
Leakage Control With Efficient Use of Transistor Stacks in
Single Threshold CMOS

Mark C. Johnson
Rose-Hulman Institute of Technology

5500 Wabash Avenue
Terre Haute, IN 47803-3999, USA

Mark.Johnson@Rose-
Hulman.Edu

Dinesh Somasekhar
Purdue University
1285 EE Building

West Lafayette, IN 47907-1285, USA

somasekh@ecn.purdue.edu

Kaushik Roy
Purdue University
1285 EE Building

West Lafayette, IN 47907-1285, USA

kaushik@ecn.purdue.edu

ABSTRACT
The state dependence of leakage can be exploited to obtain
modest leakage savings in CMOS circuits. However, one can
modify circuits considering state dependence and achieve larger
savings. We identify a low leakage state and insert leakage
control transistors only where needed. Leakage levels are on the
order of 35% to 90% lower than those obtained by state
dependence alone.

1. INTRODUCTION
In response to the growing need for low voltage, high
performance, low leakage systems, a few circuit level approaches
to leakage control have already been developed. Some methods
depend on the use of multiple threshold voltages. Low threshold
voltage transistors are used where needed to improve
performance. High threshold devices are then used for leakage
control. The MTCMOS technique [10], [9] isolates low threshold
voltage circuits from the power and ground rails using high
threshold voltage devices. There is a performance penalty since
the high threshold transistors appear in series with all switching
current paths in the circuit. Another approach is to use low
threshold devices in the critical path of a circuit and high
threshold voltage devices elsewhere to achieve leakage savings
without a performance penalty [12]. One can also limit leakage
through dynamic control of the threshold voltage. Threshold
voltage is lowered when a circuit is active and elevated when
idle. This can be accomplished by substrate biasing [7], [6] or
with dual gate silicon-on-insulator (SOI) technologies [11], [3].

We propose an approach which does not require multiple
threshold voltages or substrate biasing schemes, but takes
advantage of the natural leakage behavior in stacks of MOS
transistors [5], [1] to reduce sleep mode leakage while avoiding
active mode performance loss. We first identify a circuit input
vector that will put most of the circuit into a low leakage state. In
general, the low leakage state occurs when as many MOS

transistors as possible are turned off in each leakage path. We
then insert transistors for leakage control only in those leakage
paths where it was not possible to turn off more than one
transistor. Others have exploited state dependence for energy
reduction [4] and for leakage control in IDDQ test [8]. However,
it has been observed that often the variation of leakage with
respect to circuit state alone is 50% or less [1].

2. SELECTION OF MINIMUM LEAKAGE
INPUT VECTORS
To identify minimum leakage input vectors, we define leakage
"observability" measures which indicate the degree to which the
value of a particular circuit input is observable in the magnitude
of leakage from the power supply.

2.1 Leakage Observability Measures
Let Lobsi (k, w) represent the leakage observability of input i to
circuit k, given a partially specified input vector w. If input i is
already specified in w, then we set Lobsi (k, w) = 0. For our
purposes, observability values are only useful for inputs that have
not already been fixed to a particular value. If input i is not
already specified in w, then the "leakage observability of input i"
is determined as follows.

Let Lavgi
v(k, w) represent the portion of overall average leakage

cost attributable to forcing the value v on input i. If g is a logic
gate, we define Lavgi

v(g, w) to be the average leakage of all
possible leakage states of gate g divided by the number of inputs
not already specified in w. "All possible leakage states," is
restricted to the set of states permitted by the partially specified
input vector w and the assignment of value V to input i. Leakage
observability is calculated from average leakage costs in the
following manner:

Lobsi(k,w) = | Lavgi
1 (k, w) - Lavgi

0 (k, w) | (1)

In larger networks of logic gates, it is necessary to define how the
average leakage costs for each gate are represented at the
primary inputs of the larger network. Let L’avgi

v(g, wg) represent
the average leakage cost at input i of gate g, including leakage
costs associated with logic gates in the fanout tree of g. We will
refer to this as the "fanout leakage cost". wg represents any inputs
to g which are already specified. The fanout leakage costs at the
primary outputs of network k are defined to be zero.
Consequently, for the last level of gates in the network,
L’avgi

v(g, wg) = Lavgi
v(g, wg). For all other gates in the network,

the fanout leakage costs are recursively defined by equation (2).

()
{ }()vigIxfree

g
v
i Average

N
gavgL

=∈∀
=

&,

1
,'

gw
w (F(g,x)) (2)

where

()∑
∈∀

+=
)(

)(,'),(),(
gfanoutj

hj
g
j j

havgLgLgF wxx x

and x is a fully specified input vector to gate g. I(g,wg & i = v) is
the set of input vectors compatible with the partially specified
input vector wg and the assignment of value v to input i. L(g,x) is
the leakage of gate g for input vector x. fanout(g) is the set of
inputs to other gates driven by the output of gate g. j represents
an input to gate hj which is connected to an output of gate g. g(x)
is the logic value output by gate g given input vector x. Nfree is the
number of inputs to gate g that are not specified in wg. If input i
is already specified in wg, then L’avgi

v(k,w) = 0.

2.2 Heuristic search for leakage bounds
Identification of a minimum leakage input vector can be shown to
be NP-hard by a polynomial time transformation from the 3-CNF
circuit satisfiability problem, which is NP-complete [2].
Consequently, we devised a heurstic using the value of L’obsi at
each primary input (PI) to guide selection of input values.

1. Evaluate leakage observability measures
2. Put each PI in a priority queue with |L’obs| as the

priority measure
3. Until the priority queue is empty, do...
 3.1 Pop a new PI(i) off of the queue.
 3.2 If L'avgi

1 > L'avgi
0, set PI=0, else set PI=1

 3.3 Update the circuit state for the new input.
 3.4 Update the leakage observability measures.
 3.5 Re-sort the priority queue.
4. Done.

The priority queue is used to make sure that the next PI set is the
one for which we have the strongest indication as to the preferred
input value. Circuit state and leakage costs are updated and the
queue is re-sorted each time after another PI is set because
setting a single PI can radically change the average leakage cost
for remaining inputs. In practice, we found that one can greatly
reduce the frequency of cost function updates without serious
loss of effectiveness.

3. STACKING TRANSISTOR INSERTION
Insertion of stacking transistors is a technique which exploits the
state of a circuit once a minimum leakage input vector has been
applied. For each gate that is in a high leakage state, we insert a
leakage control transistor in series between the power supply line
and the pull-up network or between the ground line and the pull-
down network. Figure 1 illustrates the principle. Circuits (a) and
(b) are in a high leakage state, i.e., no leakage path passes
through more than one transistor which is turned off. Circuits (c)
and (d) illustrate the insertion of a leakage control transistor
(which can be shared by multiple gates).

3.1 Leakage control insertion algorithm
To estimate the potential costs and benefits of leakage control
transistor insertion, we first use the algorithm described in

Figure 1. Logic gates with and without leakage control
transistors

section 2.2 to select a low leakage input vector. A post-
processing phase then identifies logic gates in a high leakage
state that can be modified to use a leakage control transistor. The
algorithm is structured as follows:

1. Perform critical path and slack analysis
2. Select minimum leakage inputs (greedy algorithm)
3. For each logic gate in the design, do...
 3.1 If gate not in a high leakage state, skip it.
 3.2 If gate in a critical path (optional), skip it.
 3.3 Otherwise, put the gate in a priority queue
 where highest leakage x slack gets priority
4. Repeat until the priority queue is empty...
 4.1 Pop the highest priority gate from the queue
 4.2 Re-evaluate delay of gate to include leakage
 control
 4.3 If there is sufficient slack to permit this delay,
 4.3.1 If gate output=1, connect gate to NMOS

 leakage control
 4.3.2 else if gate output=0, connect to PMOS
 4.3.3 Update slack calculation in fan-in and fan-

 out trees of the logic gate
 4.3.4 Set leakage of the logic gate to 0

 (this leakage will be accounted in step 5)
5. Re-evaluate total leakage of logic network
 5.1 Accumulate sum of individual gate leakages
 5.2 Estimate leakage through control transistors
6. Done.

In step 1 a critical path analysis is performed like that described
in [12]. This gives us a timing slack value for each logic gate.
Step 2 gives us the state of each logic gate when the minimum
leakage vector is applied to the circuit. Step 3 identifies any logic
gates that can not or would not be connected to a leakage control
transistor. This could be because the gate is already in a low
leakage state, or it could be because the gate is in a critical path
and cannot tolerate any increase in delay. In step 4, each logic
gate is connected, if possible, to common NMOS or PMOS
leakage control transistors. We make the conservative

assumption that the delay impact of the shared leakage control
transistor is equivalent to effect of a seperate nominally sized
transistor inserted in each high leakage path.

Once leakage control has been applied wherever possible, the
overall leakage estimate is revised in step 5. For those gates for
which leakage control was not applied, the leakage can be
accumulated as the sum of leakages for each gate, taken from
look-up tables giving the leakage of each gate as a function of the
input vector. For those gates that are connected to an NMOS (or
PMOS) leakage control transistor, we generate an equivalent
circuit to which the transistor stack based leakage model [5] can
be applied.

4. RESULTS
For MCNC benchmarks “I1” through “I10”, table 1 presents de-
tailed leakage control results for the assumption that leakage
control transistors can be sized to 30% of the total transistor
width being controlled (the sum of the widths of the transistors
which are turned off and are in leakage paths being controlled).
"Min Bound" is a lower bound on leakage obtained as the sum of
the individual leakages of each logic gate. "Min Vector" is the
leakage when a minimum leakage input vector is applied to the
circuit. The "Min Vector" results were obtained using the greedy

method presented in section 2. For minimum leakage vector
selection, gates in the critical path were weighted more heavily
(5x) than gates off critical path. Rows labeled "HSPICE" present
static leakage measurements made by means of HSPICE
simulation. The row labeled "Leakage Control" gives leakage
estimates for circuits where leakage control transistors have been
used.

"NMOS" and "PMOS Control" give the total size of the leakage
control transistors for pull-down paths and pull-up paths
respectively. "Logic Capacitance" gives the sum of all junction
and gate capacitances that can be charged or discharged during
normal active mode operation of the circuit. "Sleep Mode
Capacitance" specifies the total capacitance switched when all
leakage control transistors are turned off (sleep mode) or on
(active mode). This assumes that the minimum leakage vector
has already been applied to the circuit before the leakage control
transistors switch. "CPU Time" gives the total CPU time for the
entire computation of results in each column including initial
parsing of input files. The results in this table were generated an
a Sun Sparc Ultra-30 workstation.

Table 2 presents a comparison of leakage estimates for different
leakage control transistor sizing assumptions. "Min Bound" and

MCNC Benchmark:

gates

PI’s

I1

39

25

I2

109

201

I3

92

132

I4

136

192

I5

269

133

I6

340

138

I7

405

199

I8

1898

133

I9

527

99

I10

2285

257

Min Bound: [µA] 3.1 4.2 3.9 6.3 17.1 16.4 13.4 74.5 23.9 140

Min Vector: [µA]

 HSPICE: [µA]

4.9

4.8

9.9

9.7

14.2

13.3

14.9

13.9

36.4

31.2

40.5

37.7

46.5

41.9

296

266

126

118

398

N/A

Leak Control: [µA]

 HSPICE: [µA]

1.6

1.6

3.8

3.9

5.4

5.1

6.7

6.0

6.0

5.8

15.9

13.9

22.6

19.6

76.0

69.3

18.7

18.1

66.1

N/A

gates controlled 19 28 18 38 182 100 97 996 335 1530

NMOS Control: [µm] 7.2 14.4 30.6 7.2 61.2 23.4 19.8 416 160 513

PMOS Control: [µm] 10.8 18 0 46.8 90 130 133 673 425 1260

Logic Cap. [pF] 2.0 8.9 5.7 10.0 16.4 27.1 34.3 137 42.4 131

Sleep Mode Cap. [fF] 39 63 63 96 260 256 255 1800 966 2900

CPU Time: [sec] 1 15 7 17 36 68 113 1352 141 1899

Table 1. Detailed Leakage Control Results – 30% Sizing

MCNC Benchmark: I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Min Vector: [µA] 4.9 9.9 14.2 14.9 36.4 40.5 46.5 296 126 398

Min Bound: [µA] 3.1 4.2 3.9 6.3 17.1 16.4 13.4 74.5 23.9 140

100% Sizing: [µA] 2.2 4.8 6.8 8.1 11.0 20.2 26.8 113 37.1 123

50% Sizing: [µA] 1.8 4.1 5.9 7.1 7.6 17.3 23.9 87.8 24.6 84.2

30% Sizing: [µA] 1.6 3.8 5.4 6.7 6.0 15.9 22.6 76.0 18.7 66.1

10% Sizing: [µA] 1.5 3.4 4.9 6.2 4.2 14.4 21.1 62.8 12.2 46.0

Table 2. Leakage vs. Control Transistor Sizing

"Min Vector" results from table 1 are included to facilitate
comparison. Most values other than leakages presented in table 1
are unaffected by the transistor sizing assumption.

Figure 2 summarizes the leakage results from tables 1 and 2.
Each figure resembling an "I" spans the range of leakage values
that be reached by choice of input vectors. The wide horizontal
bar below the "I" marks the lower bound on leakage for the
unmodified circuit (the sum over all logic gates of the gate level
minimum leakage). The small cross-hair symbols (resembling a
"+") denote leakage for various control transistor sizings. In each
column, from top to bottom, the cross-hair symbols correspond to
the 100%, 50%, 30%, and 10% transistor sizing assumptions.

Figure 2. Summary of leakage control results

Some interesting observations can be drawn from these results in
The most important is the effect of leakage control transistor
insertion on overall leakage. Compared to the leakage obtained
when we apply a low leakage input vector, we obtain anywhere
from a factor of 2x (circuit I7) to better than 5x (circuit I5) re-
duction in leakage. Furthermore, the leakage with control
transistors was always similar in value or sometimes much lower
than the lower bound on leakage for the unmodified circuit. One
should also note that the gate capacitance of the sleep mode
transistors is much smaller than total logic circuit capacitances.
This suggests that the major cost associated with putting a circuit
into sleep mode will be the signal path switching associated with
application of the minimum leakage input vector rather than with
the switching of the leakage control transistors.

4.1 CONCLUSIONS
For low supply voltage, low threshold voltage logic, the use of a
minimum leakage vector together with stacking transistor
insertion is a promising option for leakage control. It offers a
leakage reduction on the order of 35% to as much as 90%
relative to an unmodified circuit with a minimum leakage vector
applied. This is accomplished with no direct impact on
performance since the technique is only applied to gates which

are off the critical path. There also should be minimal direct
impact on switching power since no capacitances are added to
logic signal paths in the circuit.

5. REFERENCES

[1] Chen, Z., Johnson, M., Wei, L., and Roy, K. Estimation of
standby leakage power in CMOS circuits considering
accurate modeling of transistor stacks. Proceedings of the
Symposium on Low Power Design and Electronics (1998),
239-244.

[2] Cormen, T.H., Leiserson, G.E., and Rivest, R.L.
Introduction to Algorithms, The MIT Press, Cambridge,
MA, 1990.

[3] Gil, J., Je, M., Lee, J., and Shin, H. A high speed and low
power SOI inverter using active body bias. Proceedings of
the Symposium on Low Power Electronics and
Design.(1998), 59-63.

[4] Halter, J.P., and Najm, F. A gate-level leakage power
reduction method for ultra-low-power CMOS circuits.
Proceedings of the IEEE Custom Integrated Circuits
Conference (1997), 475-478.

[5] Johnson, M.C., Somasekhar, D., and Roy, K. A model for
leakage control by MOS transistor stacking. Tech. Rep. TR-
ECE 97-12, Purdue University, School of Electrical and
Computer Engineering, 1997.

[6] Kobayashi, T., and Sakurai, T. Self-adjusting threshold-
voltage scheme (SATS) for low-voltage high-speed
operation. Proceedings IEEE Custom Integrated Circuits
Conference (1994), 271-274.

[7] Kuroda, T., et al. A 0.9v 150MHz 10 mW 4mm2 2-D
discrete cosine transform core processor with variable-
threshold-voltage scheme. Proceedings IEEE International
Solid-State Circuits Conference (1996), 166-167.

[8] Maxwell, P.C., and Rearick, J.R. A simulation-based
method for estimating defect-free IDDQ. Digest of Papers,
IEEE International Workshop on IDDQ Testing (1997), 8O-
84.

[9] Mutoh, S., et al. 1-v power supply high-speed digital circuit
technology with multithreshold-voltage CMOS. IEEE
Journal of Solid-State Circuits, vol.30, no.8 (Aug. 1995),
847-853.

[10] Shigematsu, S., et. al. A 1-V high-speed MTCMOS circuit
scheme for power-down applications. IEEE Symposium on
VLSI Circuits Digest of Technical Papers (1995), 125-126.

[11] Vieri, C., et al. SOIAS: Dynamically variable threshold SOI
with active substrate. Proceedings of the Symposium on
Low Power Electronics (1995), 86-87.

[12] Wei, L., Chen, Z., Roy, K., Johnson, M.C., Ye, Y., and De,
V. Design and optimization of dual threshold circuits for
low voltage low power applications. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol.7, no.1
(March 1999), 16-24.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

