MERLIN: Semi-Order-Independent Hierarchical Buffered

Routing Tree Generation Using Local Neighborhood Search*

Amir H. Salek, Jinan Lou, Massoud Pedram
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089
{‘amir, jlou, massoud } @sahand.usc.edu

ABSTRACT - This paper presents a solution to the problem of the three-dimensional solution curves, the existence of the load and
performance-driven buffered routing tree generation in elec- the required time dimensions ensure the validity of the principle of
tronic circuits. Using a novel bottom-up construction algorithm dynamic programming [Be57] for solving the problem. The third
and a local neighborhood search strategy, this method finds the dimension (total buffer area) allows the user to solve the problem
best solution of the problem in an exponential size solution sub- for either one of the following variants: 1) minimizing the required
space in polynomial time. The output is a hierarchical buffered time subject to an area constraint,ninimizing the area subject to
rectilinear Steiner routing tree that connects the driver of a net a required time constraint. The *P_Tree structure is used in a
to its sink nodes. The two variants of the problem, i.e. maximiz- certain hierarchy, calle@a_Tree which is formally defined in this

ing the driver required time subject to a total buffer area con- paper.

straint and minimizing the total buffer area subject to a The remainder of the paper is organized as follows. In section Il
minimum driver required time constraint, are handled by prop- prior work is given. Section Il introduces the proposed algorithm
agating three-dimensional solution curves during the construc- and its constituting building blocks. In sections IV and V, our

tion phase. Experimental results prove the effectiveness of this experimental results and concluding remarks are presented.
technique compared to the other solutions for this problem. Il. PRIOR WORK

|. INTRODUCTION - , , , ,
) . .) Fanout optimization, an operation performed in the logic domain,

This paper presents a solution for simultaneously solving fanouddresses the problem of distributing an electrical signal to a set of
optimization and routing tree generation problems. Both of thesginks with known loads and required times so as to maximize the
design tasks are difficult optimization problems which have aequired time at the signal driver (root of the net). Interconnect
considerable —effect on reducing the circuit delay. Fanoutielay is not incorporated in this operation because the locations of
optimization is _effectual by boosting the transmitted signal viasinks are not known at this stage. The general form of this problem
insertion of sized buffers whereas performance-driven routings NP-hard [To90], however its restriction to some special families
generation is effective by generating suitable wire structures. lof topologies is known to have polynomial complexity.
conventional design flows, these two tasks are often performed in 8zmong the fanout optimization algorithms, the one proposed by
sequential manner. Consequently, a solution made by one of thesggo] introduced a special class of tree topologies, calletreg
optimizations becomes a constraint for the other. This flow reduc&g, ~ \which the fanout problem is solved uéing dynamic
the flexibility and impact of these operations. Solving the unified ogramming with polynomial complexity. iAT-Tree of type-(see
problem, i.e. generating a buffered routing tree for a set of sinks arjel e 4) is a tree that permits at most one internal node among the

a driver, helps capture the intrinsic interactions between thgnmediate children of its internal nodes and also does not allow any
combined design steps and produces higher-qualityef; sibling for the internal nodes.

implementations by systematically searching a much larger solution
space. This type of solution technique is referred tomsfigation- . T eriormance-driven interconnect design, an operation performed
based approacfSLP98]. in the physical domain, addresses the problem of connecting a

T . . . ignal driver to a set of sinks with known loads, required times and
The core optimization engine proposed in this paper, namefositions so as to maximize the required time at the driver.

BUBBLE_CONSTRUCT optimally solves the aforementioned [cHkm96] gives a thorough overview of the algorithms for solving
problem for a local neighborhood of an initial sink order. It exploitsipig problem.

all the similar sub-solutions among the members of : . .
neighborhood in order to reduce the time complexity of the The inherent complexity of this problem has forced researchers to

algorithm. Although a complete buffered routing structure is no€ither solve it heuristically or to impose constraints on the structure
gegnerated for evgry member of the neighborhc?od, the sink ord& the resulting interconnect. Among the recent works in this area,
which results in the best buffered routing structure is automaticall{'¢ algorithm presented by Lillis et al. in [LCLH96] should be

chosen from among the members of the neighbordB&RLIN, an entioned. They proposed the Permutation-Constrained Routing
iterative optimization method based on the idea of locall'€e orP-Treestructure and solved the above problem with respect

i i i i he P-Tree structure, see Figure 1. Their approach consists of two
neighborhood search, takes this new sink order and uses it as : N ! ol
inpgt for the next call tBUBBLE_CONSTRUCTExperimental [ﬁgjor phases: finding a proper order for the sinks heuristically, and
results reported in this paper prove that this method converges ve?;fn generating the routing structure based on the order. The second
quickly for most practical exampleBUBBLE_CONSTRUCTses ~ Prase of the algorithm is referred to RSREE throughout this

an enhanced version of P_Tree [LCLHO6], cald®i Treg and PaPer. Given an order for the sink nodes, PTREE finds the optimal
generates and propagates firee-dimensional required time and Ig@bedding of the net into_thelanan grid using a dynamic
versus total buffer area solution curves in a bottom-up fashion. Iprogramming approach. In PTREE, the routing solutions are stored

in the form of two dimensional, non-inferior solution curves of total

* This work was funded in part by SRC under contract no. 98-DJ-606 an%raer?a\r/]eé?%é required time for evélynan poini(the vertices of the

by NSF contract no. MIP-9628999.

e

d

Permission to make digital/hardcopy of al or part of this work for personal or a

classroom useis granted without fee provided that copies are not made or distributed b C
for profit or commercia advantage, the copyright notice, the title of the publication Figure 1: An output of PTREE for “dcba” order
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires

i ecific permission and/or afee. . .) . . .
pDrL\OéZ% ,I\,;ngnéafsotoui;;rna * t.The Hanan grid of a net is defined as the grid formed by the intersection of

horizontal and vertical lines running through the terminals of the net
(c) 1999 ACM 1-58113-109-7/99/06..$5.00 [Hab6].

Lemma 1 If the individual capacitive values are polynomially « at every internal node, the branching edges are ordered, so as to
bounded integers or can be mapped to such with sufficient preci- preserve the order of sink nodes under the internal node,
sion, PTREE hasO(Pq) pseudo-polynomial complexitysege ¢ the maximum branching factords

[GJ79]) wheren is the number of sink nodes agés the maximum ~ Note that in any G_Tree, a reverse depth-first search (respecting
number of distinct load values [LCLHO6]. the immediate children order at every internal node) visits the sinks

Local neighborhood search as a member of iterative solutioff! t.he(sl,sz,.,,.,sq) order. o
methods is a widely used, general approach to solving hardFigure 2 illustrates an example for C4_Trees. In this figure the
optimization problems. To obtain a local search framework for afmaximum branching factor is four and every internal node (shown
optimization problem, one superimposes a neighborhood structuklyy white circles) is connected to at most one other internal node
on the solutions, i.e. for each solution a set of neighboring solutionghile preserving the given order.
is specified. This method starts from some initial solution that is
constructed by some other algorithm, or generated randomly, and
from then on it keeps moving to a better neighboring solution as
long as there is one, until finally it terminates at a locally optimal
solution for which there is no better neighbor. This method has been
applied both in the context of continuous and discrete optimization
[Ya92]. In generalsimulated annealings a special case of local
neighborhood search that sometimes allows uphill moves.

Definition 1: A function N:F _ 2F, which associates a subset
N(x) with eachxF, is aneighborhood functiooverF, if CN(X)0is The Gi P L 1 1
larger tharl and OxOF, XON(y) - YON(X). Srdé\(_e @e@@@é@® ©

In our method, the optimization engine induces a well-defined Figure 2: A valid C4_Tree for (5,5, ...S) _
neighborhood function (see Definition 4) in which the optimizationLemma 2 In a Gu_Tree, the internal nodes construct a unique
algorithm optimally finds the best solution. That definition of path (chain).

neighborhood is used by MERLIN to conduct a local search. In our application, every internal node is a buffer and in the
I1l. MERLIN resulting buffer chain (c.f Lemma 2), a less critical sink
) . (considering both timing and physical information) tends to be
ll.1 Problem Formulation connected to the farthest (in terms of the number of intermediate
For a given net, the problem is to drive a set of sink n@ks; , stages) buffers from the root in the chain.
S, , ..., Sy, by the driver of the nef, via a buffered routing The parameteat represents the maximum number of fanouts for

structure. The objective is to generate a buffered routing structuvery buffer. Our experience shows that for structures with no
that satisfies a combination of the maximum required time at théestriction on the maximum number of fanouts for each buffer, the
root and the minimum total buffer area constraints. Moremaximum fanout count is usually bounded by a certain value which
specifically, the problem may be stated in two ways: 1) minimizeis dependent on the library parameters and not the problem size
the required time subject to an area constrainmijmize the area (number of sinks). By eliminating the parameterfrom the
subject to a required time constraint. definition, the main structure and properties af_Crees do not

The following information is required and used by the proposedPréakdown. In that case, the only disadvantage would be larger (stil
algorithm: polynomial) runtime needed for optimally constructing such a

structure.
1. The position of the sources(s¥,9), wheres* and ¢’ are the : :
horizontal and the vertical coordinatessof Although there is a large number obiClrees for every sink

order, the optimal € Tree can be found in a polynomial time

2. The properties of each sink ”Oqe(sixﬁyrﬁlrsr) for 1<isn, ysing dynamic programming. Briefly, the optimati CTree for an
wheres* andsY are the horizontal and vertical coordinaggs, ordered set of sinks is generated by starting from shsaland
is the capacitive load, arl is the required time at node combining every neighboring sinks, until=n. At every step, the

best solutions for the sub-groups with lengtlgsmaller tharl.) are

3. Alibrary of buffersB={b, , b, ..., b}, containingmbuffers ay4jjaple - due to the bottom up flow of the method - and are used to
4 VX'th ?'ﬁﬁ(re“t gt(rjert‘gtr‘s- tiongor placing buffersp= generate the solution for the lendthsub-problem, see Figure 3.
. set ofk candidate locationor placing buffersP=(p1, P2, Note that the final € Tree structure satisfies the given sink order.
5 A.Ii,n%gllr ordering of the sinkés,; , s $) (L'é)LZG
6. Two parametery and a, to be’de,scrik’)ed in the next sub- @ e e @ @

sections.)) . Figure 3: Optimal CO_Tree Construction
There are many choices fBr it can be the set of Hanan points —

[Ha66] (similar to what has been proposed in [LCLH96]), a set of-€Mma 3. LT_Tree Type-I (see Figure 4) [To90] is a special case
reserved buffer locations (generated by the placement phase), or leCa_Tree wheren = +o0 and no internal node has a left sibling
center of masses of some subsets of sinks. Our experiments, (gee Figure 4).

agreement with a conclusion made in [LCLH96], demonstrate

neither one of the above choices would alter the final result

significantly as long asis large enough with respectripe.g.kis a

linear function ofn. Ordered = (4

Brancheg e

I11.2 Basic Elements ‘\\\ 1o
3.2.1 @_Trees I
In this sub-section, we introduce a new class of trees, called L
Co_Trees(read assi-alpha tree} which is used to capture the AAE ' ! :

hierarchy in the buffered routing construction algorithm presented Yoo !

later in this paper. et 000000 000

Definition 2: A tree is adegree-restricted alphabetic buffer chain Figure 4: An LT_Tree Type-| for (s1,5;,...,.S)

tree (Ca_Tree)for a given order of sinks - s§§,,5,,....,) - iff: Note Qx_Trees can be relaxed with respect to the first property

» every internal node has at most one internal node among itgiven in Definition 2, i.e. each internal node may have more than
immediate children, one internal node (but bounded by a certain parameter) among its

immediate children. Although the optimal structure can still bel andl’ is at most one.

achieved using dynamic programming, the complexity of th — . ;
corresponding optimal construction algorithm grows significantly. EX%T(zle 2T (51‘53’52’54";5’56’58‘57‘59) is in the neighborhood
3.2.2 Local Order-Perturbation (Bubbling) . _1’92’%’34’35’36’37’38’59) .))
Some NP-Complete problems become solvable by dynamil:,)e,ﬂn't'on 5 If n>1, swapping the _?Igmen)t(1S|sn;ll? of N is
programming when an order (see Definition 3) is imposed on theidefined as swapping the value [@{MN™(i)) with M(M™(i+1)). In
elements. In that case, the final solution is optimal only with respegither words, it means the location &) is swapped with the
to that specific order. The works presented in [LCLH96] and [To90]ocation ofsna+1)-
are two examples for this case. . . . Example 3 Swapping the 4th element in
Definition 3: An order I on n sinks is a one-to-one function M1'=(S1,53,52:54: 55,555, 57:50) results in
defined as1:{1, 2, ..., n}- {1, 2, ..., n}. Also, Misthe inverse "1=(S 153,555,455 58:57:50)

function off1 andj=T(i) is called theposition of sin . Lemma 4 EveryM'ON(T) can be built frond1 using a series of
Example I N={(1-4), (2-5), (3-2) , (4-1), (5-3) , non-overlapping swap operations.

©6-6) ., (7-8) . (8-7) , (9-9)} or equivalently Theorem 1 For n>1, the number of distinct orders in the

(S4:%3:%5:51,%:%::S7:Sp) IS aN Order ofsy, ..., sg}- . neighborhood of a given orderM is equal to:
In this paper, the idea décal order-perturbation (Bubblingjs 1 « 5Dt 2 S5t 2
introduced and discussed in the context af Tree and *P_Tree 75 E.Eﬂ 5O —El_z i B

(to be introduced in sub-section 3.2.3) construction. However, its
extension to other applications is possible and rather The above formula involves square root of 5 (an irrational
straightforward. number) yet it always gives an integer for all (integer) values of
Although an algorithm which constructs an optimal structure for Theorem 1 proves the size N{f1) is an exponential function of
any given order Is a useful tool, the main difficulty of the problemthe number of sinks. Consequently, finding the best order in that
remains in how to come up with a “good” sink order such that thgub-space of orders is an exponential complexity task, if a simple
resulting structure demonstrates superior properties. In the problesmumeration-based technique is used. However, all the common
of buffered routing generation, required times, input loads, andub-solutions of different orders can be shared in a dynamic
physical locations of sink nodes should be all considered foprogramming algorithm that utilizes the aforementioned idea of
generating an appropriate order. How we incorporate thosBubbling. This in turn allows us to investigate the whole
independent and sometimes opposing parameters in an order i;i@ghborhood in a polynomial time.
question that does not have an easy solution. The exponentiaj, Figure 5, we noticed that if we allow bubbles on the sides of

number of possible orders forces us to use either a heuristic whi ib-groups we can alter the resulting sink order. Figure 6 presents a

combines the effect of those parameters in an ad-hoc fashion or ; ?
iterative method which tries a subset of orders. In either case, th§8t ofabstract grouping structuresxg, X1. X2 X3} which cover a

limitation i d b ki ith d tat ; Whole neighborhood of ordergg has no bubble on its sides and
rlénsltﬁclt(i)ye_lmpose y working with one order at & fime 15 veryxll X2, andxz have bubbles on the right-side, left-side, and both

The local order-perturbation is a technique that works in &ides, respectively. For instance, the groupingf Figure 5 is &~
neighborhood of sink orders. No matter how we come up with atype structure. A full neighborhood would not be covered, unless at
order (heuristically or by iteration), our semi-order-independengach level of dynamic programming and for each sub-group of
dynamic programming formulation performs a systematic search iginks all the grouping structures are generated from all the grouping
the neighborhood of that order. If the initial order is not a local/structures of their internal sub-groups; Figure 7 illustrates one
global optimal structure but is close to it, this method generates tfexample.

local/global optimal structure automatically. The main advantage of

such technique is its efficiency while preserving the optimality --.‘ " m

method. Its superiority primarily originates from its enhanced Figure 6: Grouping Structures X

dynamic programming nature that enables the method to take

advantage of all similar sub-problems among all the neighborinfExample 4 The example in Figure 7 illustrates the usexef

orders and avoid recomputing the sub-solutions. structure to generatexa-type solution folL. In this case, the result-
By allowing the bottom-up technique to make perturbations, théng order is(S3,,,54,55,57,:%,S). This new sub-solution will be used

sink order in the resulting solution can deviate from the initial ordefiy generate larger sub-solutions that contain it.

A st,)lmple cEs)ehls sgown in IilggredS(, v]the_re thesglgch:t-sme bor(:ler ?f]:ea L =

sub-groupI(") has been perturbed (c.f. Figure 3). Consequently,

orde%1 in tFr)le resulting su%-group)(is (52,53934,36,35,37) as o%pose)(lj @ Q @@ ﬁ @ @

to the initial (sy,S3,%,%,5,S7) order; in the new ordess has been

swapped wittsg. The hole in the right-side &f is called sbubble Figure 7: Construction with Perturbation

(see Figure 5) and whenis used in a larger sub-group, the bubble The algorithm proposed in sub-section 111.3 (Figure 9) contains
is moved to the other side of the corresponding bordér ¢this the pseudo-code for the construction of perturbedieees (lines 5
operation is calle@ubble OuL to 13). Lemma 5 and Lemma 6 prove that for any given sink order
A Bubble every member of the neighborhood can be made by the above
L N Bubble Out grouping structures and also every combination of the grouping

L structures results in a valid order in the neighborhood.
9 e g e @ e The local order-perturbation technique can be extended to
)& structures with more than one bubble on each side. Those structures
in turn result in covering larger neighborhoods. However in that
Figure 5: Construction with Perturbation case, the number of grouping structures grows exponentially that
- . . consequently results in a significant slow down in the
Def”-“tlon. 4: For a set of Slnk@l, S, i 31}, thenelghborhood Corresponding construction a|gorithm.
of s defined as: _ _ 3.2.3 Buffered P_Tree (*P_Tree)
N(M={N'0 Os ,07() - N'() =1} PTREE [LCLH96] finds the best rectilinear routing embedded in

In other words, the difference between the position of esdry the Hanan grid of all sinks for a given sink order. In this sub-

section, we will present an enhanced version of PTREE, callegaragraphs the details of this algorithm, called

*PTREE which has the following properties: BUBBLE_CONSTRUCT, are given.

» generating rectilinear buffered routing tree structures with buff- BUBBLE_CONSTRUCT (see Figure 9) is called by MERLIN
ers located on the routing Steiner points, (see Figure 14) along with a set of paramet®r®g, B, andll. The

* generating and propagating three-dimensional curves to alloparameters andln=(sy,s,,...,5,) represent the root and an ordered
trade-off between required time and total buffer area set of sinks of a subject net. The param@tef p; , P , ... , P }

* working on a neighborhood of orders using the idea of localepresents a set of candidate locations for the placement of buffers

order-perturbation. A Al . h .
The buffered routing structures generated by *PTREE which ar%r;({jb?teger__fm'g:fi'snatﬂgrgpya!)fbggﬁéfg routing structure. Finally,

basically P_Trees with the possibility of having buffers at the)) .
Steiner points are referred to as *P_Tree in this paper. BUBBLE_CONSTRUCT operates on three dimensional solution

* ; ; curves,’, each associated with a candidate buffer locgiiand a

. PTREE s%tartsc\i/.véth ar|1 Ordgred_set of S|mg(sl,sz,,,-:$xr)] arg)d a sub-problem identified by the variablese, andr (to be described
given set of candidate locatio®={p1, Pa,...,Pi}- As the base hejow). At each step of this method, the already generated solution
case, it generates curves are combined and manipulated in order to generate solution

S(e,p,i,i)0p0OP, O<i<a, and0<e<3 curves for new sub-problems. This step is repeated until the

solution curveqsee Figure 8) which are a collection of minimum solution curve for the main problem is found. From among the
Manhattan distance routings frgmo s, driven with or without a ~ solutions of the finall, the solution with the best trade-off between
buffer. All buffers of the given library. are tried to drive the routing eéquired-time and total buffer area is chosen. At the end, the
structure and for each of them, the required time and the load at t§8rresponding structure is generated by tracing back the pointers of
root as well as the total buffer ardifthe structure uses no buffer) the constituting sub-problems. The detailed description of the
are measured. These solutions and their corresponding attributes &tgorithm is given below.
compared against each other and in €a6h,p,i,i) only the non- algorithm BUBBLE_CONSTRUCT(s, P, Bl,){
inferior (see Definition 6) solutions are stored. Variablencodes INITIALIZATION
the grouping structures that is being considered. Note that for the fore=0 to3

_ 1. fore=0to3
base case, ajlg, X1 . X2, andxs structures result in the same 2. forr'=ntol
structure. 3. foreach pOP
4. setl(1,e,r',p)={ The set of all non-inferior paths
extended fronp' tos; ., drivenwith or without a buffe};
CONSTRUCTION
5. forL=1 ton{
6. forE=0 to3{
Buffer Are 7. setL' = L + STRETCH(E); /kee Figure 10
.). . . 8. for R=nto L' {
Figure 8: A Three-dimensional Solution Curve 9 setG = SINK_SUBSETN, R, L', E);// see Figure 13
Definition 6: Supposes; andao, are two buffered routing struc- 10. for = max(1,La+l)to L-1
tures that connect a candidate location to the same subset of sinks. 11. fore=0to3{ _
0, is said to be inferior too,, iff load(o;)<load(@,), reg- 12. setl'=| + STRETCH(e); /5ee Figure 10
Time@,)<reqTime6,), andarea@,)<area(,). 13. for r=RtoR-I+1 { _
. . 14. setg = SINK_SUBSET{ , r, I', e);// see Figure 13
Consequently, *PTREE generates three dimensional curves for 75 if g-G#@then continue
sub-groups consisting of smlss_to §in I'I._ These s_olutlon curves 16. foreachp 1 P
are calculated using the following recursive equations. 17. foreachy O (1, e,r,p)
Sy(e,p.i,j)=min{S(e, p,i,u)+S(e', p, u+l, j)} 18. *PTREE(y ,G-g,l(L,E,R,.)P,B);
where the minimum is taken oveki<j<n , isu<j , and e, g 1}
e'{0,1, 2, 3}. 19. foreach pO P
S, denotes the solution curves for the sub-solutions that contain 20. prunel (L, E,R,p)
direct connections from p to smaller sub-solutions. However, 11}
*P_Tree (similar to P_Tree) allows one other possibility where p is EXTRACTION
connected to another candidate locatiomupd then pis connected 21. find the solutionp, inF(n, 0, 1, s yhich best satisfies the
to smaller sub-solutions. In other words: constraints;)
S(e,p,i,)=min{d(p,p)+S(e, p,i,j)} 22. retrieve the buffered routing tree structufe, of p by
The minimum is taken over OP. following the pointers stored during the generation of the
The construction of andS, three-dimensional solution curves in 93 f&tlrt:]mm?urves;

a dynamic programming fashion results in generating a final
solution curve. The sink order of each solution in that curve is)
within the neighborhood of the initial sink order. Figure 9: BUBBLE_CONSTRUCT

Theorem 2 If the individual capacitive values are polynomially ~Before performing any operation, a set of solution curves are
bounded integers or can be mapped to such with sufficierinitialized in lines 1 through 4. In this part of the algorithm, sub-
precision, *PTREE ha©(ka%q) pseudo-polynomial complexity 9roups of length 1 are considered and the corresponding solution
wherek is the total number of buffer candidate locationss the ~ curves for every candidate buffer location, sink, and grouping

number of sinks, and is the maximum number of distinct load structure are initialized. These initial solutions consist of the
values. ’ minimum Manhattan distance paths from the candidate locgtion

. S to the target sinls.. At the root of these paths, both options of
IIl.3 BUBBLE_CONSTRUCT: The Inner Optimization inserting or not inserting a buffer are examined. Note that for sub-

Engine . . . groups with length 1, all four grouping structureg (X1 , X2 » and
The proposed tools and techniques presented in sub-section 1lk2) are the same, however for the sake of simplicity in the rest of
are employed in the following algorithm that generates hierarchicgi, pseudo-code we generate separate (although similar) solution

buffered routing trees in a neighborhood of orders. The resultin -2 cirmi o
hierarchies are consistent with then Oree structure and the Burves for each case; a similar situation occursfamdy, where

routing inside each layer of hierarchy is a *P_Tree. In the foIIowind-:z' In these initialized solution curves, like any other ones in the

rest of this algorithm, only the non-inferior solutions (see Definitioncombined with which sink node(s) to generate the new sub-group,

6) are stored. Q. Also, it is guaranteed thai is compatible withQ. However as
BUBBLE_CONSTRUCT starts frorh=1 (goes up td.=n) and mentioned earlier, there are many solutions associated wittugach

groups every. neighboring sinks. For each new sub-group of sinksin fact for every buffer candidate location, there is a solution curve

all possible” grouping structures (coded by numtiets 3) are for w which has to be considered in the merge operation. Line 16

enumerated in line 6. For the casexgf(E=0), the length of the ~enumerates all the candidate locations by varigblend line 17

sub-group is equal tb, but for the other cases the actual length offetrieves the non-inferior solutions in the solution curve dhat

the sub-group is larger by one or two units, to capture the effect GPTTesPonds ta

inserting one or two bubbles on the sides. This new length is algorithm SINK_SET(1, R, L', E){

calculated and stored iri (refer to line 7 and Figure 10). In line 8, : SW'tCQOE_{ (G = _

all possible sub-strings of lengthare considered from right to left - Case0:setG ={ 141, SRz SRLw3 - R2 R1RES

of M. In fact, the variabl® points to the right-most element of the casel:setG = {sg 1. SRLw2 SR-L#3+ -+ SR2 SR}

w N

sub-strings of' elements. 4. case2:setG ={Sg.l+1,SR-L'+3 -+ » SR2+ SR1 SR} §
algorithm STRETCH(E § 5. case3:setG = {Sg.+1,SR-L'+3+ ~+SR2+ SR} ;
switch E {
caseQ: return 0; casel , 2 return 1; case3: return 2; 6. return G;
Pl , }
Figure 10: STRETCH Figure 13: SINK_SET

Every sub-group of sinks can potentially constitute an internal In line 18, *PTREE is called to generate a new set of solutions for
node in the final @_Tree structure, therefore according to all the candidate locations (i.e. membersR)f Every solution
Definition 2, it can contain at most one immediate internal nod&reated by *PTREE shows the combinationuofvith the rest of
(smaller sub-group). Consequently, during the process of groupingink nodes of2 . They are combined by a buffered routing structure
a set ofL sinks, we should consider cases in which a sub-set giooted at a candidate location. For every routing structure generated
them have already been grouped. That way theT@ze structure %bi/ *PTREE, all the buffers in the library are tried to drive that
which captures the hierarchy of design is generated and maintainagiructure and the solutions are stored in the corresponding solution
In this context, the hierarchy implies that during the generation of aurves. Along with every solution, a set of pointers are stored that
buffered routing structure, we do not process all the sinks at oncgiter during the extraction phase are used to reconstruct the best
instead at any time we work on a subset of sinks and combine thegalution. Pruning operation (based on Definition 6) is performed in
together in agreement with theaCTree structure. Later, each lines 19 and 20.
combination is treated as one node in the next level of hierarchy. Thisg process continues until the solution curve for the whole

Lines 10 through 13, similar to lines 5 through 8, investigate alproblem, i.e.L=n, is generated. From among all the final non-
the possible sub-group lengths with different grouping structurefferior solutions, the one which best satisfies the input constraint is
and positions for which the solution curves have already beeshosen. The buffered routing structure corresponding to that
generated and they fit inside the sub-group being constructedolution is retrieved in lines 21 and 22 by following the stored
Figure 11 illustrates an example where a sub-group of 5 §ikis, pointers. Finally, in line 23 the constructed solution is returned to
being generated using a combination of an already generated SWIERLIN. Note that the order of sinks in this final solution may be
group of 3 sinksw , and two other sinks, i.8; ands;. different from the initial given order, and this new order is used by

In line 10, the termmax(1,L-0-1) ensures tha® does not drive MERLIN to perform its local neighborhood search, as will be
more thana other internal and sink nodes, following the third described in sub-section 111.4.
property of @_Tree’s given in Definition 2. In line 13, the ten In the following statements that formally describe the properties
to R-I'+1 ensures thab remains withirQ . of BUBBLE_CONSTRUCT, it is assumed that in the solution

=3 R=8 curves the individual capacitive values are polynomially bounded
L=5 » integers or can be mapped to such with sufficient precision. Also, in

i~ - these statementgis the maximum number of distinct load values.
P Lemma 5 Any order generated by BUBBLE_CONSTRUCT is in

the neighborhood of the initial ordar

Lemma 6. Any TT'ON(1), is considered by
BUBBLE_CONSTRUCT.

A grouping situation The corresponding Lemma 7: Any identical sub-problem among the members of
. . ~ Ca_Tree N(I) is shared and processed only once.
Figure 11: An lllustration for the Grouping Steps Theorem 3 The solution space of BUBBLE_CONSTRUCT is

It can be seen that in some caSeandw are not compatible. As the Cartesian product of the space of *P_Tree and the space of
an example, see the situation shown in Figure 12 where thea_Tree for the neighborhood of the initial given order.
difference between the valuesroéndR is such that the grouping Lemma 8 BUBBLE_CONSTRUCT is monotone with respect to
structure ofw does not fit in the grouping structure @f. These required time, load, and buffer size.
cases are detected and skipped in line 15 of the pseudo-code. In t &ma ¢ In BUBBLE_CONSTRUCT, the use of the pruning

lc;g?éciggeasnans\li\ligggdaNsclJ?ek tﬂgf[j géttgar!?jgg-ag;f)cul}lzggtj ti?]%ngrseg operation does not result in the loss of any non-inferior solution.

and 14 - represent the sets of sinks includedCbyand w, Theorem 4 Subject to restriction imposed by the *P_Tree and

respectively; also refer to Figure 13. Ca_Tree structures, BUBBLE_CONSTRUCT finds all the non-
=3 inferior solutions with respect to required time and total buffer area
L=5 el =7 R=8 in the neighborhood of a given order.
E=3 r=4 2L T2

Lemma 1Q The number of non-inferior solutions in any solution
curve is bounded b®(nmq) where n and m are the number of
9 e e @ @ @ sinks and the number of library buffers, respectively.

Theorem 5 BUBBLE_CONSTRUCT hasO(n®mkq) pseudo-
polynomial memory complexity, where, m,andk are the numbers
of sinks, library buffers, and candidate locations, respectively.
Theorem G BUBBLE_CONSTRUCT ha®©(r*a°g%k?m) pseudo-

L'=7

Figure 12: An lllegal Grouping Case
After line 15, it is determined which sub-group is to be

polynomial runtime complexity, whera is the number of sinks » Setup Ill: MERLIN is used for hierarchical buffered routing
is the maximum immediate fanout for buffekss the number of generation. The initial order is the TSP order although our
candidate locations, amdis the number of library buffers. experimental results show that initial orders have very small

Corollory 1: Considering tham is a constant determined by the effect on the final quality of results. The last columns reports
number of library buffers, and assumings a number determined }he ?umber of |°°p€. that ME'?}'-'N ta(';%S forl con_verg?ncg tf? a
by the library and can be thus considered constant, the effective 0¢&l minimum. In this setup, the candidate locations for buffer

; : : ; placement are the complete Hanan pointscaeduals 15.
complexity of BUBBLE_CONSTRUCT for a fixed library is 1ahj6% reports the post-layout (after detailed routing) area and

O(n'ek). . delay of a set of benchmark circuits to evaluate the overall effect of
[1I.4 MERLIN: The Outer Search Engine the existing buffered routing generation algorithms over a full

The behavior and the structure of BUBBLE_CONSTRUCT design flow. The runtimes are the total runtimes (from mapping to
makes it an appropriate tool for performing local neighborhooddetailed routing). For each circuit every one of the aforementioned

search in the space of sink orders. In this sub-section, our locgkPerimental setups have been used to generate the buffered routing
search algorithmERLIN, is presented. structures for every net. For the MERLIN setup, the number of

iterations for each net is bounded by 3, the candidate locations are

Lemma 11 The properties required by Definition 1 are consisten ; : o
with the properties of neighborhood in Definition 4. ihqeu;?gligéd Hanan points (generated by a simple heuristicl and

There exists at least two sink orders , ileand[’, in common All of the above experimental setups have been implemented in
between, the neighborhood of two consecutive iterations of,e gig [SSLM92] environment and have been run on Sun Sparc
MERLIN's local _ search. In fact, often this overlap, yorkstations. In these experiments, we have used an industrial
OVERLAP(NI),N(T), is relatively large. Obviously, the gtandard cell library (0.35u CMOS process) that contains 34
overlapping sub-space is considered twice which is clearlyyffers. Gate and wire delays are calculated using a 4-parameter

wasteful. However, this can be prevented by keeping the solutioge|ay equation [LSP98] and the Elmore delay [EI48], respectively.
curves of the very last iteration. For similar sub-problems, betwee

the two iterations simply copy the corresponding solution .curve.Q/- CONCLUSIONS
Obviously, this speed up is achieved at the cost of doubling the|n this paper, the problem of distributing a signal among a set of
memory usage. sinks with different placements, loads, and required times has been
Theorem 7 The best cost associated with or&i(see line 7) addressed. The proposed algorithm generates a set of non-inferior
strictly decreases during the operation of MERLIN, except in théuffered routing structures which provides different trade-offs
last time that the loop (lines 4 thorough 8) is visited. between the total required-time and the buffer area. The introduced
algorithm MERLIN{ solution consists of an iterative optimization block which uses a
1." reads P andB where local neighborhood search strategy and an optimization engine
sis thé S'ource ' based on dynamic programming which generates all the non-
' inferior structures in the neighborhood of a given sink order. This

P={P1, P, ..., A} is asetof candidate locations for buffers, gptimization engine generates and propagates 3-dimensional
B={b;,b,..., b, }is the library of buffers; solution curves and employs a novel local order-perturbation
2. readN=(s,%,...,%),an ordered list of sinks; method to cover an exponential size solution space in a polynomial
3. setl'=n: time. The experimental results show a major delay improvement
4. do{ with little area penalty compared to the conventional buffer and
5 setll= n- routing tree generation techniques.
6. set[]= BUBBLE_CONSTRUCT(s,P,B); VI. REFERENCES
7. setl'= SI_NK_'O.RDER(])i [Be57] R. BellmanPynamic ProgrammingPrinceton Univ. Press, 1957.
8. }while (M!=0N"); [CHKM96] J. Cong, L. He, C. Koh, and P. Madden, “Performance optimiza-
9. return [O; tion of VLSI interconnect layout,” Ihntegration, the VLSI Journal 21
} pp. 1-94, 1996.
Figure 14: MERLIN [CLZ93] J. Cong, K. Leung, and D. Zhou, “Performance-driven intercon-
nect design based on distributed RC delay modelPréceedings of the
V. EXPERIMENTAL RESULTS 30th Design Automation Conferengp, 606-611, 1993.

In this section, we report two sets of experimental results to verif§El48] W. C. Elmore, “The transient response of damped linear network
the effectiveness of MERLIN. In the first table the results have been Wwith particular regard to wideband amplifiers,” dournal of Applied
presented for a set of individual nets taken from a number of Physicsl9, pp. 55-63, 1948.
benchmarks. The second table reports post-layout areas and del§ye92] L. K. Grover, “Local search and the local structure of NP-complete
of a set of benchmark circuits when MERLIN and the conventional problems,” InOperations Research Letters, J#p. 235-243, Oct. 1992.
techniques for routing and fanout tree generation are employed. [Gi90] L.P.P.P. van Ginneken, “Buffer placement in distributed RC-tree net-

Table 1 reports the area and delay for 18 randomly selected netsWorks for minimal Eimore delay,” IiProceedings of International Sym-
from a set of mapped benchmark circuits; thereforeé the load ar&% ‘J’g;i”'\r; 02 CC:rC“'tS angl SDVS?”JWH 86;—;368, %990' 4 Intractabilitv: A
required time of each sink node are known. For every extracted negJ/9] M. R. Garey and D. 5. Johns&ipmputers and Intractability:
the locations of sinks are determined randomly and a priori in g Guide to the Theory of NP-CompletenassH. Freeman, SF, CA, 1979.
bounding box which is sized such that the delay of interconnect i1a66] M. Hanan, “On Steiner's problem with rectilinear distan@&AM
approximately equal to the delay of gate. Journal of Applied Mathematic®lo. 14, pp. 255-265, 1966.

A& shown In th tale, o evry nt ee ciferent expermenich L s 4K, S0, T Al SR AR,
setups have been considered. For each case the total delay, buffe gis- e . ; : -
area, and runtime have been reported. The three experimentalfeerglrj,ie\’g;e. §52§?260'1"§5%‘fee"'”95 of the 33th Design Automation Con
setups are ‘?is follow: S . . [LSP98] J. Lou, A. H. Salek, and M. Pedram, “An integrated flow for tech-
+ Setup I: Fanout optimization using LTTREE is followed by " nology remapping and placement of sub-half-micron circuits,Pior
PTREE. The sink order for the LTTREE phase is based on the ceedings of Asia and South Pacific Design Automation Confergpce
required times of sinks and for the PTREE phase is based on the295-300, 1998.
solutl%ng t[ci Ct:rll_?i 9TeS]P (Traveling Salesman Problem), as sugecg6a] T. Okamoto, and J. Cong, “Buffered Steiner tree construction with
gested by . wire sizing for interconnect layout optimization,” IRroceedings of

» Setup lI: Routing tree generation using PTREE is followed by International Conference on Computer-Aided Desgm 44-49, 1996.
buffer insertion using the method of [GI90]. The sink order for[oc9eb] T. Okamoto, and J. Cong, “Interconnect layout optimization by
PTREE is again the TSP order. simultaneous Steiner tree construction and buffer insertiorPtdneed-

ings of the 5'th ACM/SIGDA physical Design Workshap 1-6, 1996.

construction and fanout optimization algorithm,"Rroceedings of Inter-

national Conference on Computer-Aided Desit®98.

[SSLM92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,

[To90] H. Touati, “Performance-oriented technology mapping,” Ph.D. the-
[SLP98] A. H. Salek, J. Lou, and M. Pedram, “A simultaneous routing tree SIS, University of California, Berkeley, Technical Report UCB/ERL M90/

109 November 1990.

[WM89] W.S. Wong, and R.J.T. Morris, “A new approach to choosing initial
points in local search,” linformation Processing Letters 3pp. 67-72,

A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni- January 1989.
Vincentelli, "SIS: A system for sequential circuit synthesigmoran-

dum No. UCB/ERL M92/4Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, CA 94720, May 1992.

[Ya92] M. Yannakakis, “The Analysis of Local Search Problems and Their
Heuristics,” In Proceedings of 7'th Annual Symposium on Theoretical
Aspects of Computer Sciengp. 298-311, 1990.

Ratios over Flow |

Table 2: Post-layout Area, Delay, and Runtime for a Set of Benchmarks

Flow I Flow II: Flow 111
Taken Net |Num of LTTREE + PTREE PTREE+Buffer Insertion MERLIN
from name | sinks | Area Delay |Runtime | Area |Delay Runtime JArea Pelay Runtime Lgops
circuit X1000A2| (ns) (s)
C432 netl 16 58 38.54 221 0.33] 0.87 0.36] 0.28| 0.39 25.09 2
net2 16 83 35.49 41] 0.27| 0.71 1.66] 0.69| 0.48 5.24 1
net3 10 51 32.19 44 1.31| 0.88 4.27] 0.56| 0.70 15.27 7
C1355 net4 9 35 26.69 16] 0.64| 0.88 1.88] 0.82| 0.57 3.00 4
net5 9 16 23.42 15] 0.80| 0.95 0.86] 3.80| 0.47 2.33 5
neté 13 29 25.42 14] 0.33| 0.95 3.43] 0.56| 0.30 78.00 6
C3540 net7 12 58 41.03 29] 0.50| 0.88 1.79] 144 0.55 23.59 12
net8 35 93 47.05 991 0.17| 0.83 4.42] 0.17| 0.49 7.92 1
net9 73 214 60.73 229] 1.55| 0.69 1.83] 0.12| 0.42 1.98 1
C5315 net10 49 70 40.29 302] 0.64| 0.78 2.34] 0.36] 0.33 6.09 2
netll 21 80 38.20 111] 1.12| 0.66 1.02] 0.40| 0.26 4.32 4
netl2 50 128 58.79 829] 0.65| 0.53 0.64] 0.20| 0.27 13.20 9
C6288 netl3 16 58 44.65 52] 0.83| 0.73 1.12] 2.11| 0.49 9.33 5
netl4 20 58 45.67 28] 0.67| 0.91 1.71] 1.00| 0.73 3.54 1
netl5 60 90 90.29 197] 0.25| 0.74 1.42] 0.29| 0.55 16.20 4
C7552 netl6 12 54 32.20 26] 1.35| 0.90 3.000] 1.18| 0.54 12.38 2
netl7 16 58 31.35 541 0.94| 0.86 1.11] 1.56| 0.39 9.72 5
net1l8 23 54 38.38 43] 0.35| 0.91 2.16] 0.29 0.39 5.70 1
Average: 0.71] 0.81 1.95] 0.88/ 0.46 13.49
Table 1: Total Buffer Area, Delay, and Runtime for a Set of Nets
Ratios over Flow |
Flow I: Flow II: Flow lII:
Circuits LTTREE + PTREE PTREE+Buffer Insertion MERLIN
Area Delay Runtime Area Delay |Runtime | Area Delay Runtime
X1000A2 (ns) (s)
C1355 3630 8.18 1276 0.97 0.97 0.99 0.93 0.72 2.23
C1908 7768 14.47 2560 1.03 1.10 0.95 1.02 0.80 2.55
C2670 9428 12.40 1699 0.99 0.99 1.09 1.06 0.96 2.05
C3540 15762 22.17 5436 1.21 1.57 0.79 1.27 0.88 0.98
C432 3574 10.13 1382 1.16 1.06 0.79 1.57 1.00 1.17
C6288 28497 52.94 13547 0.96 1.03 0.88 1.00 0.90 1.00
C7552 35189 19.80 9250 0.78 1.06 0.95 0.85 0.74 1.36
Alu4 8191 15.69 2842 1.22 0.99 0.86 1.02 0.96 1.62
B9 1210 2.81 271 0.98 1.25 0.82 1.36 0.99 4.18
Dalu 10344 18.59 3465 0.73 0.88 0.66 0.88 0.67 1.74
Desa 32388 27.00 19427 1.12 1.12 0.75 1.19 0.82 0.83
Duke2 5499 9.00 2554 1.15 0.91 0.74 1.04 0.83 0.80
K2 22823 26.66 5831 0.85 0.75 1.73 0.93 0.63 2.56
Rot 8315 7.80 1572 0.91 1.02 0.83 1.00 0.81 3.40
T481 8917 10.12 5239 1.22 1.01 0.78 0.92 1.08 1.26
Average: 1.02 1.05 0.91 1.07 0.85 1.85]

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

