
Implementation of a scalable MPEG-4 wavelet-based visual
texture compression system

L. Nachtergaele, B. Vanhoof, M. Peón, G. Lafruit, J. Bormans, I. Bolsens

IMEC, Kapeldreef 75, B3000 Leuven, Belgium, Tel. +32/(0)16/281.201

{nachterg, vanhoofb, peon, lafruit, bormans, bolsens}@imec.be

ABSTRACT

The realization of new MPEG-4 functionality,
applicable to 3D graphics texture compression
and image database access over the Internet, is
demonstrated in a PC-based compression sys-
tem. Applying our system-level design meth-
odologies effectively removes all implementa-
tion bottlenecks. A first-of-a-kind ASIC, called
Ozone, accelerates the Embedded Zero Tree
based encoding and is capable of compressing
30 color CIF images per second.

1. INTRODUCTION
MPEG-4, a standard for multimedia communication, has reached
International Standard status since the beginning of 1999 [1]. This
newly adopted standard opens high aims in the already very im-
portant multi-media market. Consider for example the dissemina-
tion via the Internet of the popular “Episode I” trailer of Star Wars
[2]. On this web site, ten different versions of the 2.2 minutes
trailer movie are offered with file sizes ranging from 5 Mbytes up
to 25 Mbytes. Each of the ten file formats presents a trade-off in
download time and required computational performance of the
decoder. Instead, MPEG-4 aims at providing a solution that scales
the communication of the multimedia content over heterogeneous
access networks and decoding facilities. The ultimate goal is to
reach a “create once, decode everywhere” situation. For that, the
key capability that is missing in current audio-visual coding sys-
tems is scalability. Employing a wavelet-based compression tech-
nique allows for scalable MPEG-4 visual texture coding, the sub-
ject of this paper.
When rendering a 3D scene, objects that are near to the horizon
only need very coarse textures of perhaps just a few pixels. As
objects become closer to the position of the viewer, more detailed
textures are required to obtain natural looking scenes. Current 3D
applications use de-facto 3D graphics API’s such as OpenGL and
Direct3D. Hereby the uncompressed textures are read into mem-
ory first. Only then, downsampling and filtering generate the re-
quired successive lower resolution versions. This technique works
well in a PC environment where applications are mostly distrib-
uted on CD-ROM. However, imagine for a moment that the 3D

content is transmitted via the Internet. It’s clear that data volumes
typically found on CD-ROM are way too large for this. Hence,
compression of the 3D scenes and associated textures is required.
The purpose of MPEG-4 wavelet based visual texture coding is
exactly meant for that. This paper describes a first-of-a-kind reali-
zation [6] that demonstrates the key functionality for visual tex-
ture coding.

2. WAVELET-BASED COMPRESSION: IM-
PLEMENTATION CHALLENGES
Three major algorithmic parts can be distinguished in the MPEG-
4 compression algorithm for visual textures (see Figure 1). First,
applying the wavelet transform decorrelates the input image. Sec-
ondly, trees grouping wavelet coefficients across several subbands
are extracted. The Embedded Zero Tree (EZT) algorithm [12]
compresses these trees by identifying trees consisting solely of
zeroes. One can consider EZT as an intelligent run-length coder
that operates on several resolutions of the image at the time. Fi-
nally, an arithmetic encoder removes redundancy from the se-
quence of EZT symbols. The shrinking size of the arrows in Fig-
ure 1 between the three algorithmic blocks suggests that the data
object size whereupon they operate reduce from image frames,
over trees of zeroes to bits.

Transform
task

Wavelet
Transform

Compression Task

EZT
coder

Arithmetic
coder

Figure 1: A wavelet-based visual texture compression system
contains three major parts

In this paper, the implementation of an end-to-end compres-
sion/decompression system implementing this complex compres-
sion algorithm is described. The implementation of each identified
algorithm represents a challenge on its own. The wavelet trans-
form exhibits a high bandwidth to memory. The EZT coding is a
highly data dependent algorithm that is defined in terms of while-
loops and dynamic lists. These two concepts prevent a straight-
forward hardware implementation. And last but not least, the
adaptive arithmetic encoder is the end of the processing pipeline
that has to cope with all symbols produced. For example, suppose
a setup of the compression engine parameters for a compression
factor of ten (this corresponds to visually lossless compression).
In the case of real-time color CIF images, the arithmetic encoder
must then be capable to process (352 columns x 288 lines x 12
bits/pixel x 30 frames/second)/10 = 3.6 106 bits/second. This re-
quirement can solely be met by a high throughput application
specific datapath. The three implementation problems - high

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

memory bandwidth for the wavelet transform, a complex irregular
highly datadepent EZT coder and the non pipelinable adaptive
arithmetic coder - make the implementation of such a compression
chain a real implementation challenge.
Traditionally, in order to tackle the design time problem, a divide
and conquer approach is followed. The system design would then
be split into three separate “processor” designs that each tackle the
aforementioned implementation challenges. The result of the in-
dependently locally optimized implementations is then integrated
as they become available. For data intensive applications, like the
compression chain under consideration, huge buffers in-between
the “processors” become unavoidable for this integration. Those
buffers can jeopardize the goals of the system since they may
represent a large part of the total system cost budget. In the worst
case, a redesign of one or more “processors” is needed, leading to
unexpected delay in the system design. Such delay may be dra-
matic if they cause a miss of the market opportunity window. In
the next section, we present a global system-level design method-
ology that allows for a global system optimization.

3. GLOBAL SYSTEM-LEVEL DESIGN
METHODOLOGY

The applied multi-stage system-level design methodology [3]
consists out of two major stages called the task level Data Trans-
fer and Storage exploration (DTSE) [4] and the processor level
DTSE [4], as shown in Figure 2.

C/C++

VHDL Embedded C

Architecture
Integration

Hardware
Architecture

Synthesis

Instruction
Set Processor

Mapping

Processor level DTSE

Task level DTSE

C/C++ C/C++

Figure 2: Applied system-level design methodology

Tasks are subsystems that can operate concurrently. The criterion
to decide what functionality is considered in one task, is based on
a data-dependency analysis. The main reason for splitting the
DTSE in two stages is the significant reduction of the system de-
sign complexity. This reduction can be achieved without sacrific-
ing system cost in data transfer and storage overhead.
In the still texture compression chain, clusters of data dependen-
cies are found in the wavelet transform on one hand and in the
combination of the EZT and adaptive arithmetic encoder on the
other hand. Hence, the global system is partitioned into two main
tasks as depicted in Figure 1. The resulting two tasks are called
the transform task and the compression task respectively. After
task partitioning, buffer sizes in-between tasks must be mini-
mized. This is the objective in the so-called “Inter-task” or “task-
level” optimizations of the next section.

4. LEVEL OPTIMIZATIONS: THE LOCAL
WAVELET TRANSFORM
In order to perform the wavelet transformation and the EZT cod-
ing simultaneously, a ping-pong buffer must be provided. While a

wavelet-transformed image is produced, the EZT compresses the
previous transformed image as shown in Figure 3. As the wavelet-
transformed image has the same size as the input image, the size
of the ping-pong buffer is twice the input size. For example, with
an input image of 1024×1024, this results in 2 mega sample
buffer.

Wavelet
Transform

Input
Image

Figure 3: Between the transform and the compression tasks, a
buffer of twice the size of the input image is required

This huge inter-task buffer is clearly not desirable in a high-
throughput processing pipeline. Therefore it is important to match
the data production of the wavelet transform task to the data con-
sumption in the compression task.
Vishwanath [15] was able to develop a single systolic array algo-
rithm, called Recursive Pyramid Algorithm (RPA), for computing
the wavelet transform that requires a minimal amount of data-
word storage. A modified RPA (MRPA) [5] allowed to reduce the
latency of the overall wavelet transform processing by “filling the
gaps” in the execution schedule. Although the (M)RPA technique
effectively reduces the required intermediate memory, still a high
number of transfers to and from the memory are needed. In [8] the
optimized result of an intra-task DTSE, called the Local Wavelet
Transform (LWT) is described. The LWT drastically reduces the
required memory access cost and its associated bandwidth. This is
very important in order to achieve low power operation. Further-
more, the LWT needs a slightly smaller memory compared to the
MRPA technique. In [9], a memory efficient architecture for im-
plementation of the LWT is presented. In Table 1, the memory
size and the number of memory accesses needed when performing
a 6 level discrete wavelet transform with a 9/7-taps wavelet filter
are given.

Image Size Method Memory Size
(#samples)

Memory Access
(#reads/sample)

Mallat 1 M 2.67
RPA 327 k 11.31024×1024
LWT 281 k 3.07
Mallat 16 M 2.67
RPA 1.3 M 11.34096×4096
LWT 1.1M 3.14

Table 1: Memory size and access for Mallat, RPA and LWT
for a 9/7-tap, 6 level wavelet transform

After the buffer in-between the transform and the compression
tasks is largely removed, the tasks on their own are still to be op-
timized. This is the next stage in our system-level design method-
ology and is called “intra-task” or “processor-level” optimization
and is the subject of the next section.

5. PROCESSOR-LEVEL OPTIMIZATIONS
The two tasks resulting from the partitioning operate on different
basic datatypes. The transform task is composed out of filter and
downsampling operations that process samples. Hence, a wavelet
transform is well suited to be implemented on a DSP processor or
a processor with media extensions. In contrast, the compression

task works on symbols and bits. Bit-oriented algorithms are typi-
cally less suited for implementation on processors. Therefore, we
have opted for an application specific solution (ASIC). We now
discuss efficient implementations by applying the processor-level
optimizations on the transform and the compression task.

5.1 Discrete Wavelet Transform Implementations
A good survey of research until 1996 concerning implementation
issues of the discrete wavelet transform is found in [10]. The most
recent wavelet zero tree processor, presented in [7], implements a
wavelet codec with a four taps Daubechies orthogonal wavelet
filters and compresses the wavelet coefficients by applying a sin-
gle quantization coding scheme that generates zero tree symbols
in one single wavelet band. The latter is not conformant to Sha-
piro’s [12] inter-band Zero-Tree coding.
The wavelet compression system used in this paper differs in two
fundamental points compared with the above mentioned imple-
mentations. A first significant difference is in the way that the
wavelet coefficients are calculated. In [13] the Lifting scheme is
proposed. This technique reduces the number of multiply-
accumulate operations, but a far more important feature of the
Lifting scheme is that the wavelet transform becomes reversible
and can be realized in hardware using integer arithmetic operators.
Hence unlike all above surveyed solutions, our system also allows
for a lossless compression. Although the reduction of the proc-
essing requirements is a nice property of the Lifting scheme, we
have explained in the previous section that the main implementa-
tion bottleneck is the memory architecture and not the arithmetic
related aspects. The second major difference is the used compres-
sion technique. The proposed compression task implements EZT
coding corresponding to the bi-level quantization in MPEG-4
standard. In contrast with the above surveyed architectures, this
EZT coding also exploits inter-subband correlation.
At the time the chip for the compression task became available
(Section 5.2), no functional hardware for the transform task was
ready. Therefore, we resorted to an earlier started effort in speed-
ing up a Pentium based implementation and developed an MMX
optimized lossless wavelet transform, resulting from a constrained
processor-level optimization. This optimized wavelet transform
performs 30 wavelet transforms in a second on a color CIF image
when executed on a Pentium II PC running at 350 MHz. This
illustrates how the inter-task DTSE is independent from the im-
plementation style of the tasks. In this case, we have demonstrated
how the multi-stage system design methodology can cope with
real-life situations such as fast time-to-market requirements and
the corresponding constrained design time.

5.2 “Ozone”: ASIC for Embedded Zero Tree and
Adaptive Arithmetic Encoding
In this section, processor-level implementation issues of the com-
pression task are discussed. Next, we describe the programmabil-
ity of the Ozone, followed by an architecture description. In the
last subsection, a summary is given of the design tools used for
designing the Ozone.

5.2.1 EZT Coder
The coding scheme we present in the Ozone exploits the correla-
tion between the wavelet coefficients in different bands, corre-
sponding to the bi-level quantization scheme in MPEG-4. A gen-
eral EZT coding scheme is proposed in [12]. To obtain a memory
efficient implementation of the EZT coder, 5 transformations to
the original algorithm were applied of both algorithmic nature and
partly along the approach formalized in [4]. The memory size is
reduced with a factor 450 for a 5-level transformed CIF image, the

number of accesses with an average factor of 4.8. A detailed de-
scription of the optimizations performed on the EZT encoder can
be found in [14].

5.2.2 Adaptive Arithmetic Coder
The adaptive arithmetic coder algorithm [10], recursively com-
presses messages using the interval [0,MaxRange]. The current
interval is divided according to the probability distribution of the
past symbols in the input string. With the current symbol, one
partition is selected as the new interval. The application of three
transformations resulted in an efficient hardware implementation.
Especially the introduction of an additional Huffman coder, trans-
forming the 4-symbol alphabet into a binary alphabet, has a major
impact on the hardware implementation. An in-depth discussion
of the arithmetic coder optimizations can be found in [10].

5.2.3 Ozone Programmability
In order to allow a flexible compression operation, the Ozone is
made programmable:
1. The number of wavelet transformation levels can be varied

between 2 and 5.
2. The image size should be an integer multiple of 2 to the

power of the number of wavelet transformation levels. The
maximum image size is limited to 1024 × 1024.

3. The quantization levels, programmable for each wavelet
subimage individually, allow fine-tuning of the compression
performance.

4. As the statistics for the 4-symbol dominant pass depend on
the image content and the compression settings, an efficient
translation of the 4-symbol alphabet to the binary alphabet
can only be achieved with a programmable Huffman table.

5. A user-programmable header of 16 bytes, inserted in the
compressed output stream, allows the transmission of com-
pression settings, image identification, etc.

5.2.4 Ozone Architecture

EZT Coder

'DWD

&RQWURO
Local
cashes

Huffman
coder

Arithmetic
coder

External
interface

Address

Data

OZONE

Figure 4: Ozone architecture

The architecture of the Ozone is shown in Figure 4. A dynamic
dataflow transfer methodology was selected to perform the com-
munication between the different hardware blocks. The proposed
architecture supports parallel operation of Ozones. By carefully
programming the quantization levels, each of the Ozones com-
presses a set of bitplanes. In case of an equal distribution of the
load over the Ozones, the throughput increases with a factor equal
to the number of parallel Ozones.

5.2.5 Design Methodology
The C++ based hardware design philosophy called OCAPI [11]
was used to design the Ozone. The fast high level modeling and
simulation of the hardware implementation, allows an extended
design space exploration. In the end, the optimal solution is auto-
matically translated from C++ to VHDL. The OCAPI design flow
allows an automatic verification of the VHDL description of each

block, followed by an integration test. The SYNOPSYS toolkit
has been used to synthesize the VHDL descriptions from within
the vendor design environment. Place & route and clock-tree
synthesis were performed using Avant!.

6. DEMONSTRATION SETUP
An Ozone-evaluation board (Figure 5) was developed as an add-
on card for an FPGA-based PC-board. Using this board, extensive
testing of the Ozone was performed. Functionally the board con-
tains an Ozone, 32 MHz clock generation circuitry and FIFO
memories allowing burst type communication. Additionally, DC
level shifters are necessary for interfacing to the 3.3V Ozone
ASIC and the 5V PC power supply. Three separate voltage sup-
plies are foreseen: one for the 5V level shifters and two 3.3V
power regions, one for the Ozone and one for the FIFO memories
and the clock generation, allowing accurate power dissipation
measurements.

Figure 5: The Ozone evaluation board

A PC-based demonstrator set-up, implementing the complete
compression and decompression chain, was build around this
Ozone-evaluation board. An average power dissipation of 100
mW was measured for the complete 3.3V power region. This
dissipation is distributed evenly over the Ozone and FIFO voltage
supply regions. Additionally, the 5V interfacing to the PC dissi-
pates 105 mW.

6. CONCLUSION
A full end-to-end demonstration of the wavelet based compression
chain, the key functionality of MPEG-4 visual texture coding, has
been presented. According to our multi-stage system-level design
methodology, global as well as local optimizations were applied
to tackle three major implementation bottlenecks. First, the local
wavelet transform, based on a reversible lifting scheme, reduces
the memory requirements with an order of magnitude. Second, an
application specific implementation of the Embedded Zero Tree
coding algorithm, originally defined in terms of recursive while-
loops and dynamic lists, has been developed. Finally, an archi-
tecture for a non-pipelineable adaptive arithmetic coder, capable
of processing 10 Msymbols/second at a clock speed of 32 MHz,
has been designed using the OCAPI C++-based hardware design
environment. The Ozone ASIC, consisting of the EZT coder and
the adaptive arithmetic coder, is capable of compressing 30 color
CIF images per second. The Ozone ASIC functionality was suc-
cessfully demonstrated in a PC-based demonstrator set-up, im-
plementing the complete compression-decompression chain. The
Ozone evaluation board dissipates 205 mW.

7. ACKNOWLEDGMENTS
The authors would like to thank following colleagues for their
valued contribution: T. Gijbels, P. Vos, B. Debaillie and A. Van
Loenen and R. Braspenning, both students from Delft University,
The Netherlands. The Ozone algorithm was developed under the
ESA Scades-3 project (ESTEC/contract Nr.10208/92/NL/FM).

REFERENCES
[1] ISO/IEC JTC1/SC29/WG11, Coding of audio-visual

objects, ISO/IEC 14496, ‘98.
[2] “Episode I trailer movie”, http://www.starwars.com
[3] Catthoor F., et. al., “Proposal for unified system de-

sign meta flow in task-level and instruction-level de-
sign technology research for multi-media applica-
tions”, ISSS'98, Hsinchu, Taiwan, December 1998.

[4] Catthoor F., et. al., “Custom Memory Management
Methodology - Exploration of Memory Organisation
for Embedded Multimedia System Design”, Kluwer
Academic Publishers, Boston, ‘98.

[5] Chakrabarti C., et. al., “Architectures for Wavelet
Transforms: A Survey”, Journal of VLSI Signal Proc-
essing Systems for Signal Image and Video Technol-
ogy, Vol. 14, No. 2, November ’96, 171-192.

[6] Clarke P., “MPEG-4 project in Europe achieves
wavelet silicon”, EE Times, 28 November ‘98,
http://www.eetimes.com/story/OEG19981125S0008.

[7] Knowles G., “A single chip wavelet zero-tree proces-
sor for video compression and decompression”,
DATE ’98, February ’98, 61-65.

[8] Lafruit G., et. al., “Optimal memory organisation for
scalable texture codecs in MPEG-4”, IEEE Tr. on Cir-
cuits and Systems for Video Technologies, in press.

[9] Lafruit G., et. al., "The Local Wavelet Transform: a
memory-efficient, high-speed architecture for a Re-
gion-Oriented ZeroTree coder," Journal of Integrated
Computer-Aided Engineering, ‘99, in press.

[10] R. Lang, “Parallel VLSI architectures for one-, two-,
and tree-dimensional discrete wavelet transforms”,
PhD thesis, Department of Electrical and Computer
Engineering, The University of Newcastle New South
Wales, 2308 Australia, March 1996.

[10] Peón M., et. al., “Design of an arithmetic coder for a
hardware wavelet compression engine”, IEEE Signal
Processing Symposium, March 1998, Leuven, Bel-
gium, 151-154.

[11] Schaumont P., et. al., “A Programming Environment
for the Design of Complex High Speed ASICs”, DAC,
June ’98, 315-320.

[12] Shapiro J.M., “Embedded image coding using the
zerotrees of wavelet coefficients”, IEEE Tr. on Image
Processing, Vol. 41, No. 12, , Dec. ’93, 3445-3462.

[13] Sweldens W., “The Lifting Scheme: A new Philoso-
phy in Biorthogonal Wavelets constructions,” Proc. of
the SPIE conference, Vol. 2569, 1995, 68-79.

[14] Vanhoof B., et. al., “A Scalable Architecture for
MPEG-4 Embedded Zero Tree Coding”, CICC’99, in
press.

[15] Vishwanath M., et. al., “VLSI Architectures for the
Discrete Wavelet transform”, IEEE Tr. on Circuits
and Systems-II, Vol. 42, No. 5,May ’95, 305-316.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

