
Cycle-based Symbolic Simulation of Gate-level Synchronous Circuits

Valeria Bertacco† Maurizio Damiani‡ Stefano Quer‡1

†Vera Group

Synopsys, Inc.

Palo Alto, CA 94303

‡Advanced Technology Group

Synopsys, Inc.

Mountain View, CA 94043

ABSTRACT
Symbolic methods are often considered the state-of-the-art
technique for validating digital circuits. Due to their com-
plexity and unpredictable run-time behavior, however, their
potential is currently limited to small-to-medium circuits.
Logic simulation privileges capacity, it is nicely scalable,
flexible, and it has a predictable run-time behavior. For this
reason, it is the common choice for validating large circuits.
Simulation, however, typically visits only a small fraction of
the state space: The discovery of bugs heavily relies on the
expertise of the designer of the test stimuli.

In this paper we consider asymbolic simulationapproach
to the validation problem. Our objective is to trade-off be-
tween formal and numerical methods in order to simulate a
circuit with a “very large number” of input combinations and
sequences in parallel. We demonstrate larger capacity with
respect to symbolic techniques and better efficiency with re-
spect to cycle-based simulation. We show that it is possi-
ble to symbolically simulate very large trace sets in parallel
(over 100 symbolic inputs) for the largest ISCAS benchmark
circuits, using 96Mbytes of memory.

1. INTRODUCTION

The complexity of digital circuits and systems is making the
validation of their functionality a daunting task. Sequen-
tial circuits, in particular, constitute a hard problem. Two
approaches to attack circuit validation are symbolic search
techniques and cycle-based simulation.

Search algorithms [1, 2, 3] (e.g, breadth-first search), are a
convenient way to visit the state diagram of a sequential cir-
cuit. They require maintaining afrontier and areachedstate
set. A search step consists of computing the image of the
frontier state set under all possible input combinations (“in
parallel”). Newly discovered states form the new frontier,
while the old frontier is merged into the set of reached states.
Given enough time and memory, a search can terminate ei-

ther upon finding an error or by completing the visit of all
reachable states. Current symbolic traversal tools often be-
come impractical for circuits with over one hundred latches,
for many reasons: 1) the size of the BDDs involved in the
computation to represent and maintain state sets grows too
large; 2) the time for computing the new frontier set (i.e. im-
age computation) gets too long; 3) the circuit is sequentially
too deep; 4) the BDD of the next-state function (or relation)
is too large. The solution (exact or approximate) to these bot-
tlenecks is still the subject of intense current research. Even-
tually, symbolic traversal is not very informative from a de-
sign debugging standpoint: If a bug is found, it is nontrivial
to construct an input trace that exposes it.

For these reasons,cycle-based simulation[4, 5, 6] is still the
technology of choice for the validation of large synchronous
systems. Logic simulation is nicely scalable. The mem-
ory image of a circuit is proportional to its gate count, and
so is the time to propagate values from inputs to outputs.
Moreover, it is flexible: Practical cycle-based simulators al-
low for circuits with multiple clocks and interface to event-
based simulation [7]. Today’s cycle-based simulators allow
the simulation of large systems (up to a few million gates)
with an execution rate of up to 108 2-input gates/second on a
100MHz CPU machine, or 100 states/second for a 1-million
gate circuit.

Simulation, however, is not a satisfactory solution to the val-
idation problem. Each run only proves the correctness of the
design under test (DUT) for that particular sequence of stim-
uli. Only one DUT state and input combination are visited
per simulated clock cycle. The number of DUT states and
input values visited is thus a very small fraction of the state
space of the circuit. The design of the input stimuli is left to
the designer, and it is an obviously crucial task. Expensive
emulation engines can also be used to speed up simulation
and reach more states. The simulation set-up, however, of-
ten requires weeks of work.

In this work, we consider a tradeoff between symbolic search
and simulation. In our approach, at each clock cycle, the
DUT inputs can assume constant values, as in simulation, or
they can be free, as in symbolic search. A (possibly) minimal
number of inputs is tied to constants. In this way, we : 1)
avoid representing the full next-state function, and 2) obtain
an easy-to-represent frontier subset. At the same time, we

1Stefano Quer is also with Politecnico di Torino, Dipartimento di Auto-
matica ed Informatica, Turin, Italy

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

SYMBOLIC VERIFICATION (δ, λ, S0) f
1 Reached = To = From = New = fS0g;
2 while (New 6= /0) f
3 CHECKOUTPUTS(8i λ(New, i));
4 To = δ(From);
5 New = To \ Reached;
6 Reached = Reached [New;
7 From = BEST BDD (New, Reached);

g g

Figure 1. Forward traversal-based reachability analysis.

simulate many input combinations in parallel and (hopefully)
reach a large number of states.

We adopted aparametricrepresentation of frontier sets [8].
This representation can be constructed and manipulated very
efficiently. The selection of which inputs to tie and to what
value is based on the “ease of construction” of this repre-
sentation. Alternatively, this selection can be left to the user
or to the tool: By freeing inputs selectively, it is possible to
symbolically simulate any “neighborhood” of an input trace
generated by the test bench.

The parametric representation allows us also to avoid the
computation and representation of the global next state func-
tions of the circuit, thereby avoiding a lengthy simulation
set-up time. Finally, no reached state set is maintained, so its
representation is not a bottleneck.

We demonstrate on several benchmarks (all the larger IS-
CAS benchmarks, as well as other industrial designs) that
with these techniques only a few inputs need be assigned a
constant value. We show experimentally that symbolic sim-
ulation allows us to speed up logic simulation by a factor of
over 103 for circuits that cannot be handled by current veri-
fication techniques, on a 96Mbyte PC.

2. PRELIMINARIES

Let B denote the setf0;1g. A logic function f is a mapping
f : Bm ! Bn. Therangeof f is the set ofn-tuples that can
be asserted byf . It will be denoted byRange(f). The ith

component off will be denoted byfi . The support off is
the set of variablesv for which f (v = 0) 6= f (v = 1). it is
denoted bySupp(f). We assume functions to be represented
by their BDDs [9, 10]. We indicate byj f j the number of
nodes of a BDD off .

We indicate with (i1, � � �, im), (o1, : : :, o0), and (s1, : : :, sn),
input, output, and state variables. Next state functions are
indicated withδ(s; i), and output functions withλ(s; i). S0 is
the initial state.

2.1. Symbolic search
Fig. 1 shows the pseudo–code of a verification algorithm for
a synchronous circuit, using asymbolic forward traversal.
CHECKOUTPUTS represents a generic checker. It evaluates
the correctness ofλ. Its actual functionality depends on the
final application of the traversal routine. At each traversal

CYCLEBASEDSIMULATION (δ, λ, S0, T)f
1 From = S0;
2 while (ISNOTEMPTY (T)) f
4 t = NEXTVECTOR (T);
5 CHECKOUTPUTS (λ (From, t));
6 To = δ (From, t);
7 From = To;

g g

Figure 2. Cycle-based simulation approach.
in

@0
in

@1 in
@k

in
@0

@0
s

@1
s

@1
out @k

out
@k+1

out in
@k+1

@k
s @k+1

s

start
state

@0
out

Figure 3. Symbolic simulation approach.

step,δ(From) determines the statesTo reached from the set
From. SetNew contains theTo states that have not yet been
visited. Reached states accumulate inReached. After the
first step, function BEST BDD [11] selects a subsetFrom
with a simple BDD representation.From ranges fromNew

to Reached. The code terminates when no moreNew states
are reached.

2.2. Logic simulation
Fig. 2 shows the pseudo-code of a simple functional sim-
ulation loop.T contains the test vectors. In compiled code
simulation [4], gates and combinational RTL components are
mapped to machine instructions, while latches are mapped to
memory locations: The netlist is effectively compiled into a
program.

In interpreted simulation, the netlist is a graph structure in
main memory. Each node contains type (AND, OR , ...), fanin
and / or fanout information. The simulation code is inde-
pendent from the netlist structure. It visits each node of the
graph and computes the node output from the inputs, accord-
ing to the node type. In either compiled-code or interpreted
simulation,δ is still represented by the circuit’s netlist. The
memory occupation of the circuit is thus linear in the cir-
cuit size. Approaches based on a BDD representation of the
netlist were proposed in [12, 13, 14].

In “oblivious” simulation all gates are evaluated at each
clock tick. Alternatively, only value changes across the
netlist are propagated. Although there are typically many
more gates than value changes, in practice, the additional
data structure requirements and checks appear to favor obliv-
ious simulation. Today, compiled-code oblivious simulation
appears to produce the most compact circuit representation
and fastest execution.

2.3. Symbolic simulation
Fig. (3) shows the iterative model of a synchronous circuit.
In symbolic simulation, at each time stepk, the expression of
the primary outputs and state variables is computed, in terms

3-bit

ADD

en

s

s

s

0

1

2

Figure 4. a 3-bit down counter with enable.

of the variables inin@0; � � � ; in@k. Example (1) illustrates this
construction for a 3-bit down counter.
Example 1 Fig.(4) shows a 3-bitdowncounter with enable.
Outputs coincide with the state variables. Starting from state
0, the expressions of the outputs are

time= 0 : out@0= (0;0;0);
time= 1 : out@1= (en@0;en@0;en@0);
time= 2 : out@2= (en@0+en@1;en@0+en@1;

en@0�en@1);
time= 3 : � � �

Notice that the state variables do not appear in the output
expressions.
If a bug is found at some timek the expression ofout can
provide the entire set of input sequences of lengthk that ex-
pose it. Unfortunately, however, these expressions quickly
become large and intractable, making the whole approach
practically infeasible. One obvious simplification consists of
resorting to state variables. When computing the expression
of δ at timek+1, instead of using the expressions of the state
variabless@k, one keeps track only of the possible configu-
rations that these variables can assume (i.e. the simulation
frontier at timek). A symbolic simulation loop is then es-
sentially the forward reachability analysis loop of Fig. (1),
without lines 5, 6. BEST BDD just returnsTo. It also inher-
its all the drawbacks of reachability analysis, except for the
computation ofReached. In particular, one looses informa-
tion on how a certain state is reached. This makes debugging
more complex.

3. OUR APPROACH

We based our method on the following observations. Con-
sider the situation of Fig. (3). Althoughδ in general can be
complex, in practice at time 0 its components are often very
simple (constants , copies of an input, or complement of an
input), because the state variables are replaced by constant
values. Moreover, an input variable may be copied into sev-
eral state variables: there are thenfunctional dependencies
among the various state bits [15, 16]. We use these func-
tional dependencies to obtain a simplified representation of
δ at time 1.

In practice, we never build explicitlyδ. Rather, at each clock
tick k, we build a simplified versionδF of δ. We use the func-
tional dependencies among the components ofδF at timek

s@0

@0
out

@1
out

@k
out

s@k

@0t
@0t

in

@1t

in

@kt
@k-1t

state
start

in in in

in

in

s@k+1

@k+1
out

δ
F

δ
F

δ
F

ρ σ1 1
ρ σk k

δ
F

σρ
0 0

Figure 5. Our symbolic simulation approach.

SYMBOLIC SIMULATION (δ, λ, S0, T) f
σ = S0;

while (ISNOTEMPTY (T)) f
fδF ;λFg (inputs, intermediates) = SIMULATE (σ);
CHECKOUTPUTS(λF);
fρ, σg = DECOMPOSE(δF , T);

g g

Figure 6. Pseudo-code of our approach .

to build a version ofδF at timek+1. If, in spite of our ef-
forts,δF becomes “complex”, few inputs are tied to constant
values in order to simplify it.

3.1. Using functional dependencies.

We discover and exploit functional dependencies using a
parametricrepresentation of the reached state set [8]. Fig.
(5) illustrates the approach. We introduce someintermediate
variablesti . At a generic clock tickk, we inspect the BDDs
of δF and build a functionσ(ti) such that

Range(σ) = Range(δF): (1)
In practice, we will settle for aσ such that 1) the number of
parameter variablesti is small, and 2)Range(σ) is a “large”
and easily identifiable subset ofRange(δF). Section(3.2)
provides the details onσ and its construction. The BDD
of δF(i1; � � � ; im;σ) is then built, and a newσ constructed.
Notice that state variables are effectively replaced by these
intermediate variables.

In addition, we build a second mappingρ. This second map-
ping expresses eachti as a function of inputs and interme-
diates at the previous tick. Alsoρ should be “simple”, for
the following reason. Suppose a bug is discovered at time
k. There is then an assignment of primary inputs and inter-
mediates at timek that exposes the bug. We need to be able
to map the assignment of intermediates to an assignment of
inputs and intermediates at timek� 1, and then iteratively
back to primary inputs at timek�2; � � � ;0.

Fig. 6 shows the proposed approach.

Procedure SIMULATE substitutes latch output variables with
their expressions inσ. It then simulates symbolically the
combinational portion of the circuit and returns the arrays
of BDDs δF and λF . DECOMPOSE is shown in Fig. 7.
It performs two main operations. First, it makes sure that
Range(δF) can be parameterized in linear time. If this is not

DECOMPOSE(δF , T) f
C = FINDCOMPLEXVARIABLES(δF);

δF = ASSIGNANDCOFACTOR(δF , C, T);

F = FINDSHAREDVARIABLES(δF);

δF = ASSIGNANDCOFACTOR(δF , F , T);

fρ;σg = REWRITE(δF);
g

Figure 7. Pseudo-code for the functionDECOMPOSE.

the case, it identifies variables for assignment, and cofactors
δF accordingly. The actual constant values are provided by
the test bench inputT. It then decomposesδF into σ and
ρ. Functions FINDCOMPLEXVARIABLES, FINDSHARED-
VARIABLES, and REWRITE are described in Sections 3.2
and 3.3, respectively.

3.2. Identifying intermediate variables
We show here a way to identify quickly a functionσ such that
Range(σ) is a “large” subset ofRange(δF). This requires the
following definitions.

Definition 1 A variable x is termedsimple if there is a com-
ponentδF;i of δF such that Supp(δF;i) = fxg: Given a func-
tion δF , let S denote the set of simple variables. A component
δF;i is termedsimple if Supp(δF;i)� S.

Definition 2 Let again S denote the set of simple vari-
ables. A non-constant functionδF;i is termedcomplex if
Supp(δF;i)\S 6= φ and Supp(δF;i)\S 6= φ. For a complex
functionδF;i , a variable belonging to Supp(δF;i)\S is also
termedcomplex. A variable or function isunbound if it is
neither simple nor complex.

Definition 3 Two componentsδF;i ;δF; j of δF are termed
equivalent if they are unbound andδF;i = δF; j or δF;i = δ0F; j .

Definition 4 Given an equivalence classε of functions, we
indicate with Supp(ε) the set of variables belonging to the
support of any function inε. A variable x2 Supp(δF) is
said to bebound if it belongs only to the support of asingle
equivalence class ofδF . It is termedsharedotherwise.

Suppose first that the components ofδF are only: 1) con-
stants, 2) functions of a single variable, or 3) functions of
variables also appearing as single variables in other compo-
nents (that is, simple functions). One such case would be,
for example,

δF(x;y) = (x;x0;y;0; f (x;y);g(x;y);y0) (2)
An exact parametric description is obtained by replacingx;y
with two parameters:

σ = (t0; t
0

0; t1;0; f (t0; t1);g(t0; t1); t
0

1) (3)
Notice thatρ is just a data-transfer:t0 = x; t1 = y:

Suppose now thatδF consists only of simple and complex
functions. By assigning a value to complex variables, some
complex variable may become simple:
Example 2 Consider

δF(p;q; r;x;y) = (x;y;x+y+ p+q; p+xq): (4)
δF;0 andδF;1 are simple.δF;2 andδF;3 are complex, as vari-

FINDCOMPLEXVARIABLES (δF) f
S=C= /0;
foreach (δF;i 2 δF) f

if (jSupp(δF;i)j== 1) f
S= FUNCTIONTYPE (δF;i , Simple);
S= S[Supp(δF;i);

g g
foreach (δF;i 2 δF) f

if (Supp(δF;i)\S 6= /0) f
Temp = Supp(δF;i)\S;
if (Temp 6= /0) f

C = FUNCTIONTYPE (δF;i , Complex);
C=C[Temp;

g
g g
return(C); g

Figure 8. Identifying Simple and Complex Variables.

ables p and q are complex. By assigning a value to p and
q, complex components become simple andδF can have a
simple parametric representation.
Simple and complex variables (and functions) are identified
in a two-pass scan of the BDDs ofδF . Fig. (8) shows the
pseudocode. Initially, functions and variables are labeledUn-

bound. The firstforeach loop finds the support of each compo-
nent ofδF and identifiesSimple variables. This takesO(jδF j)
time. The secondforeach loop identifies complex variables
and places them inC.

After complex variables are identified and removed, the com-
ponents ofδF are labeled as either simple or unbound. Un-
bound functions have no support variables inS. We now ex-
amine unbound functions. The simplest case occurs when
one unbound function has support disjoint from all other
components. For example, in Eq. (5) below:

δF = (f (p;q);x;y;g(x;y)): (5)
the first component is unbound and has support disjoint from
all others. The component can be replaced by an inde-
pendent intermediate variable:σ = (t0; t1; t2;g(t1; t2)) where
t0 = f (p;q); t1 = x; t2 = y:

Consider the more general situation:
δF = (f (p;q); f 0(p;q);x;y): (6)

The first and second component ofδF can be replaced by
t0; t 00, respectively.

Definition 4 partitions the set of unbound functions inδF

into equivalence classes. These classes can be discovered in
a single scan of the arrayδF . Consider assigning a value to
all shared variables. The support of each equivalence class
will contain only bound variables, so each class can be re-
placed by an independent parameter.
Example 3 Consider

δF = (x+y+z;x0y0z0;z0w;z0w): (7)
By assigning z= 0, the components ofδF become:

δF = (x+y;(x+y)0;w;w): (8)
A parametric representation of Range(δF) is then

σ = (t0; t
0

0; t1; t1); (9)

FINDSHAREDVARIABLES (δF) f
Shared = EqvClasses = /0;
foreach(δF;i 2 δF) f

if(FUNCTIONTYPE(δF;i) == Unbound) f
Class = FINDORMAKENEWCLASS(δF;i);

EqvClasses = EqvClasses [f Classg ;
TAG(Supp (δF;i), Class);

g g
foreach(Class 2 EqvClasses) f

foreach (x 2 Supp (Class)) f
if (Tag(x) 6= Class) Shared [= f x g;

g g
return(Shared); g

Figure 9. Identifying Bound and Shared Variables.

where t0 = x+y; t1 = w:
Fig. (9) illustrates the algorithm for finding shared variables.

3.3. TheREWRITE function.
REWRITE generatesρ;σ as follows. For a circuit withm
inputs(i1; � � � ; im) andn state variables(s1; � � � ;sn), exactlyn
intermediatesti are introduced. Someti may end up unused.
The BDD ordering of the intermediates reflects that of the
state variables: if variablesj has rankk, then variablet j will
have rankk.

Once complex and shared variables are removed, the compo-
nents ofδF are either simple variables, or simple functions,
or functions bound to equivalence classes. The components
of σ are then obtained byreplacingeach simple variable and
equivalence class by an intermediateti . The BDD of simple
functions must be re-written in terms of the new interme-
diatesti . To make this re-writing simple (i.e. linear in the
BDD size), a dynamic replacement procedure is established,
as follows. Areplacement tablewith m+ n entries is kept.
The kth entry of the table represents thekth variable in the
BDD ranking, from the top. The entries are visited in order.
The first variable that appears as a simple variable is replaced
by t1, the second one byt2, and so on. Each equivalence class
εi is then assigned one of the still unassignedtk.

4. EXPERIMENTAL RESULTS
We implemented a symbolic simulator and tested it on a PC
based on a 150MHz Pentium with 96 Mbytes of memory,
running Linux. The simulator is interpretive and oblivious.
We tested it on the largest circuits in the ISCAS’89 [17] and
ISCAS’89–addendum suite, plus two medium-size commer-
cial designs. Each 2-input gate takes 16 bytes of memory. A
proprietary BDD package was used.

We evaluated the simulator by running it for 1000 cycles on
each benchmark circuit. Complex and shared variables are
assigned random values. Table (1) reports the relevant circuit
metrics and summarizes the experimental results. For each
circuit we report the number of primary inputs# PI, primary
outputs# PO, memory elements# FF, and gates# G.

The following measures are important for our purposes : 1)
the average size of the support ofδF , and 2) the average num-
ber of states reached at each simulated clock tick.

Interms reports the average number of intermediate variables
appearing inσ. The average number of states visited at each
clock tick is 2Interms. The support ofδF has sizeInterms +

#PI . This support can be used for the detection of bugs in
the output of the DUT. This number gives us the parallelism
in the computation ofδF andλF . It is reported in column
In-δF .

ColumnAssd reports the average number of (input + interme-
diate) variables assigned by DECOMPOSE, during the con-
struction ofσ. The parallelism in computing the functionσ
is thus given implicitly byInterms + #PI - Assigned. This
number is reported inFree. The actual number of parallel
traces is 2Free.

ColumnMemory indicates the total memory consumption of
the simulation in Mbytes. This includes the netlist and the
BDDs.

ColumnCPU reports the time for 1000 simulation cycles.
Column CPU-sim indicates the time spent for 1000 cycles
of compiled-code simulation. Finally, columneÆciency con-
tains the ratio 2Free�(CPU-sim=CPU). It represents the num-
ber of symbolic simulations executed in the time spent in one
numerical simulation.

Several ISCAS benchmarks seem to contain “highly sequen-
tial” components (such as counters). If the state bits of a
counter take constant value at some point in time (that is,
they are represented by constants), then also the at the next
clock tick they will be represented by constants. The last
two circuits are more data-path intensive: they contain sev-
eral large data-transfer or arithmetic operations. It is easier
in these cases to assign state bits independently. Hence the
larger number of parameter variables.

5. CONCLUSIONS AND FUTURE WORK

We presented an approach towards asymbolic simulationof
synchronous circuits. The approach is based on the quick re-
writing of frontier sets in terms of Boolean parameters. It al-
lows the designer to construct a symbolic simulation around
a numerical cycle-based one, by selectively “freeing” some
(if not all) of the circuit inputs. This approach allows us
to deal with more than one state and many input combina-
tions at a time. The equivalent execution rate is boosted by
a large factor over cycle-based simulation for the larger cir-
cuits. Moreover, it seems to increase as the circuit size in-
creases.

Several tradeoffs need be explored further. For instance,
since the execution of a gate is non-trivial, event-based exe-
cution may outperform a cycle-based one.

Counters and sequencers occur several times in the bench-
marks. A large number of constant bits of course lowers the

Circuit #PI #PO #FF #G Interms In-δF Ass.d Free Mem. CPU CPU-sim EÆc.

prolog 36 73 136 1845 28.96 64.96 23.98 40.98 0.36 4.29 0.22 1.11�1011

s1269 18 10 37 771 0.76 18.76 13.18 5.58 0.37 1.85 0.07 1.80
s1423 17 5 74 830 1.00 18.00 13.07 4.93 0.05 2.09 0.12 1.76

s1512 29 21 57 990 3.20 32.20 16.50 15.69 0.08 1.78 0.13 3.87�103

s3271 26 14 116 2166 6.38 32.38 25.89 6.49 0.55 17.76 0.20 1.01

s3330 40 73 132 2020 28.93 68.93 23.89 45.03 0.57 4.44 0.23 1.86�1012

s3384 43 26 183 1734 32.79 75.79 40.70 35.09 0.65 5.83 0.25 1.57�109

s4863 49 16 104 2492 2.91 51.91 41.86 10.05 0.15 5.94 0.24 4.30�101

s5378 35 49 179 3973 12.89 47.89 30.93 16.96 0.64 7.96 0.31 4.95�103

s6669 83 55 239 3272 75.36 158.36 76.58 81.78 36.77 947.61 0.52 2.28�1021

s9234.1 36 39 211 6585 17.96 53.96 19.65 34.31 0.24 11.25 0.34 6.42�108

s13207 31 121 669 9539 14.41 45.41 4.64 40.77 0.61 21.09 0.78 6.94�1010

s13207.1 62 152 638 9539 57.30 119.30 13.52 105.78 1.36 34.29 0.87 1.76�1030

s15850 14 87 597 11316 4.39 18.39 2.82 15.57 0.50 21.54 0.78 1.76�103

s15850.1 77 150 534 11316 17.19 94.19 55.73 38.46 1.75 100.01 0.85 3.22�109

s35932 35 320 1728 23085 1.00 36.00 35.00 1.00 0.96 56.59 2.19 7.75�10�2

s38417 28 106 1636 27648 46.90 74.90 8.19 66.71 2.89 80.73 2.70 4.05�1018

s38584 12 278 1452 24619 6.36 18.36 5.94 12.42 10.25 316.08 2.16 3.74�101

s38584.1 38 204 1426 24619 7.51 45.51 24.44 21.07 22.40 1248.26 1.88 3.31�103

dmac 44 149 328 5926 82.43 126.43 65.39 61.04 23.08 91.80 0.45 1.16�1016

matmult 37 97 836 9660 32.65 69.65 17.45 52.20 18.43 604.10 0.86 7.36�1012

Table 1. Average number of intermediate variables and free variables for each simulation cycle.

parallelism of simulation.

Improving the designer’s confidence in the technique is the
main topic of future work: Larger and larger trace sets must
be considered in parallel. Therefore, investigating ways of
increasing the number of free variables in each symbolic
simulation cycle is important.

References
[1] O. Coudert, C. Berthet, and J. C. Madre. Verification

of Sequential Machines Based on Symbolic Execution.
In Lecture Notes in Computer Science 407, Springer
Verlag, pages 365–373, Berlin, Germany, 1989.

[2] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machines using BDD’s. InProc. ICCAD,
pages 130–133, November 1990.

[3] J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill.
Symbolic Model Checking for Sequential Circuit Ver-
ification. IEEE Transactions on CAD, 13(4):401–424,
April 1994.

[4] Z. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rut-
ledge. Hss- a high-speed simulator.IEEE Trans. on
CAD/ICAS, pages 601–617, July 1987.

[5] C. Hansen. Hardware logic simulation by compilation.
In Proc. DAC, pages 712–715, June 1987.

[6] L.T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio.
Ssim: A software levelized compiled-code simulator.
In Proc. DAC, June 1987.

[7] C.J. DeVane. Efficient circuit partitioning to extend cy-
cle simulation beyond synchronous circuits. InProc.
ICCAD, pages 154–161, nov 1997.

[8] P. Jain and G. Gopalakrishnan. Efficient symbolic

simulation-based verification using the parametric form
of boolean expressions.IEEE Trans. on CAD/ICAS,
13:1005–1015, August 1994.

[9] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. on Computers,
35(8):677–691, August 1986.

[10] R. E. Bryant. Symbolic Boolean Manipulation with
Ordered Binary–Decision Diagrams.ACM Computing
Surveys, 24(3):293–318, September 1992.

[11] H. Cho, G. Hachtel, S. Jeong, B. Plessier, E. Shwarz,
and F. Somenzi. Atpg aspects of fsm verification. In
Proc. ICCAD, pages 134–137, November 1990.

[12] P. McGeer, K. McMillan, A. Saldanha, A. Sangiovanni-
Vincentelli, and P. Scaglia. Fast discrete function eval-
uation using decision diagrams. InProc. ICCAD, pages
402–407, November 1995.

[13] P. Ashar and S. Malik. Fast Functional Simulation us-
ing Branching Programs. InProc. ICCAD, pages 408–
412, San Jose, California, November 1995.

[14] Y. Luo, T. Wongsonegoro, and A. Aziz. Hybrid
Techniques for Fast Functional Simulation. InProc.
IEEE/ACM DAC’98, pages 664–667, San Francisco,
California, June 1998.

[15] A. Hu and D. Dill. Reducing bdd size by exploiting
functional dependencies. InProc. DAC, pages 266–
271, June 1993.

[16] C.A.J. van Eijk and J. A. G. Jess. Exploiting functional
dependencies in fsm verification. InProc. EDAC, pages
9–14, February 1996.

[17] F. Brglez, D. Bryan, and K. Ko´zmiński. Combinatorial
Profiles of Sequential Benchmark Circuits. InProc.
IEEE ISCAS’89, pages 1929–1934, May 1989.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

