
ABSTRACT - This paper presents a solution to the problem of
performance-driven buffered routing tree generation in elec-
tronic circuits. Using a novel bottom-up construction algorithm
and a local neighborhood search strategy, this method finds the
best solution of the problem in an exponential size solution sub-
space in polynomial time. The output is a hierarchical buffered
rectilinear Steiner routing tree that connects the driver of a net
to its sink nodes. The two variants of the problem, i.e. maximiz-
ing the driver required time subject to a total buffer area con-
straint and minimizing the total buffer area subject to a
minimum driver required time constraint, are handled by prop-
agating three-dimensional solution curves during the construc-
tion phase. Experimental results prove the effectiveness of this
technique compared to the other solutions for this problem.

I. I NTRODUCTION
This paper presents a solution for simultaneously solving fanout

optimization and routing tree generation problems. Both of these
design tasks are difficult optimization problems which have a
considerable effect on reducing the circuit delay. Fanout
optimization is effectual by boosting the transmitted signal via
insertion of sized buffers whereas performance-driven routing
generation is effective by generating suitable wire structures. In
conventional design flows, these two tasks are often performed in a
sequential manner. Consequently, a solution made by one of these
optimizations becomes a constraint for the other. This flow reduces
the flexibility and impact of these operations. Solving the unified
problem, i.e. generating a buffered routing tree for a set of sinks and
a driver, helps capture the intrinsic interactions between the
combined design steps and produces higher-quality
implementations by systematically searching a much larger solution
space. This type of solution technique is referred to as a unification-
based approach [SLP98].

The core optimization engine proposed in this paper, named
BUBBLE_CONSTRUCT, optimally solves the aforementioned
problem for a local neighborhood of an initial sink order. It exploits
all the similar sub-solutions among the members of the
neighborhood in order to reduce the time complexity of the
algorithm. Although a complete buffered routing structure is not
generated for every member of the neighborhood, the sink order
which results in the best buffered routing structure is automatically
chosen from among the members of the neighborhood. MERLIN, an
iterative optimization method based on the idea of local
neighborhood search, takes this new sink order and uses it as the
input for the next call to BUBBLE_CONSTRUCT. Experimental
results reported in this paper prove that this method converges very
quickly for most practical examples. BUBBLE_CONSTRUCT uses
an enhanced version of P_Tree [LCLH96], called *P_Tree, and
generates and propagates three-dimensional required time and load
versus total buffer area solution curves in a bottom-up fashion. In

the three-dimensional solution curves, the existence of the load and
the required time dimensions ensure the validity of the principle of
dynamic programming [Be57] for solving the problem. The third
dimension (total buffer area) allows the user to solve the problem
for either one of the following variants: I) minimizing the required
time subject to an area constraint, II) minimizing the area subject to
a required time constraint. The *P_Tree structure is used in a
certain hierarchy, called Cα_Tree, which is formally defined in this
paper.

The remainder of the paper is organized as follows. In section II,
prior work is given. Section III introduces the proposed algorithm
and its constituting building blocks. In sections IV and V, our
experimental results and concluding remarks are presented.

II. PRIOR WORK
Fanout optimization, an operation performed in the logic domain,

addresses the problem of distributing an electrical signal to a set of
sinks with known loads and required times so as to maximize the
required time at the signal driver (root of the net). Interconnect
delay is not incorporated in this operation because the locations of
sinks are not known at this stage. The general form of this problem
is NP-hard [To90], however its restriction to some special families
of topologies is known to have polynomial complexity.

Among the fanout optimization algorithms, the one proposed by
[To90] introduced a special class of tree topologies, called LT-Tree,
for which the fanout problem is solved using dynamic
programming with polynomial complexity. A LT-Tree of type-I (see
Figure 4) is a tree that permits at most one internal node among the
immediate children of its internal nodes and also does not allow any
left sibling for the internal nodes.

Performance-driven interconnect design, an operation performed
in the physical domain, addresses the problem of connecting a
signal driver to a set of sinks with known loads, required times and
positions so as to maximize the required time at the driver.
[CHKM96] gives a thorough overview of the algorithms for solving
this problem.

The inherent complexity of this problem has forced researchers to
either solve it heuristically or to impose constraints on the structure
of the resulting interconnect. Among the recent works in this area,
the algorithm presented by Lillis et al. in [LCLH96] should be
mentioned. They proposed the Permutation-Constrained Routing
Tree or P-Tree structure and solved the above problem with respect
to the P-Tree structure, see Figure 1. Their approach consists of two
major phases: finding a proper order for the sinks heuristically, and
then generating the routing structure based on the order. The second
phase of the algorithm is referred to as PTREE throughout this
paper. Given an order for the sink nodes, PTREE finds the optimal
embedding of the net into the Hanan grid† using a dynamic
programming approach. In PTREE, the routing solutions are stored
in the form of two dimensional, non-inferior solution curves of total
area versus required time for every Hanan point (the vertices of the
Hanan grid).

†. The Hanan grid of a net is defined as the grid formed by the intersection of
horizontal and vertical lines running through the terminals of the net
[Ha66].

Figure 1: An output of PTREE for “ dcba” order

a

b

e

c

d

MERLIN: Semi-Order-Independent Hierarchical Buffered
Routing Tree Generation Using Local Neighborhood Search*

Amir H. Salek, Jinan Lou, Massoud Pedram
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, California 90089

{ amir, jlou, massoud } @sahand.usc.edu

* This work was funded in part by SRC under contract no. 98-DJ-606 and
by NSF contract no. MIP-9628999.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

Lemma 1: If the individual capacitive values are polynomially
bounded integers or can be mapped to such with sufficient preci-
sion, PTREE has O(n5q) pseudo-polynomial complexity (see
[GJ79]) where n is the number of sink nodes and q is the maximum
number of distinct load values [LCLH96].

Local neighborhood search as a member of iterative solution
methods is a widely used, general approach to solving hard
optimization problems. To obtain a local search framework for an
optimization problem, one superimposes a neighborhood structure
on the solutions, i.e. for each solution a set of neighboring solutions
is specified. This method starts from some initial solution that is
constructed by some other algorithm, or generated randomly, and
from then on it keeps moving to a better neighboring solution as
long as there is one, until finally it terminates at a locally optimal
solution for which there is no better neighbor. This method has been
applied both in the context of continuous and discrete optimization
[Ya92]. In general, simulated annealing is a special case of local
neighborhood search that sometimes allows uphill moves.

Definition 1: A function N:F →2F, which associates a subset
N(x) with each x∈F, is a neighborhood function over F, if N(x) is
larger than 1 and ∀x∈F, x∈N(y)→y∈N(x).

In our method, the optimization engine induces a well-defined
neighborhood function (see Definition 4) in which the optimization
algorithm optimally finds the best solution. That definition of
neighborhood is used by MERLIN to conduct a local search.

III. MERLIN
III.1 Problem Formulation

For a given net, the problem is to drive a set of sink nodes, S={s1 ,
s2 , … , sn}, by the driver of the net, s, via a buffered routing
structure. The objective is to generate a buffered routing structure
that satisfies a combination of the maximum required time at the
root and the minimum total buffer area constraints. More
specifically, the problem may be stated in two ways: I) minimize
the required time subject to an area constraint, II) minimize the area
subject to a required time constraint.

The following information is required and used by the proposed
algorithm:
1. The position of the source, s=(sx,sy), where sx and sy are the

horizontal and the vertical coordinates of s.
2. The properties of each sink node si=(si

x,si
y,si

l,si
r) for 1≤i≤n,

where si
x and si

y are the horizontal and vertical coordinates, si
l

is the capacitive load, and si
r is the required time at node si.

3. A library of buffers, B={b1 , b2 , … , bm}, containing m buffers
with different strengths.

4. A set of k candidate locations for placing buffers, P=(p1 , p2 ,
… , pk).

5. A linear ordering of the sinks, (s1 , s2 , … , sn).
6. Two parameters γ and α, to be described in the next sub-

sections.
There are many choices for P: it can be the set of Hanan points

[Ha66] (similar to what has been proposed in [LCLH96]), a set of
reserved buffer locations (generated by the placement phase), or the
center of masses of some subsets of sinks. Our experiments, in
agreement with a conclusion made in [LCLH96], demonstrate
neither one of the above choices would alter the final result
significantly as long as k is large enough with respect to n, e.g. k is a
linear function of n.
III.2 Basic Elements
3.2.1 Cα_Trees

In this sub-section, we introduce a new class of trees, called
Cα_Trees (read as si-alpha trees) which is used to capture the
hierarchy in the buffered routing construction algorithm presented
later in this paper.
Definition 2: A tree is a degree-restricted alphabetic buffer chain
tree (Cα_Tree) for a given order of sinks - say (s1,s2,…,sn) - iff:
• every internal node has at most one internal node among its

immediate children,

• at every internal node, the branching edges are ordered, so as to
preserve the order of sink nodes under the internal node,

• the maximum branching factor is α.
Note that in any Cα_Tree, a reverse depth-first search (respecting

the immediate children order at every internal node) visits the sinks
in the (s1,s2,…,sn) order.

Figure 2 illustrates an example for C4_Trees. In this figure the
maximum branching factor is four and every internal node (shown
by white circles) is connected to at most one other internal node
while preserving the given order.

Lemma 2: In a Cα_Tree, the internal nodes construct a unique
path (chain).

In our application, every internal node is a buffer and in the
resulting buffer chain (c.f Lemma 2), a less critical sink
(considering both timing and physical information) tends to be
connected to the farthest (in terms of the number of intermediate
stages) buffers from the root in the chain.

The parameter α represents the maximum number of fanouts for
every buffer. Our experience shows that for structures with no
restriction on the maximum number of fanouts for each buffer, the
maximum fanout count is usually bounded by a certain value which
is dependent on the library parameters and not the problem size
(number of sinks). By eliminating the parameter α from the
definition, the main structure and properties of Cα_Trees do not
breakdown. In that case, the only disadvantage would be larger (still
polynomial) runtime needed for optimally constructing such a
structure.

Although there is a large number of Cα_Trees for every sink
order, the optimal Cα_Tree can be found in a polynomial time
using dynamic programming. Briefly, the optimal Cα_Tree for an
ordered set of sinks is generated by starting from small L’s and
combining every L neighboring sinks, until L=n. At every step, the
best solutions for the sub-groups with length L′ (smaller than L) are
available - due to the bottom up flow of the method - and are used to
generate the solution for the length L sub-problem, see Figure 3.
Note that the final Cα_Tree structure satisfies the given sink order.

Lemma 3: LT_Tree Type-I (see Figure 4) [To90] is a special case
of Cα_Tree where and no internal node has a left sibling
(see Figure 4).

Note Cα_Trees can be relaxed with respect to the first property
given in Definition 2, i.e. each internal node may have more than
one internal node (but bounded by a certain parameter) among its

Figure 2: A valid C4_Tree for (s1,s2,…,s9)

s6s5s4

An Internal Node

A Sink

s3 s4s2 s5 s6 s7 s8 s9s1
The Given

Order

Ordered
Branches

s7s3s2

s1 s8 s9

Figure 3: Optimal Cα_Tree Construction

s3 s4s2 s5 s6 s7 s8 s9s1

L′=3 L=6

α +∞=

Figure 4: An LT_Tree Type-I for (s1,s2,…,s9)

s7

s3s2s1

s9Ordered
Branches

s5 s6s4

s8

s3 s4s2 s5 s6 s7 s8 s9s1
The Given

Order

immediate children. Although the optimal structure can still be
achieved using dynamic programming, the complexity of the
corresponding optimal construction algorithm grows significantly.
3.2.2 Local Order-Perturbation (Bubbling)

Some NP-Complete problems become solvable by dynamic
programming when an order (see Definition 3) is imposed on their
elements. In that case, the final solution is optimal only with respect
to that specific order. The works presented in [LCLH96] and [To90]
are two examples for this case.
Definition 3: An order Π on n sinks is a one-to-one function
defined as Π:{1, 2, … , n}→ {1, 2, … , n}. Also, Π-1 is the inverse
function of Π and j= Π(i) is called the position of si in Π.
Example 1: Π= { (1→4) , (2→5) , (3→2) , (4→1) , (5→3) ,
(6→6) , (7→8) , (8→7) , (9→9)} or equivalently
(s4,s3,s5,s1,s2,s6,s8,s7,s9) is an order on {s1,s2,…,s9}.

In this paper, the idea of local order-perturbation (Bubbling) is
introduced and discussed in the context of Cα_Tree and *P_Tree
(to be introduced in sub-section 3.2.3) construction. However, its
extension to other applications is possible and rather
straightforward.

Although an algorithm which constructs an optimal structure for
any given order is a useful tool, the main difficulty of the problem
remains in how to come up with a “good” sink order such that the
resulting structure demonstrates superior properties. In the problem
of buffered routing generation, required times, input loads, and
physical locations of sink nodes should be all considered for
generating an appropriate order. How we incorporate those
independent and sometimes opposing parameters in an order is a
question that does not have an easy solution. The exponential
number of possible orders forces us to use either a heuristic which
combines the effect of those parameters in an ad-hoc fashion or an
iterative method which tries a subset of orders. In either case, the
limitation imposed by working with one order at a time is very
restrictive.

The local order-perturbation is a technique that works in a
neighborhood of sink orders. No matter how we come up with an
order (heuristically or by iteration), our semi-order-independent
dynamic programming formulation performs a systematic search in
the neighborhood of that order. If the initial order is not a local/
global optimal structure but is close to it, this method generates the
local/global optimal structure automatically. The main advantage of
such technique is its efficiency while preserving the optimality
which is considerably better than that of an exhaustive search
method. Its superiority primarily originates from its enhanced
dynamic programming nature that enables the method to take
advantage of all similar sub-problems among all the neighboring
orders and avoid recomputing the sub-solutions.

By allowing the bottom-up technique to make perturbations, the
sink order in the resulting solution can deviate from the initial order.
A simple case is shown in Figure 5, where the right-side border of a
sub-group (L′) has been perturbed (c.f. Figure 3). Consequently, the
order in the resulting sub-group (L) is (s2,s3,s4,s6,s5,s7) as opposed
to the initial (s2,s3,s4,s5,s6,s7) order; in the new order s5 has been
swapped with s6. The hole in the right-side of L′ is called a bubble
(see Figure 5) and when L′ is used in a larger sub-group, the bubble
is moved to the other side of the corresponding border of L′ (this
operation is called Bubble Out).

Definition 4: For a set of sinks {s1, s2, … , sn}, the neighborhood
of Π is defined as:

N(Π)={ Π′ ∀si ,Π(i) - Π′(i)≤1 } .
In other words, the difference between the position of every si in

Π and Π′ is at most one.
Example 2: Π′=(s1,s3,s2,s4,s5,s6,s8,s7,s9) is in the neighborhood
of Π=(s1,s2,s3,s4,s5,s6,s7,s8,s9).

Definition 5: If n>1, swapping the element i (1≤i≤n-1) of Π is
defined as swapping the value of Π(Π-1(i)) with Π(Π-1(i+1)) . In
other words, it means the location of sΠ-1(i) is swapped with the
location of sΠ-1(i+1).

Example 3: Swapping the 4th element in
Π′=(s1,s3,s2,s4,s5,s6,s8,s7,s9) results in
Π′′=(s1,s3,s2,s5,s4,s6,s8,s7,s9)

Lemma 4: Every Π′∈N(Π) can be built from Π using a series of
non-overlapping swap operations.
Theorem 1: For n>1, the number of distinct orders in the
neighborhood of a given order Π is equal to:

The above formula involves square root of 5 (an irrational
number) yet it always gives an integer for all (integer) values of n.

Theorem 1 proves the size of N(Π) is an exponential function of
the number of sinks. Consequently, finding the best order in that
sub-space of orders is an exponential complexity task, if a simple
enumeration-based technique is used. However, all the common
sub-solutions of different orders can be shared in a dynamic
programming algorithm that utilizes the aforementioned idea of
bubbling. This in turn allows us to investigate the whole
neighborhood in a polynomial time.

In Figure 5, we noticed that if we allow bubbles on the sides of
sub-groups we can alter the resulting sink order. Figure 6 presents a
set of abstract grouping structures {χ0, χ1, χ2, χ3} which cover a
whole neighborhood of orders. χ0 has no bubble on its sides and
χ1, χ2, and χ3 have bubbles on the right-side, left-side, and both
sides, respectively. For instance, the grouping L′ of Figure 5 is a χ1-
type structure. A full neighborhood would not be covered, unless at
each level of dynamic programming and for each sub-group of
sinks all the grouping structures are generated from all the grouping
structures of their internal sub-groups; Figure 7 illustrates one
example.

Example 4: The example in Figure 7 illustrates the use of χ3
structure to generate a χ1-type solution for L. In this case, the result-
ing order is (s3,s2,s4,s5,s7,s6,s9). This new sub-solution will be used
to generate larger sub-solutions that contain it.

The algorithm proposed in sub-section III.3 (Figure 9) contains
the pseudo-code for the construction of perturbed Cα_Trees (lines 5
to 13). Lemma 5 and Lemma 6 prove that for any given sink order
every member of the neighborhood can be made by the above
grouping structures and also every combination of the grouping
structures results in a valid order in the neighborhood.

The local order-perturbation technique can be extended to
structures with more than one bubble on each side. Those structures
in turn result in covering larger neighborhoods. However in that
case, the number of grouping structures grows exponentially that
consequently results in a significant slow down in the
corresponding construction algorithm.
3.2.3 Buffered P_Tree (*P_Tree)

PTREE [LCLH96] finds the best rectilinear routing embedded in
the Hanan grid of all sinks for a given sink order. In this sub-

Figure 5: Construction with Perturbation

s3 s4s2 s5 s6 s7 s8 s9s1

A Bubble
Bubble OutL

L ′

1

5
------- 1 5+

2

n 2+ 1 5–

2

n 2+

–

Figure 6: Grouping Structures
χ0 χ1 χ2 χ3

Figure 7: Construction with Perturbation

s3 s4s2 s5 s6 s7 s8 s9s1

L L′

section, we will present an enhanced version of PTREE, called
*PTREE, which has the following properties:
• generating rectilinear buffered routing tree structures with buff-

ers located on the routing Steiner points,
• generating and propagating three-dimensional curves to allow

trade-off between required time and total buffer area
• working on a neighborhood of orders using the idea of local

order-perturbation.
The buffered routing structures generated by *PTREE which are

basically P_Trees with the possibility of having buffers at the
Steiner points are referred to as *P_Tree in this paper.

*PTREE starts with an ordered set of sinks Π=(s1,s2,…,sα) and a
given set of candidate locations, P={p 1, p2,… ,pk} . As the base
case, it generates

S(e,p, i , i) ∀p∈P, 0<i< α, and 0≤e≤3
solution curves (see Figure 8) which are a collection of minimum
Manhattan distance routings from p to si , driven with or without a
buffer. All buffers of the given library L are tried to drive the routing
structure and for each of them, the required time and the load at the
root as well as the total buffer area (0 if the structure uses no buffer)
are measured. These solutions and their corresponding attributes are
compared against each other and in each S(e,p, i , i) only the non-
inferior (see Definition 6) solutions are stored. Variable e encodes
the grouping structures that is being considered. Note that for the
base case, all χ0 , χ1 , χ2 , and χ3 structures result in the same
structure.

Definition 6: Suppose σ1 and σ2 are two buffered routing struc-
tures that connect a candidate location to the same subset of sinks.
σ2 is said to be inferior to σ1, iff load(σ1)≤load(σ2), req-
Time(σ2)≤reqTime(σ1), and area(σ1)≤area(σ2).

Consequently, *PTREE generates three dimensional curves for
sub-groups consisting of sinks si to sj in Π. These solution curves
are calculated using the following recursive equations.

Sb(e,p,i,j)=min{S(e′, p,i,u)+S(e′′, p, u+1, j)}
where the minimum is taken over 1≤ i < j ≤n , i≤u < j , and e , e′,
e′′∈{0,1, 2, 3}.

Sb denotes the solution curves for the sub-solutions that contain
direct connections from p to smaller sub-solutions. However,
*P_Tree (similar to P_Tree) allows one other possibility where p is
connected to another candidate location p′ and then p′ is connected
to smaller sub-solutions. In other words:

S(e,p,i,j)=min{d(p,p′)+S(e, p,i,j)}
The minimum is taken over p ′∈P.

The construction of S and Sb three-dimensional solution curves in
a dynamic programming fashion results in generating a final
solution curve. The sink order of each solution in that curve is
within the neighborhood of the initial sink order.
Theorem 2: If the individual capacitive values are polynomially
bounded integers or can be mapped to such with sufficient
precision, *PTREE has O(kα4q) pseudo-polynomial complexity
where k is the total number of buffer candidate locations, α is the
number of sinks, and q is the maximum number of distinct load
values.
III.3 BUBBLE_CONSTRUCT: The Inner Optimization

Engine
The proposed tools and techniques presented in sub-section III.2

are employed in the following algorithm that generates hierarchical
buffered routing trees in a neighborhood of orders. The resulting
hierarchies are consistent with the Cα_Tree structure and the
routing inside each layer of hierarchy is a *P_Tree. In the following

paragraphs the details of this algorithm, called
BUBBLE_CONSTRUCT, are given.

BUBBLE_CONSTRUCT (see Figure 9) is called by MERLIN
(see Figure 14) along with a set of parameters, s, P, B, and Π. The
parameters s and Π=(s1,s2,…,sn) represent the root and an ordered
set of sinks of a subject net. The parameter P={ p1 , p2 , … , pk }
represents a set of candidate locations for the placement of buffers
and Steiner points in the final buffered routing structure. Finally,
B={b1 , b2 , … , bm} is a library of buffers.

BUBBLE_CONSTRUCT operates on three dimensional solution
curves, Γ, each associated with a candidate buffer location p and a
sub-problem identified by the variables l, e, and r (to be described
below). At each step of this method, the already generated solution
curves are combined and manipulated in order to generate solution
curves for new sub-problems. This step is repeated until the
solution curve for the main problem is found. From among the
solutions of the final Γ, the solution with the best trade-off between
required-time and total buffer area is chosen. At the end, the
corresponding structure is generated by tracing back the pointers of
the constituting sub-problems. The detailed description of the
algorithm is given below.

Before performing any operation, a set of solution curves are
initialized in lines 1 through 4. In this part of the algorithm, sub-
groups of length 1 are considered and the corresponding solution
curves for every candidate buffer location, sink, and grouping
structure are initialized. These initial solutions consist of the
minimum Manhattan distance paths from the candidate location p′
to the target sink sr′. At the root of these paths, both options of
inserting or not inserting a buffer are examined. Note that for sub-
groups with length 1, all four grouping structures (χ0 , χ1 , χ2 , and
χ3) are the same, however for the sake of simplicity in the rest of
the pseudo-code we generate separate (although similar) solution
curves for each case; a similar situation occurs for χ1 and χ2 where
L=2. In these initialized solution curves, like any other ones in the

Figure 8: A Three-dimensional Solution Curve
Buffer Area

1/Required Time

Input Load

Figure 9: BUBBLE_CONSTRUCT

algorithm BUBBLE_CONSTRUCT(s , P , B , Π) {
INITIALIZATION

1. for e′ = 0 to 3
2. for r ′ = n to 1
3. foreach p′∈P
4. set Γ(1 , e ′ , r ′ , p′) = { The set of all non-inferior paths

extended from p′ to sr ′ , driven with or without a buffer };
CONSTRUCTION

5. for L = 1 to n {
6. for E = 0 to 3 {
7. set L′ = L + STRETCH(E); // see Figure 10
8. for R = n to L′ {
9. set G = SINK_SUBSET(Π , R , L′ , E); // see Figure 13
10. for l = max(1 , L-α+1) to L-1
11. for e = 0 to 3 {
12. set l′ = l + STRETCH(e); // see Figure 10
13. for r = R to R-l′+1 {
14. set g = SINK_SUBSET(Π , r , l′ , e); // see Figure 13
15. if g-G≠φ then continue;
16. foreach p ∈ P
17. foreach γ ∈ Γ(l , e , r , p)
18. *PTREE(γ ,G-g , Γ(L, E , R , .) , P , B);

} }
19. foreach p∈ P
20. prune Γ(L, E , R , p);

} } }
EXTRACTION

21. find the solution, ρ, in Γ(n , 0 , 1 , s) which best satisfies the
constraints;

22. retrieve the buffered routing tree structure, ℜ, of ρ by
following the pointers stored during the generation of the
solution curves;

23. return ℜ;
}

rest of this algorithm, only the non-inferior solutions (see Definition
6) are stored.

BUBBLE_CONSTRUCT starts from L=1 (goes up to L=n) and
groups every L neighboring sinks. For each new sub-group of sinks,
all possible grouping structures (coded by numbers 0 to 3) are
enumerated in line 6. For the case of χ0 (E=0), the length of the
sub-group is equal to L, but for the other cases the actual length of
the sub-group is larger by one or two units, to capture the effect of
inserting one or two bubbles on the sides. This new length is
calculated and stored in L′ (refer to line 7 and Figure 10). In line 8,
all possible sub-strings of length L′ are considered from right to left
of Π. In fact, the variable R points to the right-most element of the
sub-strings of L′ elements.

Every sub-group of sinks can potentially constitute an internal
node in the final Cα_Tree structure, therefore according to
Definition 2, it can contain at most one immediate internal node
(smaller sub-group). Consequently, during the process of grouping
a set of L sinks, we should consider cases in which a sub-set of
them have already been grouped. That way the Cα_Tree structure
which captures the hierarchy of design is generated and maintained.
In this context, the hierarchy implies that during the generation of a
buffered routing structure, we do not process all the sinks at once,
instead at any time we work on a subset of sinks and combine them
together in agreement with the Cα_Tree structure. Later, each
combination is treated as one node in the next level of hierarchy.

Lines 10 through 13, similar to lines 5 through 8, investigate all
the possible sub-group lengths with different grouping structures
and positions for which the solution curves have already been
generated and they fit inside the sub-group being constructed.
Figure 11 illustrates an example where a sub-group of 5 sinks, Ω , is
being generated using a combination of an already generated sub-
group of 3 sinks, ω , and two other sinks, i.e. s2 and s4.

In line 10, the term max(1,L-α-1) ensures that Ω does not drive
more than α other internal and sink nodes, following the third
property of Cα_Tree’s given in Definition 2. In line 13, the term R
to R-l′+1 ensures that ω remains within Ω .

It can be seen that in some cases Ω and ω are not compatible. As
an example, see the situation shown in Figure 12 where the
difference between the values of r and R is such that the grouping
structure of ω does not fit in the grouping structure of Ω . These
cases are detected and skipped in line 15 of the pseudo-code. In that
line, cases in which a sink node belongs to ω but not to Ω are
detected and skipped. Note that sets G and g - calculated in lines 9
and 14 - represent the sets of sinks included by Ω and ω,
respectively; also refer to Figure 13.

After line 15, it is determined which sub-group ω is to be

combined with which sink node(s) to generate the new sub-group,
Ω. Also, it is guaranteed that ω is compatible with Ω. However as
mentioned earlier, there are many solutions associated with each ω ;
in fact for every buffer candidate location, there is a solution curve
for ω which has to be considered in the merge operation. Line 16
enumerates all the candidate locations by variable p, and line 17
retrieves the non-inferior solutions in the solution curve of p that
corresponds to ω.

In line 18, *PTREE is called to generate a new set of solutions for
all the candidate locations (i.e. members of P). Every solution
created by *PTREE shows the combination of ω with the rest of
sink nodes of Ω . They are combined by a buffered routing structure
rooted at a candidate location. For every routing structure generated
by *PTREE, all the buffers in the library are tried to drive that
structure and the solutions are stored in the corresponding solution
curves. Along with every solution, a set of pointers are stored that
later during the extraction phase are used to reconstruct the best
solution. Pruning operation (based on Definition 6) is performed in
lines 19 and 20.

This process continues until the solution curve for the whole
problem, i.e. L=n, is generated. From among all the final non-
inferior solutions, the one which best satisfies the input constraint is
chosen. The buffered routing structure corresponding to that
solution is retrieved in lines 21 and 22 by following the stored
pointers. Finally, in line 23 the constructed solution is returned to
MERLIN. Note that the order of sinks in this final solution may be
different from the initial given order, and this new order is used by
MERLIN to perform its local neighborhood search, as will be
described in sub-section III.4.

In the following statements that formally describe the properties
of BUBBLE_CONSTRUCT, it is assumed that in the solution
curves the individual capacitive values are polynomially bounded
integers or can be mapped to such with sufficient precision. Also, in
these statements q is the maximum number of distinct load values.
Lemma 5: Any order generated by BUBBLE_CONSTRUCT is in
the neighborhood of the initial order Π.
Lemma 6: Any Π′∈N(Π), is considered by
BUBBLE_CONSTRUCT.
Lemma 7: Any identical sub-problem among the members of
N(Π) is shared and processed only once.
Theorem 3: The solution space of BUBBLE_CONSTRUCT is
the Cartesian product of the space of *P_Tree and the space of
Cα_Tree for the neighborhood of the initial given order.
Lemma 8: BUBBLE_CONSTRUCT is monotone with respect to
required time, load, and buffer size.
Lemma 9: In BUBBLE_CONSTRUCT, the use of the pruning
operation does not result in the loss of any non-inferior solution.
Theorem 4: Subject to restriction imposed by the *P_Tree and
Cα_Tree structures, BUBBLE_CONSTRUCT finds all the non-
inferior solutions with respect to required time and total buffer area
in the neighborhood of a given order.
Lemma 10: The number of non-inferior solutions in any solution
curve is bounded by O(nmq), where n and m are the number of
sinks and the number of library buffers, respectively.
Theorem 5: BUBBLE_CONSTRUCT has O(n3mkq) pseudo-
polynomial memory complexity, where n, m, and k are the numbers
of sinks, library buffers, and candidate locations, respectively.
Theorem 6: BUBBLE_CONSTRUCT has O(n4α5q2k2m) pseudo-

Figure 10: STRETCH

algorithm STRETCH(E) {
switch E {

case 0: return 0; case 1 , 2: return 1; case 3: return 2;
} }

Figure 11: An Illustration for the Grouping Steps

s3 s4s2 s5 s6 s7 s8 s9s1

L=5
E=3
L ′=7

l=3
e=1
l ′=4

R=8
r=8

Ω ω

Ω

s4s2 ω

A grouping situation The corresponding
Cα_Tree

Figure 12: An Illegal Grouping Case

L=5
E=3
L′=7

l=3
e=1
l ′=4

R=8

s3 s4s2 s5 s6 s7 s8 s9s1

Ω ω

r=7

Figure 13: SINK_SET

algorithm SINK_SET(Π , R , L′ , E) {
1. switch E {
2. case 0 : set G = { sR-L′+1 , sR-L′+2 , sR-L′+3 , ... , sR-2 , sR-1 , sR } ;
3. case 1 : set G = { sR-L′+1 , sR-L′+2 , sR-L′+3 , ... , sR-2 , sR } ;
4. case 2 : set G = { sR-L′+1 , sR-L′+3 , ... , sR-2 , sR-1 , sR } ;
5. case 3 : set G = { sR-L′+1 , sR-L′+3 , ... , sR-2 , sR } ;

}
6. return G;
}

polynomial runtime complexity, where n is the number of sinks, α
is the maximum immediate fanout for buffers, k is the number of
candidate locations, and m is the number of library buffers.
Corollory 1: Considering that m is a constant determined by the
number of library buffers, and assuming α is a number determined
by the library and can be thus considered constant, the effective
complexity of BUBBLE_CONSTRUCT for a fixed library is
O(n4q2k2).
III.4 MERLIN: The Outer Search Engine

The behavior and the structure of BUBBLE_CONSTRUCT
makes it an appropriate tool for performing local neighborhood
search in the space of sink orders. In this sub-section, our local
search algorithm, MERLIN, is presented.
Lemma 11: The properties required by Definition 1 are consistent
with the properties of neighborhood in Definition 4.

There exists at least two sink orders , i.e. Π and Π′, in common
between the neighborhood of two consecutive iterations of
MERLIN’s local search. In fact, often this overlap,
OVERLAP(N(Π),N(Π′)), is relatively large. Obviously, the
overlapping sub-space is considered twice which is clearly
wasteful. However, this can be prevented by keeping the solution
curves of the very last iteration. For similar sub-problems, between
the two iterations simply copy the corresponding solution curve.
Obviously, this speed up is achieved at the cost of doubling the
memory usage.
Theorem 7: The best cost associated with order S′ (see line 7)
strictly decreases during the operation of MERLIN, except in the
last time that the loop (lines 4 thorough 8) is visited.

IV. EXPERIMENTAL RESULTS
In this section, we report two sets of experimental results to verify

the effectiveness of MERLIN. In the first table the results have been
presented for a set of individual nets taken from a number of
benchmarks. The second table reports post-layout areas and delays
of a set of benchmark circuits when MERLIN and the conventional
techniques for routing and fanout tree generation are employed.

Table 1 reports the area and delay for 18 randomly selected nets
from a set of mapped benchmark circuits; therefore the load and
required time of each sink node are known. For every extracted net,
the locations of sinks are determined randomly and a priori in a
bounding box which is sized such that the delay of interconnect is
approximately equal to the delay of gate.

As shown in the table, for every net three different experimental
setups have been considered. For each case the total delay, buffer
area, and runtime have been reported. The three experimental
setups are as follow:
• Setup I: Fanout optimization using LTTREE is followed by

PTREE. The sink order for the LTTREE phase is based on the
required times of sinks and for the PTREE phase is based on the
solutions to the TSP (Traveling Salesman Problem), as sug-
gested by [LCLH96].

• Setup II: Routing tree generation using PTREE is followed by
buffer insertion using the method of [Gi90]. The sink order for
PTREE is again the TSP order.

• Setup III: MERLIN is used for hierarchical buffered routing
generation. The initial order is the TSP order although our
experimental results show that initial orders have very small
effect on the final quality of results. The last columns reports
the number of loops that MERLIN takes for convergence to a
local minimum. In this setup, the candidate locations for buffer
placement are the complete Hanan points and α equals 15.

Table 2 reports the post-layout (after detailed routing) area and
delay of a set of benchmark circuits to evaluate the overall effect of
the existing buffered routing generation algorithms over a full
design flow. The runtimes are the total runtimes (from mapping to
detailed routing). For each circuit every one of the aforementioned
experimental setups have been used to generate the buffered routing
structures for every net. For the MERLIN setup, the number of
iterations for each net is bounded by 3, the candidate locations are
the reduced Hanan points (generated by a simple heuristic), and α
equals 10.

All of the above experimental setups have been implemented in
the SIS [SSLM92] environment and have been run on Sun Sparc
workstations. In these experiments, we have used an industrial
standard cell library (0.35u CMOS process) that contains 34
buffers. Gate and wire delays are calculated using a 4-parameter
delay equation [LSP98] and the Elmore delay [El48], respectively.

V. CONCLUSIONS
In this paper, the problem of distributing a signal among a set of

sinks with different placements, loads, and required times has been
addressed. The proposed algorithm generates a set of non-inferior
buffered routing structures which provides different trade-offs
between the total required-time and the buffer area. The introduced
solution consists of an iterative optimization block which uses a
local neighborhood search strategy and an optimization engine
based on dynamic programming which generates all the non-
inferior structures in the neighborhood of a given sink order. This
optimization engine generates and propagates 3-dimensional
solution curves and employs a novel local order-perturbation
method to cover an exponential size solution space in a polynomial
time. The experimental results show a major delay improvement
with little area penalty compared to the conventional buffer and
routing tree generation techniques.

VI. REFERENCES
[Be57] R. Bellman, Dynamic Programming, Princeton Univ. Press, 1957.
[CHKM96] J. Cong, L. He, C. Koh, and P. Madden, “Performance optimiza-

tion of VLSI interconnect layout,” In Integration, the VLSI Journal 21,
pp. 1-94, 1996.

[CLZ93] J. Cong, K. Leung, and D. Zhou, “Performance-driven intercon-
nect design based on distributed RC delay model,” In Proceedings of the
30th Design Automation Conference, pp. 606-611, 1993.

[El48] W. C. Elmore, “The transient response of damped linear network
with particular regard to wideband amplifiers,” In Journal of Applied
Physics 19, pp. 55-63, 1948.

[Gr92] L. K. Grover, “Local search and the local structure of NP-complete
problems,” In Operations Research Letters 12, pp. 235-243, Oct. 1992.

[Gi90] L.P.P.P. van Ginneken, “Buffer placement in distributed RC-tree net-
works for minimal Elmore delay,“ In Proceedings of International Sym-
posium on Circuits and Systems, pp. 865-868, 1990.

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, SF, CA, 1979.

[Ha66] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM
Journal of Applied Mathematics, No. 14, pp. 255-265, 1966.

[LCLH96] J. Lillis, C. K. Cheng, T. Y. Lin, and C. Ho, “New performance
driven routing techniques with explicit area/delay tradeoff and simulta-
neous wire sizing,” In Proceedings of the 33th Design Automation Con-
ference, pp. 395-400, 1996.

[LSP98] J. Lou, A. H. Salek, and M. Pedram, “An integrated flow for tech-
nology remapping and placement of sub-half-micron circuits,” In Pro-
ceedings of Asia and South Pacific Design Automation Conference, pp.
295-300, 1998.

[OC96a] T. Okamoto, and J. Cong, “Buffered Steiner tree construction with
wire sizing for interconnect layout optimization,” In Proceedings of
International Conference on Computer-Aided Design, pp. 44-49, 1996.

[OC96b] T. Okamoto, and J. Cong, “Interconnect layout optimization by
simultaneous Steiner tree construction and buffer insertion,” In Proceed-

Figure 14: MERLIN

algorithm MERLIN {
1. read s, P, and B where,

s is the source,
P={ p1 , p2 , … , pk } is a set of candidate locations for buffers,

B = { b1 , b2 , … , bm } is the library of buffers;
2. read Π = (s1 , s2 , … , sn) , an ordered list of sinks;
3. set Π′ = Π;
4. do {
5. set Π = Π′;
6. set ℜ = BUBBLE_CONSTRUCT(s , P , B , Π);
7. set Π′ = SINK_ORDER(ℜ);
8. } while (Π != Π′);
9. return ℜ;
}

ings of the 5’th ACM/SIGDA physical Design Workshop, pp. 1-6, 1996.
[SLP98] A. H. Salek, J. Lou, and M. Pedram, “A simultaneous routing tree

construction and fanout optimization algorithm,” In Proceedings of Inter-
national Conference on Computer-Aided Design, 1998.

[SSLM92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, ”SIS: A system for sequential circuit synthesis,” Memoran-
dum No. UCB/ERL M92/41, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, CA 94720, May 1992.

[To90] H. Touati, “Performance-oriented technology mapping,” Ph.D. the-
sis, University of California, Berkeley, Technical Report UCB/ERL M90/
109, November 1990.

[WM89] W.S. Wong, and R.J.T. Morris, “A new approach to choosing initial
points in local search,” In Information Processing Letters 30, pp. 67-72,
January 1989.

[Ya92] M. Yannakakis, “The Analysis of Local Search Problems and Their
Heuristics,” In Proceedings of 7’th Annual Symposium on Theoretical
Aspects of Computer Science, pp. 298-311, 1990.

Ratios over Flow I

Taken
from

circuit

Net
name

Num of
sinks

Flow I:
LTTREE + PTREE

Flow II:
PTREE+Buffer Insertion

Flow III:
MERLIN

Area
X1000λ2

Delay
(ns)

Runtime
(s)

Area Delay Runtime Area Delay Runtime Loops

C432 net1 16 58 38.54 22 0.33 0.87 0.36 0.28 0.39 25.09 2
net2 16 83 35.49 41 0.27 0.71 1.66 0.69 0.48 5.24 1
net3 10 51 32.19 44 1.31 0.88 4.27 0.56 0.70 15.27 7

C1355 net4 9 35 26.69 16 0.64 0.88 1.88 0.82 0.57 3.00 4
net5 9 16 23.42 15 0.80 0.95 0.86 3.80 0.47 2.33 5
net6 13 29 25.42 14 0.33 0.95 3.43 0.56 0.30 78.00 6

C3540 net7 12 58 41.03 29 0.50 0.88 1.79 1.44 0.55 23.59 12
net8 35 93 47.05 99 0.17 0.83 4.42 0.17 0.49 7.92 1
net9 73 214 60.73 229 1.55 0.69 1.83 0.12 0.42 1.98 1

C5315 net10 49 70 40.29 302 0.64 0.78 2.34 0.36 0.33 6.09 2
net11 21 80 38.20 111 1.12 0.66 1.02 0.40 0.26 4.32 4
net12 50 128 58.79 829 0.65 0.53 0.64 0.20 0.27 13.20 9

C6288 net13 16 58 44.65 52 0.83 0.73 1.12 2.11 0.49 9.33 5
net14 20 58 45.67 28 0.67 0.91 1.71 1.00 0.73 3.54 1
net15 60 90 90.29 197 0.25 0.74 1.42 0.29 0.55 16.20 4

C7552 net16 12 54 32.20 26 1.35 0.90 3.00 1.18 0.54 12.38 2
net17 16 58 31.35 54 0.94 0.86 1.11 1.56 0.39 9.72 5
net18 23 54 38.38 43 0.35 0.91 2.16 0.29 0.39 5.70 1

Average: 0.71 0.81 1.95 0.88 0.46 13.49

Table 1: Total Buffer Area, Delay, and Runtime for a Set of Nets

Ratios over Flow I

 Circuits

Flow I:
LTTREE + PTREE

Flow II:
PTREE+Buffer Insertion

Flow III:
MERLIN

Area
X1000λ2

Delay
(ns)

Runtime
(s)

Area Delay Runtime Area Delay Runtime

C1355 3630 8.18 1276 0.97 0.97 0.99 0.93 0.72 2.23
C1908 7768 14.47 2560 1.03 1.10 0.95 1.02 0.80 2.55
C2670 9428 12.40 1699 0.99 0.99 1.09 1.06 0.96 2.05
C3540 15762 22.17 5436 1.21 1.57 0.79 1.27 0.88 0.98
C432 3574 10.13 1382 1.16 1.06 0.79 1.57 1.00 1.17
C6288 28497 52.94 13547 0.96 1.03 0.88 1.00 0.90 1.00
C7552 35189 19.80 9250 0.78 1.06 0.95 0.85 0.74 1.36
Alu4 8191 15.69 2842 1.22 0.99 0.86 1.02 0.96 1.62
B9 1210 2.81 271 0.98 1.25 0.82 1.36 0.99 4.18
Dalu 10344 18.59 3465 0.73 0.88 0.66 0.88 0.67 1.74
Desa 32388 27.00 19427 1.12 1.12 0.75 1.19 0.82 0.83
Duke2 5499 9.00 2554 1.15 0.91 0.74 1.04 0.83 0.80
K2 22823 26.66 5831 0.85 0.75 1.73 0.93 0.63 2.56
Rot 8315 7.80 1572 0.91 1.02 0.83 1.00 0.81 3.40
T481 8917 10.12 5239 1.22 1.01 0.78 0.92 1.08 1.26

Average: 1.02 1.05 0.91 1.07 0.85 1.85
Table 2: Post-layout Area, Delay, and Runtime for a Set of Benchmarks

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

