
Verification and Management of a
multimillion-gate embedded core design

Johann Notbauer
Siemens, Austria

Erdberger Laende 26
A-1030 Vienna, Austria

+43 1 1707 36087

johann.notbauer@siemens.at

Thomas Albrecht
Siemens, Austria

Erdberger Laende 26
A-1030 Vienna, Austria

+43 1 1707 35850

thomas.albrecht@siemens.at

Georg Niedrist
Siemens, Austria

Erdberger Laende 26
A-1030 Vienna, Austria

+43 1 1707 37925

georg.niedrist@siemens.at

Stefan Rohringer
Siemens Semiconductors
Babenberger Strasse 10

A-8020 Graz, Austria
+43 316 7271 100

stefan.rohringer@siemens-
scg.com

ABSTRACT
Verification is one of the most critical and time-consuming tasks
in today's design processes. This paper demonstrates the
verification process of a 8.8 million gate design using HW-
simulation and cycle simulation-based HW/SW-coverification.
The main focuses are overall methodology, testbench
management, the verification task itself and defect management.
The chosen verification process was a real success: the quality of
the designed hard- and software was increased and furthermore
the time needed for integration and test of the design in the
context of the overall system was greatly reduced.

Keywords
HW/SW-coverification, cycle-based simulation

1. INTRODUCTION
The Siemens Switching System EWSD Innovation program
(EWSD Power Node) includes the implementation of a message
buffer (MB) which is part of the EWSD coordination processor
and acts as a signaling channel controller and message router.
Design requirements include maximizing traffic capacity and
being able to customize product derivatives through hardware and
software configuration.

Since the Siemens EWSD switch is designed for incremental
expansion in processing power, connectivity and services, the
system architecture is modular, enabling different configurations.

1.1 Hardware structure
The message buffer hardware consists of

• 3 different types of ASICs, each containing a RISC core,
memory controllers and ASIC specific interfaces, equivalent
gate count in the range from 270k to 420 k gates

• 3 different types of boards, each containing a number of one
type of ASIC and off-the-shelf components implementing the

following interfaces: 200 MHz ATM, 8xHDLC serial links
and a proprietary system interface

• 1 type of backplane which interconnects multiple
instantiations of the three types of boards

ASIC
with core

ASIC
with core

SDRAM SDRAM

Flash ROM

ASIC
with core

ASIC
with core

ASIC
with core

ASIC
with core

ASIC
with core

ASIC
with core

SDRAM SDRAM SDRAM SDRAM

SDRAM SDRAM

Flash ROM

ASIC
with core

ASIC
with core

SDRAM SDRAM

ASIC
with core

ASIC
with core

SDRAM SDRAM

Flash ROM

ASIC
with core

ASIC
with core

ASIC
with core

ASIC
with core

ASIC
with core

ASIC
with core

SDRAM SDRAM SDRAM SDRAM

SDRAM SDRAM

Flash ROM

ASIC
with core

ASIC
with core

SDRAM SDRAM

Internal Bus

2xController 2xATM

2xHDLC

ASIC
with core

ASIC
with core

SDRAM SDRAM

Flash ROM

ASIC
with core

ASIC
with core

SDRAM SDRAM

Flash ROM

Figure 1: Minimum configuration of the MB

The MB will be realized with 2 redundant halves running
independent and sharing their loads. The minimum configuration
(see Figure 1) consists of 2 HDLC, 2 ATM and 2 controller
boards, the maximum configuration consists of 16 HDLC, 10
ATM and 2 controller boards. This scaleable multiple-processor
platform is used to ensure the flexibility with respect to capacity
and still keeps the number of different hardware-solutions low.

1.2 Software structure on the message buffer
From the point of view of SW development, the message buffer
presents itself as a cluster of RISC processors, each equipped with
memory (DRAM, caches, on-chip-memories) along with some
communication interface HW. Since the 3 types of message buffer
ASICs are almost identical apart from their specific
communication interfaces, it is natural to reuse SW components
across ASICs.

The basic message buffer SW structure is shown in Figure 2. The
shaded areas denote the SW components reused on every ASIC.

Startup
SW

Maintenance &
Surveillance

Real Time Operating System (RTOS)

Hardware Abstraction Layer

Protocol
Maintenance

Protocols

Interface
Drivers

Figure 2: Message buffer SW structure

The message buffer SW consists of a hardware abstraction layer
and utility package, a real-time operating system (RTOS), various
interface drivers, a startup SW package and an Application SW.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

1.3 Simulation strategy
Based on a benchmark [1] done at the beginning of the project it
has been decided to use HW/SW-coverification. It enables SW
engineers to start HW/SW integration already on a virtual base
with no need to wait for physical hardware prototypes.

In a traditional approach HW and SW development start in
parallel after a common specification phase with a small delay but
with only a few interactions (see Figure 3). With the availability
of physical HW prototypes the integration starts from scratch with
quite often many ”simple” but time consuming errors to fix on
both sides.

Specification

S
W

/F
W

D
ev

el
op

m
en

t H
W

D
ev

el
op

m
en

t

In
te

gr
at

io
n

&
T

es
t

T
im

e

physical HW
prototype available

Specification

S
W

/F
W

D
ev

el
op

m
en

t

H
W

D
ev

el
op

m
en

t

T
im

e

Integration
& Test

physical HW
prototype available

Saved time to market

C
ov

er
ifi

ca
tio

n

Figure 3: The traditional approach vs HW/SW coverification

Using HW/SW-coverification the "wall" between the HW and
SW-community is never built at all (Figure 3). After the
specifications have been agreed upon both teams work in parallel.
As soon as some initial functions are realized in both HW and SW
integration can start right away on a simulation platform with
reasonable performance.

The ASIC-team provided their modules with a certain, not
necessarily complete functionality at an early stage for HW-
system-simulation. Not very much later - still a while before all
functionalities have been implemented - the available code was
used by the HW/SW-coverification as a virtual base for their
cosimulations. This approach led to a higher number of
intermediate ASIC-deliveries and regression tests and to
enormous feedback to ASIC team and the chance for HW
modifications driven by FW engineers.

To enable this closely coupled verification steps a strict and
elaborate planning and scheduling for the implementation steps of
the different functionalities in hard- and software is essential. On
the bottomline this leads to a higher verification coverage earlier
in the design process for the cost of some additional planning and
supervision.

The functional verification of the hardware has been carried out
by three distinct groups of engineers,each with a focus of their
own:

• ASIC-designers checked their modules before integration into
the ASIC mainly focused on implementation specifics.

• System and board designers stressed the design from their
system-function point of view, focussed on interrupts, ASIC
interoperability, communication on the boards, and so on.

• Software-designers used the simulation just as virtual
hardware to run their software on.

This combination of different verification approaches was a main
contributor to the high quality of the hardware as it became
available. The integration will completed on the virtual base a lot
earlier. With the availability of physical HW prototypes the SW-

integration starts already at a high quality level thus gaining a very
positive impact on the time schedule.

2. TESTBENCH DESIGN AND
CONFIGURATION MANAGEMENT
In order to minimize the effort for the generation and maintenance
of the message buffer testbench we agreed on a concept which
implements only one testbench which realizes the different
hardware configurations by VHDL configurations. The testbench
mainly consists of a toplevel entity, which instantiates the design
under test, and a set of generator models for stimulating and
tracers for observing activities on all relevant internal and external
interfaces. The hierarchical structure of the testbench equals the
hierarchical structure of the design.

Board

Shell

Backplane

TestbenchTracers &
Generators

Figure 4: Hierachical architecture of the testbench

The implementation of the testbench for the simulation of the
message buffer had to meet the following requirements:

• high simulation performance

• the external interfaces have to be modeled as realistic as
possible

• easy, semi-automated, check of simulation results

• ability for regression testing

• the same testbench for HW simulation and HW/SW
cosimulation

The following sections show how we tried to meet these
requirements.

2.1 Writing performant testbenches
A performance estimation (please refer to [1] for further details)
done at the beginning of the project showed that the hardware's
simulator performance has to be at least 150 simulated clock
cycles per second (for a single core design) to satisfy the
performance requirements in order to achieve reasonable test
coverage.

In order to reach this ambitious aim we decided to focus on two
things

• use of cycle-based simulation and

• writing high performant simulation models.

Using cycle-based simulation means to have especially take care
of the coding style of the design and the testbench elements.

Whereas ASICs anyway have to be coded at RT-level, they don't
cause many problems. But there is the need for a cycle based
version of the ASIC vendor's IO cell library and memory models.

More effort has to invested into the implementation of the
testbench models. Usually testbench elements are modeled in high

level, behavioral HDL code, stressing the features of the language.
Unfortunately this often doesn't fit into the cycle-based concept.
So for example you can't use access types, global signals or
inout parameters in procedures. Cylce-based testbench design
means a significant change in how to implement the necessary
testbench functionality. Synopsys' Cyclone requires the design to
be synthesizable; in a testbench however, additional constructs are
supported, includingtextio and a wider variety ofwait
statements.

Some techniques for writing high performant cycle-based
generators and tracers are listed below (see also [3] and [6] for
methods to enhance simulation speed):

• Do not use signals for inner-process communications, use
variables instead

• Use separate processes for each clock domain to prevent
evaluation of statements due unrelated clock signals

• For clock/reset generation use process suspension statements
(wait for) instead of queuing events (after statement)

• Do not use assertion statements due the need of string
conversions done by inefficient functions

All of this coding style hints improve the performance of an
event-driven simulator, too. Following these guidelines testbench
coding for cycle based simulation can be done in a very
performant way. The reachable (and reached) performance gain
ranges from 5 to 20x over an event-driven simulator.

2.2 Testbench configuration management
The large number of changing components (3 ASICs, 3 boards
and 1 backplane) during the implementation phase requires a
testbench configuration managment which primarly allows the
generation of new configurations, e.g. due a new ASIC release,
with less effort. As mentioned before this aim is reached by
keeping only one testbench for both HW simulation and HW/SW
coverification. To control the design hierarchy several VHDL
configurations were used.

During the simulation phase of the project on average of 10
versions a board and 50 versions a ASIC were incorporated into
the testbench. This leads to a total count of about 350
configurations for HW simulation.

To fulfill the requirement of one and the same testbench for HW
simulation and HW/SW cosimulation the embedding of the RISC
core was done in way allowing to select the kind of testbench by a
VHDL configuration. Either the VHDL RTL model or the VHDL
wrapper for the ISS was taken up by different configurations for
one and the same testbench. This way another 100 configurations
for HW/SW cosimulation were produced during cosimulation
phase with no need to generate a new testbench.

3. DESIGN VERIFICATION
3.1 Verifying the hardware
During the design process appr. 300 testcases have been carried
out at the ASIC-module level and appr. 80 at the systemlevel
focussing on the verification of the functionality implemented in
hardware.

number of testcases number of HW-bugs found
ASIC-testcases 300 79
System-testcases 80 248

Total 380 327

Table 1: Overview of hardware specific testcases

The number of bugs found with system testcases and HW/SW
cosimulation was higher than one might expect due to the fact,
that intermediate ASIC-deliveries took place as early as possible
and thus shifting the load of verification to the other teams to gain
an overall improvement in quality and schedule.

The testcase development methodology for the system level
simulations is greatly described in [4]. System level testcases are
mainly implemented as small pieces of C and assembler code
running on the system's embedded cores. Additionally up to 100
file controlled testbench models were stimulating external system
interfaces to get the desired test scenario.

In order to fulfill the requirements to automated testcase
evaluation and regression test ability the testbench consists of
tracer models connected to several system interfaces. Those
tracers collect the information on their inputs and convert them
into a human readable format. The results are stored in a set of
output files which were used for simulation analysis and
comparison with reference simulations in case of regression
simulations.

Applying this methodology a number of 80 system testcases were
simulated. Table 2 shows a overview about some testcase
characteristics (simulation runtimes measured on a SUN
UltraSPARC 2, 200 MHz).

testcase
name

Gate count of
configuration

LOC
C Assembler

real-time simulation
time

I2C_ARB 720k 450 2,000 2,5 ms 8200 s
I2C_REG 370k 400 2,000 2 ms 1 h
IBUS_R 940k - 5,500 3 ms 6 h

700k - 5,500 3 ms 4 h
3760k - 5,500 3 ms 16 h

Table 2: LOC, realtime and simulation runtime of some testcases

3.2 SW verification on the message buffer
When choosing a SW verification strategy for the message buffer,
several major influences had to be taken into account:

• The tight project schedule naturally demanded that ASIC and
SW be developed in parallel, and both HW and SW
implementations had to be verified early in the project.

• The exceptionally high requirements for message throughput
led to a closely coupled and sophisticated HW and SW
design. Again, the implementations had to be verified as early
as possible.

• Observability is greatly reduced for SW running on embedded
cores, compared to using a distinct processor.

• The massively parallel structure of the message buffer
demanded a debugging concept, where several cores could be
debugged simultaneously.

• Main SW components (internal message transfer, routing and
configuration) have been designed to support the parallel
structure of the message buffer. Clearly, a verification
environment supporting a fully equipped message buffer or at
least a reasonably large configuration was required.

Considering the above constraints, HW/SW coverification was
chosen as a verification strategy fulfilling our requirements. Of
course the message buffer SW also includes SW components

without any direct connection to HW, one example being the
administration of routing tables; for these, a PC based simulation
environment (MTT, module test tool) was setup primarily for
module tests and later on enhanced to support basic integration
steps. However, complete integration was carried out using
HW/SW coverification. Table 3 shows the verification strategies
employed for different SW components and project phases, along
with the final count of code lines (NLOCs):

Project
phase

Component HW/SW
coverification

MTT Size
(NLOCs)

Module tests Bootstrap, Startup ❍ 2,000

Hardware
abstraction layer

❍ 2,000

Drivers ❍ 10,000

RTOS ❍ ❍ 4,000

Protocol SW ❍ ❍ 12,000

Integration tests
(1 ASIC)

Maintenance SW +
Protocols

❍ 30,000

Complete SW ❍ 48,000

Integration tests
(systems)

Maintenance SW +
Protocols

❍ 30,000

Complete SW ❍ 48,000

Table 3: Software components and how they were verified

An essential goal has been to keep the SW running under the
coverification environment identical with the final target version.
However, performance limitations forced some minor
modifications to shorten simulation times:

• Startup SW usually does a lot of DRAM setup. To avoid long
startup delays. Instead, DRAM was preloaded directly by the
HW simulator.

• Timer periods have been reduced.

• SW for background HW testing (which would not make sense
in a simulated environment anyway) has been turned off.

Note that if ASIC emulation had been used as a coverification
tool, severe changes to SW would have been necessary: being able
to emulate just 1 ASIC per board instead of 8 (the true count,
which we did in cosimulation) would have had a severe impact on
configuration and maintenance SW. This would have meant a
much higher effort and a higher risk for final target tests.

Using the setup outlined above, SW engineers were able to have
all SW tested before actual silicon was available. In sum, 154
testcases ranging from 50 to 4,000 NLOCs each were tested in the
coverification environment. The final test phase on the real target
was reduced from an estimated 9 months without coverification to
about 3 months, essentially reducing time-to-market by half a
year.

4. DEFECT TRACKING
Different geographical locations of the development departments
and the complexity of the design require and efficient way for
defect tracking. Furthermore there is the need for some quality
metrics of the developed design for management decisions.

In former projects an email describing the found problem was sent
to a dedicated incident report (IR) manager, who was responsible
for the further activities, e.g. IR numbering, e-mail distribution
and so on (please see [2] for more details).

In the message buffer project the Distributed Defect Tracking
System ClearDDTS (former PureDDTS) from Rational was used
for IR management.

Figure 5 shows an IR management report used for decision when -
or if - the developed design is ready for fabrication. During
simulation phase many IRs were generated and opened for bug
fixing. After fixing the bugs and re-simulation the number of open
IRs became smaller and so the curve goes into saturation. This
was one of the indicators to allow ASIC sign-off.

Figure 5: Found bugs during simulation over time

5. CONCLUSIONS
It has been shown that HW/SW-Coverification with cycle based
simulation is a very powerful and flexible verification
methodology on a virtual platform. Today's commercial available
tools can provide reasonable performance and can also handle that
immense complexity if they are used in the right manner and are
applied in an efficient methodology.

Coverification enables a "formal" checking of design results of
both HW and SW teams on a common virtual platform from the
initial design step on through the whole design process.

The success of this project encourages us to improve our
verification process in terms of efficiency and testcase throughput.

6. REFERENCES
[1] Albrecht, Notbauer, Rohringer:"HW/SW Coverification

Performance Estimation & Benchmark for a 24 Embedded
RISC Core Design", 35th ACM/IEEE Design Automation
Conference, pages 808-811, 1998

[2] Albrecht, "Concurrent Design Methodology and
Configuration Management of the Siemens EWSD-CCS7E
Processor System Simulation", 32nd ACM/IEEE Design
Automation Conference, pages 222-227, 1995

[3] Cohen: "VHDL, Answers to Frequently Asked Questions",
Kluwer Academic Publishers, 1997

[4] Jantsch, Notbauer, Albrecht,"Testcase Development for
large Telecom Systems", 2nd IEEE International High Level
Design Validation and Test Workshop, 1997

[5] Pure Software, "Distributed Defect Tracking System
(PureDDTS), Administrator's Manual", 1995

[6] Synopsys Inc."Cyclone VHDL Coding Style Guide V1.1b",
1997

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

