++ and Java could have been reasonable alternatives.
C is just a pragmatic choice for the time being, for the following
reasons:

� C todayis better suited for embedded system design. Moving
from assembly language to C is already a big step for a large
community of designers.

� The approach can easily be extended, whenever the need
arises, to any other language.

The key contribution of this paper, however, is the idea of adding
truly synchronous reactivityto an existing, widely used language.

Related Work A number of recent works have attempted to lever-
age the broad knowledge of C in the embedded system design arena,
and its apparent suitability to implement complex embedded soft-
ware. They all started from the observation that C in itself does not

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

satisfy all the requirements of a clean design methodology in this
field, since it lacks constructs to specify theinteraction of concur-
rent modules, and the reaction to high-priority events and excep-
tions. Most of these works have used thereactive languagefamily
as a source of inspiration for how to specify all these notions.

The Reactive-C language [4] takes an approach that is very
close to ours, in that it extends C with reactive Esterel-like con-
structs. However, its implementation scheme relies on direct com-
pilation to C, thus yielding a less clear semantics (some RC state-
ments have a non-intuitive meaning) and an inefficient, interpreted
implementation.

The Scenic language [10] also inherits some constructs (wait-
ing for signals and aborting computations in the presence of sig-
nals) from Esterel, but it implements them as C++ classes, thus also
reducing the efficiency of the implementation. Moreover, Scenic
does not take the full step towards a truly synchronous semantics
(in which computation must behave as if it took zero time with re-
spect to the environment), which is more deterministic and intuitive
than its approximations.

The SpecCharts language uses StateCharts [8] as the control
specification mechanism, and extends it with the ability to spec-
ify computations in C within each state and on transitions between
states. This requires the designer to work in a mixed graphic/textual
environment, and suffers from the problem that the StateCharts se-
mantics is not exactly synchronous and not always precise.

Our Approach Our approach relies on proven compilation tech-
nology from CMA (Sophia Antipolis, France) in order to provide
truly synchronous deterministic semantics, coupled with state-of-
the-art software and hardware synthesis techniques.

There are two main differences between our approach and that
of existing thread-based concurrent programming paradigms, like
Java.

1. ECL modules use signals, rather than procedure/method calls
or shared variables to communicate. Signal detection and
emission, with its inherent ability to model reaction to mul-
tiple sources explicitly and succinctly, seems

� better suited than procedure calls to model complex
concurrent specifications such as those that arise in com-
munication refinement.

� easier and safer to use than shared variables (even pro-
tected by semaphores, monitors, and so on) to specify
communication and synchronization among cooperat-
ing tasks.

The ECL signal is conceptually closer to the event flag or
mailbox synchronization services offered by several RTOSs,
but is much more integrated with the language structure itself
than those services.

2. The control structure of a top-level ECL module is collapsed
as much as possible into a single EFSM, thus maximizing the
performance of the synthesized software. In this sense, the
ECL compilation process, and the choices between collaps-
ing as an EFSM and extracting as a C procedure, can also be
viewed as performing a trade-off between control and data-
oriented implementation.

The latter is also a profound difference fromasynchronouscon-
current languages such as OCCAM and Lotos, in which atomicity
is guaranteed only at a very low level (individual synchronization
primitives and elementary statements), instead of the potentially
larger amount of atomic computation performed in an ECL/Esterel
instant. Larger atomic units (in fact, with user-selectable size) help
the understandability andverifiability of a specification, possibly at
the expense of code size and execution time.

Another difference from OCCAM, Lotos and ADA is the nature
of the communication primitive. The rendezvous used by OCCAM,
Lotos and ADA is complex and expensive to implement in a het-
erogeneous distributed architecture. Signal-based communication,
on the other hand, is reasonable to implement both synchronously
and asynchronously, in hardware, in software and at the boundary.

ECL Overview The basic syntax of an ECL program is C-like,
with the addition of themodule. A module is like a subroutine,
but may take special parameters calledsignals. The signals be-
have as signals in Esterel or VHDL: they carry both “event” pres-
ence/absence status information and a value (signals carrying only
one of the two are also allowed in Esterel and ECL). An orthogo-
nal, “kernel” subset of Esterel constructs (detailed in Section 4) are
provided in ECL to manipulate the signals.

The ECL compilation process has three phases.

1. An ECL file is parsed and split (according to heuristics that
will be detailed in Section 4) into

� a control-dominated, reactivepart that is mapped to an
Esterel source file, and

� a data-dominated, data-orientedpart that is mapped to
a C source file, and

� a “glue logic” part that allows Esterel statements to ac-
cess fields of ECL non-scalar data types, and which can
be mapped to a variety of application-dependent imple-
mentation languages (e.g., C or VHDL).

2. The native Esterel compiler [2] translates the Esterel source
to an EFSM.

3. The EFSM is compiled into an optimized software (C) or
hardware implementation (VHDL or Verilog) [1].

If the data-dominated C part is empty, then the complete ECL spec-
ification can be implemented either in hardware or in software.
Otherwise, only software iscurrently an implementation option
(hardware implementation becomes also an option, of course, by
using high-level synthesis).

The remainder of the paper is organized as follows. In section 2
we review the basic features of the Esterel and C languages. In sec-
tion 3, we describe the ECL environment. In section 4, we illustrate
the ECL syntax and efficient specification capabilities with an ex-
ample. Finally, our current work on applying ECL in industrial
design flows is described in section 5, and conclusions in section 6.

2 Background

Esterel Esterel [3] is a language and compiler with synchronous
semantics. This means that an Esterel program has a global clock,
and each module in the program reacts at each “tick” of the global
clock. All modules react simultaneously and instantaneously, com-
puting and emitting their outputs in “zero time”, and then are quies-
cent until the next clock tick. This is classical finite state machine
(FSM) behavior, but with a description that is distributed and im-
plicit, making it very efficient to write, understand and compile into
EFSMs (and hence either software or hardware). This underlying
FSM behavior implies that the well-developed set of algorithms
pertaining to FSMs can be applied to Esterel programs. Thus, one
can perform property verification, implementation verification, and
a battery of logic optimization algorithms.

The Esterel language provides special constructs that make the
specification of complex control structures very natural. It is often
referred to as areactivelanguage, since it is intended for control-
dominated systems where continuous reaction to the environment

is required. Communication is done by broadcasting signals, and
a number of constructs are provided for manipulating these signals
and supporting waiting, concurrency and signal pre-emption (e.g.,
await(signal), parallel, abortion and suspension).

The Esterel compiler resolves the internal communication be-
tween modules, and creates a C program implementing the underly-
ing FSM behavior. A sophisticated graphical source-level debugger
is provided with the Esterel environment.

While Esterel only provides a few simple data types, one can
create and use any legal C data types; however, this is separate
from the Esterel program, and must be defined separately by the
designer. Pure C procedures and functions can be defined by the
user and called from an Esterel program, but again definitions and
code must be written by hand by the designer. ECL automates this
task, by automatically generating all the required declarations and
definitions (“glue code”).

3 ECL Environment

The communication between parts of an ECL program, whether it
be synchronous (within a top-level module) or asynchronous (be-
tween modules), is always done through signals which carry a pres-
ence/absence status (and also may carry a value). The decision
about how to partition the design into synchronous individual mod-
ules communicating asynchronously is an implementation issue.
We currently leave it to designer to make such a choice, based on
simulation and exploration at the specification level to aid in choos-
ing the best implementation.

ECL Operational Semantics The synchronous semantics of in-
dividual ECL modules implies that there is a difference between
the execution model of C and that of ECL. In C it is a sequence of
statement executions. In Esterel, and hence ECL, it is a sequence
of instants. In each instant, the top-level ECL module (like the
main in C) receives a snapshot view of its input signals, with pres-
ence/absence status and value information. At this point, that is
execution of a function or module, C and ECL differ. In ECL, the
control part (mostly statements from Esterel) then computesinstan-
taneouslywhich internal and output signals are present for the cur-
rent instant. That is, even though the computation may be specified
in several steps, Esterel compiles away these steps to a single FSM
transition that is assumed to takezero time1. Then the data part (in-
cluding calls to extracted pieces of C code) is executed depending
on this signal presence/absence information.

In the next instant, execution of the module beginswhere it left
off at the end of the previous instant, for example when it reached
an await statement. (All statements where an instant ends and
the next one begins, likeawait andhalt are calledhalting state-
mentsin Esterel.) Thus the state of a module is stored implicitly
in its halting statements, whereas it would have to be stored explic-
itly with variables in a procedure implementation (e.g., in C) of the
same concurrent behavior.

Compilation The ECL compiler front-end uses a standard C/C++
parser to parse the ECL input into an internal data structure. It then
traverses this data structure to extract the reactive parts (Esterel-
based statements) and write the result out in the form of C code, C
header and Esterel files. The header and Esterel files are used by
the Esterel compiler to generate a top-level reactive FSM written in
C (that in turn calls the C code generated by the ECL front-end).

Since ECL is a mix of C and Esterel-like statements, one can
envision using the ECL environment to specify designs in which

1This is in sharp contrast, for example, with the VHDL execution model in delta
time, in which signal updates performed at the current delta cycle are seen only at the
next delta cycle, and hence delta computation takesunit delay.

the modules may be written in ECL, C only, or Esterel only. Fur-
thermore, since many constructs in Esterel are themselves very C-
like, one has a choice in the compilation phase of ECL when split-
ting behavior into the reactive part and the data part. Furthermore,
a subset of pure ANSI C2 (C-only) and Esterel-only (with C-like
syntax) specifications are supported as subsets of ECL. This im-
plies that legacy C code can be used in ECL-based system design.
Caution must be used in this latter case, of course, because the com-
pilation from ECL to an EFSM has the potential benefit of making
a reaction to events much faster than in hand-written code (due to
the capability of the Esterel compiler to do case analysis much bet-
ter than a human designer for large specifications). However, this
speed-up comes at a price, that is the potential explosive growth of
code size. The designer can exert manual control over portions of
the code mapped to Esterel and C, and hence alleviate this problem.

The current compilation scheme for ECL translates as much of
an ECL program as possible into Esterel, for full synthesis and op-
timization. In this way, we also maximize the subset of ECL that
can be implemented as hardware, by being translated completely
to Esterel first and EFSMs later. It is a subject for future work to
explore schemes (more oriented towards legacy code handling and
software implementation) in which only a minimal part of ECL,
including only some reactive constructs (such asabort) is trans-
lated in Esterel, and the rest is left as C.

Key Features We complete the summary of ECL by highlight-
ing its main features:

� ECL is a combination of C and Esterel-like reactive state-
ments, giving the designer a familiar language with a few
new constructs to ease the specification of control.

� ECL nicely handles mixed control/data specifications, with a
control portion that has fully synchronous semantics, and a
data portion that has the familiar C semantics.

� The control portion is equivalent to an EFSM, permitting the
use of existing powerful techniques for optimization, analy-
sis, and synthesis of FSMs. In particular, logic synthesis and
optimization can be applied to reduce size or improve speed,
implicit state exploration techniques can be used for opti-
mization and functional analysis, and synthesis techniques
used to create implementations in hardware or software [3,
1].

� ECL compilation involves a choice when splitting the code
to the reactive part (fully synthesizable) and the data part
(software-only, and possibly preserving the form of the in-
coming code). An ECL prototype compiler is currently im-
plemented and under test on industrial examples.

ECL Statements The statements are the same as in C, to max-
imize reuse of existing code. We have only added the following
statements and signal access functions for manipulation of signals
and their values. Esterel programmers will immediately notice the
similarities to that language.

1. emit_v(signal,value) defines thatsignal is present
in the current instant and simultaneously defines its value.
The statementemit(signal) is used for pure signals.

2. await (signal_expression) ends the current instant
and waits for the occurrence of the given expression in some
later instant. Asignal_expression involves only sig-
nal names and Boolean operators (&, |, ˜).

2Currently there is no way to support global and static variables, due to the strong
Pascal-like scoping rules of Esterel. Work to lift this limitation is under way.

If one needs to split a loop into multiple instants, without
actually waiting for any signal, one can use theawait()
statement (with an empty expression). This statement intro-
duces a sort of “delta cycle” in the ECL module execution,
i.e. it causes the execution to continue in the next instant,
but keeps the module active regardless of its input events
(normally a module that has reached the end of an instant
“sleeps” until one of its input signals has an event)3. This
mechanism can also be used to force a loop to be imple-
mented as a sequence of EFSM transitions, instead of being
extracted as C code.

3. halt() stops the execution of the module, until preempted.
(It generally makes sense only inside an abort statement, which
can be interrupted from outside.) An instant for a module
ends when it (and all its instantiated submodules) reaches a
halt or await statement.

4. present(signal_expression) statement1
else statement2 performsstatement1 if
signal_expression returns true (a non-zero value) and
statement2 otherwise.

Note that a signal name appearing in asignal_expression
(i.e., being tested in a reactive statement) implies a test on
the presence of the signal. In any other context it refers to
the value of the signal. Thus, the statement

present (A) {
if (A) then emit(OUT);

}

will emit OUTif A is bothpresent and has a non-zero value.
In a way, signal names areoverloadedin ECL: they imply
presence in the context ofsignal_expression s tested
by reactive statements, and value in the context of normal
C-style expressions used in assignments.

5. do statement1 abort(signal_expression)
executes as follows. When control reaches it, it starts execut-
ing statement1 , until it completes execution or reaches a
halt or await statement. Ifsignal_expression be-
comes true in any later instant whenstatement1 has not
yet completed execution, thenstatement1 is not allowed
to perform any action for that instant, and control is passed
immediately to the next statement after abort.

Suppose that one wants to define a piece of code that must be
executed only when the statement terminates due to the oc-
currence ofsignal_expression , as opposed to normal
termination, when control just reaches the end ofstatement1
(this is like thecatch clause in Java). Theabort statement
allows an optional handle clause as follows:
do statement1 abort (signal_expression)
handle statement2

6. do statement weak_abort (signal_expression)
is similar toabort , but it allowsstatement to execute
for the instant in whichsignal_expression is true, and
terminates it only at the end of the current instant.

7. do statement suspend (signal_expression)
is similar to abortion, but only temporarily stopsstatement
from executing in any instant in whichsignal_expression

3The correct implementation of this feature of the ECL language requires the cor-
rect interaction with the environment in which the module is placed. If modules are
triggered to react based on events only, then a trigger signal must be generated; other-
wise, a feature forcing the rescheduling of the module must be used.

is true. In analogy to UNIX, abort is likêC while suspend
is like ˆZ .

8. par { statement1; statement2; ... }
concurrently executes the statements (often sub-module exe-
cutions) included in thepar statement.

Shared signals between parallel statements are admitted, as
long as only one statement is doing the writing. This is the
same semantics that is used by the Esterel compiler, and is
safe thanks to synchronicity. Every reader sees the value
of the signals in the previous instant, while updates by the
writer are performed only at the end of an instant (like in
synchronous edge-triggered circuits). Shared variables, as in
Esterel, may be either only read by the parallel statements,
or have a single writer and no reader.

9. Module instantiation is syntactically equivalent to C proce-
dure call.

4 An example: ECL at work

In this section, we illustrate the ECL syntax and flow with an exam-
ple. The example contains a header information with constants and
user-defined data types, three computation modules, and one top-
level module running the submodules concurrently. We illustrate
along the way the ease with which one can conceive and specify
inter-module communication by thinking in terms of the communi-
cating objects (signals), rather than abstract states and transitions.
Consider first the type declarations and the module declaration in
Figure 1.

The module has two input signals:reset is pure and thus car-
ries only event presence/absence status information, andin_byte
carries both a status and a value of typebyte . The only output sig-
nal is a structured type. Note the use of the C union construct to
model two possible views of the packet, for different layers in the
protocol stack.

The module has two local variables,cnt and buffer . Ini-
tially control passes inside the loop and theabort statement. The
module then halts waiting for the firstin_byte . It assembles the
PKTSIZE bytes, and transmits them to the next stage by means of
theoutpkt signal. The module is restarted whenever thereset
signal is present, because control is passed from theawait state-
ment (the only halt point inside theabort in this case) directly to
the end of the outermost for loop.

Let us consider now two other modules which are used in our
protocol stack fragment, and pictured in Figures 2 and 3.

There are two types of loops in ECL, as shown in the previous
examples.

1. Reactiveloops which contain at least one halting statement
(e.g. await (in_byte)) in each path (see, for example,
thefor loop in Figure 1). Such loops are compiled to Esterel
loops.

2. Data loops containing no such statements, and hence appear-
ing to beinstantaneousfrom a signal communication stand-
point (see, for example, thefor loop in Figure 2). Data
loops are allowed in ECL, but are compiled into separate C
(inlined) functions called by the Esterel code.

The module in Figure 3 shows the combined use of thepar and
abort statements. Note how concurrency (par) is used to termi-
nate the long, multi-instant packet-related computation (not shown
here) only if an error is detected in its header: the long computa-
tion is run in parallel with reactive code that catches thecrc_ok
signal, and may terminate the computation with thekill_check

#define HDRSIZE 6
#define DATASIZE 56
#define CRCSIZE 2
#define PKTSIZE HDRSIZE+DATASIZE+CRCSIZE

typedef unsigned char byte;

typedef struct {
byte packet[PKTSIZE];

} packet_view_1_t;

typedef struct {
byte header[HDRSIZE];
byte data[DATASIZE];
byte crc[CRCSIZE];

} packet_view_2_t;

typedef union {
packet_view_1_t raw;
packet_view_2_t cooked;

} packet_t;

module assemble (input pure reset,
input byte in_byte, output packet_t outpkt)

{
int cnt;
packet_t buffer;

/* outermost reactive loop */
while(1) {

do {
/* get PKTSIZE bytes */
for (cnt = 0; cnt < PKTSIZE; cnt++) {

await (in_byte);
buffer.raw.packet[cnt] = in_byte;

}
/* assemble them and emit the output */
emit_v (outpkt, buffer);

} abort(reset);
}

}

Figure 1: An ECL module assembling bytes into packets.

module checkcrc (input pure reset,
input packet_t inpkt, output bool crc_ok)

{
int i;
unsigned int crc;

while (1) {
do {

await (inpkt);
for (i = 0, crc = 0; i < PKTSIZE; i++) {

crc =
(crc ˆ inpkt.raw.packet[i]) << 1;

}
emit_v (crc_ok,

crc == (int) inpkt.cooked.crc);
} abort (reset);

}
}

Figure 2: An ECL module checking a Cyclic Redundancy Code.

module prochdr (input pure reset, input bool crc_ok,
input packet_t inpkt, output pure addr_match)

{
signal pure kill_check; /* local signal */
bool match_ok;

while (1) {
do {

await (inpkt);
par {

do {
/* some lengthy computation,

determining the value of
match_ok */

} abort (kill_check);
{

await (crc_ok);
if (˜crc_ok) emit (kill_check);
/* else just wait for both

to complete */
}

}
/* now both branches have terminated */
if (crc_ok && match_ok) emit (addr_match);

} abort (reset);
}

}

Figure 3: An ECL module performing a computation on the packet
header.

module toplevel (input pure reset,
input byte in_byte, output pure addr_match)

{
signal packet_t packet;
signal bool crc_ok;

par {
assemble (reset, in_byte, packet);
checkcrc (reset, packet, crc_ok);
prochdr (reset, crc_ok, packet, addr_match);

}
}

Figure 4: The ECL top-level module for our simple protocol stack.

signal. The CRC check in Figure 2 is run in parallel with this mod-
ule by the top-level module, which is shown below. This abortion
of a long computation is only possible because the computation is
surrounded by anabort statement and contains code inside that
halts; thus the status of the abort signal can be checked periodically.
This would not be possible with a normal C block.

Theaddr_match signal may be emitted only after both branches
have completed, either normally or through thekill_check abor-
tion signal.

The top-level module in Figure 4 executes all three modules
in parallel and connects them with two internal signals,packet
crc_ok . Note that its only role is to instantiate concurrent mod-
ules. Hence it could be implemented

� synchronously, by compiling it using ECL, thus resulting in
a single EFSM for the whole protocol stack, or

� asynchronously, by simply interconnecting the three ECL
modules as processes communicating via signals.

The former choice will yield a more efficient time-performant im-
plementation at the expense of larger code size. The latter choice

Memory size Execution time
Example Part. Task(s) RTOS Tasks RTOS

code data code data
Stack 1 task 1008 160 5584 1504 4,283 8,032

3 tasks 1632 352 5872 1744 4,161 8,815
Buffer 1 task 7072 80 7120 3040 51 123

3 tasks 2544 144 7376 3536 57 145

Table 1: Results of synchronous/asynchronous implementation
trade-offs.

can be partitioned between hardware and software (e.g., the CRC
computation may be good candidate for hardware), and is more
lightweight and less performant. Of course, the behavior of the two
may be different in general, e.g., when areset signal occurs and
is received at the same time by all modules in the synchronous case,
and at different times in the asynchronous case, or whencrc_ok
is false and the long computation must be aborted. The designer is,
of course, responsible for ensuring that all the resulting variants of
behavior are equally good with respect to the overall system speci-
fication.

We consider a significant feature of ECL this ability to mix,
with little manual intervention, asynchronicity and synchronicity,
and to trade off performance and cost.

As a simple example of this kind of trade-off, we compiled the
protocol stack example in Figure 4 and a simple audio buffer con-
troller from a voice mail pager design. In both cases we tried two
partitions into tasks,

� as a single Esterel source file, and hence as a single task (syn-
chronousimplementation), and

� as three source files, implemented as separate tasks under
control of a simple real-time kernel (asynchronousimple-
mentation) [1].

The code and data memory sizes and execution time for a MIPS
R3000 processor, in bytes and thousands of clock cycles (using a
testbench with 500 packets) are shown in table 1.

In the first example, asynchronous composition resulted in a
larger and slightly slower implementation, mostly due to the large
RTOS overhead with such a small task granularity. In general, syn-
chronous implementations tend to be larger and faster than asyn-
chronous ones, as shown by the second example.

5 Industrial Applications

A prototype ECL compiler is currently under test on industrial de-
signs. The compiler has been implemented as a research project
at Cadence Berkeley Labs, and in conjunction with the Felix Co-
design initiative from the Alta group of Cadence Design Systems [5].
ECL has been implemented in this Co-design environment.

ECL testing and experimentation is being carried out both with
Felix initiative industrial partners, and with members of the COSY
European research consortium. COSY’s main mission is to explore
methodologies and tools for system-level design of the future. In
these experiments, ECL is being used in two ways:

� to specify new behavioral blocks in the system, namely con-
troller modules that coordinate activity between data-processing
and other control blocks, and

� to facilitate the migration of existing monolithic code to par-
titioned code for exploration of implementation tradeoffs;
in this case, the ECL communication style is used to re-
implement large legacy code blocks as smaller blocks that
communicate by emitting and awaiting interface signals.

6 Conclusions and Further Directions

We have presented a new language for embedded system specifi-
cation. It combines the widely known software language C with
constructs for waiting, concurrency and preemption from Esterel.
It nicely supports specification of mixed control/data modules. The
compilation is performed by splitting the source code into reactive
Esterel code (as large as possible, in the current implementation)
and data-dominated C code. The large reactive portion can be ro-
bustly optimized and synthesized to either hardware or software,
while the C residual code must be implemented in software as is.

One important current direction for research is to map to Es-
terel only aminimal subset of the ECL program (the minimal re-
active part), while leaving the rest in its C-code specification form.
This style of compilation will be useful for importing legacy code,
where the user would like to preserve the existing code as much as
possible, while adding just enough “reactivity” to break this code
into smaller pieces that interact through signals. A prototype ECL
compiler has been implemented and is being tested on industrial
examples.

References

[1] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh,
B. Tabbara, A. Jurecska, L. Lavagno, C. Passerone,
K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-
Software Co-design of Embedded Systems – The POLIS ex-
perience. Kluwer Academic Publishers, 1997.

[2] G. Berry. The Constructive Semantics of Pure Es-
terel. 1996. To Appear, available now at ftp:
//www.inria.fr/meije/esterel/papers/constructiveness.ps.gz.

[3] G. Berry. The Foundations of Esterel. 1998. See
http://www.inria.fr/meije/Esterel.

[4] F. Boussinot, G. Doumenc, and J.-B. Stefani. Reactive ob-
jects. Annales des Telecommunications, 51(9-10):459–473,
September 1996.

[5] P. Clarke. Felix tools pushed in research project.
Electronic Engineering Times, October 1998. See
http://www.eetimes.com/news/98/1029news/felix.html.

[6] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-
Vincentelli. Design of embedded systems: formal mod-
els, validation, and synthesis.Proceedings of the IEEE,
85(3):366–390, March 1997.

[7] N. Halbwachs. Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Publishers, 1993.

[8] D. Har’el, H. Lachover, A. Naamad, A. Pnueli, et al. STATE-
MATE: a working environment for the development of com-
plex reactive systems.IEEE Transactions on Software Engi-
neering, 16(4), April 1990.

[9] E.A. Lee and D.G. Messerschmitt. Static scheduling of syn-
chronous data flow graphs for digital signal processing.IEEE
Transactions on Computers, January 1987.

[10] S. Liao, S. Tjiang, and R. Gupta. An efficient implementa-
tion of reactivity for modeling hardware in the Scenic design
environment. InProceedings of the Design Automation Con-
ference, pages 70–75, June 1997.

[11] System Level Design Language Home page, 1998. See
http://www.inmet.com/SLDL/.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

