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Abstract

Approximate reachability techniques trade o� accu-
racy for the capacity to deal with bigger designs. Cho
et al [4] proposed partitioning the set of state bits
into mutually disjoint subsets and doing symbolic for-
ward reachability on the individual subsets to obtain
an overapproximation of the reachable state set. Re-
cently [7] this was improved upon by dividing the set of
state bits into various subsets that could possibly over-
lap, and doing symbolic reachability over the overlap-
ping subsets. In this paper, we further improve on this
scheme by augmenting the set of state variables with
auxiliary state variables. These auxiliary state vari-
ables are added to capture some important internal
conditions in the combinational logic. Approximate
symbolic forward reachability on overlapping subsets
of this augmented set of state variables yields much
tighter approximations than earlier methods.

1 Introduction

Binary Decision Diagrams (BDDs) [2] have enabled
formal veri�cation to tackle larger hardware designs
than before. Using BDDs to represent sets of states
has enabled symbolic forward reachability techniques
to enumerate the state space of bigger designs. How-
ever for many large design examples, even the most
sophisticated BDD-based veri�cation methods cannot
produce exact results because of BDD-size blowup.
Hence, we settle for approximate reachability.

An overapproximation (i.e superset) of the reach-
able states can still be very useful. If an assertion
holds for the approximate reachable states, it is guar-
anteed to hold in the exact reachable set. It can also
be used to simplify symbolic model checking e�orts,
by preventing [8] the model checking algorithms from
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exploring unreachable states. Further, the approxi-
mate reachable set provides don't cares, that can be
used in synthesis.

1.1 Comparison with Related Work

Various approaches to approximate reachability and
veri�cation using BDDs have preceded this work. Cho
et al [4, 5] proposed approximate algorithms to do
symbolic forward reachability. Their basic idea was
to partition the set of state bits into mutually disjoint
subsets, and then do a symbolic forward propagation
on each individual subset. This was further general-
ized [7] by allowing for overlapping projections. In this
scheme, the set of state bits was divided into various
subsets that could overlap.

This paper further generalizes and improves on ex-
isting approximate symbolic reachability schemes, by
augmenting the set of state variables with some auxil-
iary state variables. An auxiliary variable is an inter-
nal state component that is added to the implementa-
tion without a�ecting the externally visible behavior.
These extra state variables typically represent impor-
tant internal abstractions used by designers.

The idea of augmenting a legal implementation with
some extra state components in a way that places
no constraints on the behavior of the implementation
is not entirely new. Abadi and Lamport [1] intro-
duced a special class of auxiliary variables, history
and prophecy variables, to broaden the applicability
of re�nement mapping techniques. We propose us-
ing auxiliary state variables to broaden applicability
of approximate reachability techniques.

Consider the simple design shown in �gure 1. The
design has 96 state variables, denoted by (x1; : : : ; x96).
The Equality Detector checks whether the two input
bit vectors are identical and passes its output to the
control state machine. Exact reachability would re-
quire computing images over the variables (x1; : : : ; x96).
Intermediate image BDDs with such large support sets
often blow up. Alternatively we could choose to do
approximate reachability over the disjoint [4] subsets
(x1; : : : ; x32), (x33; : : : ; x64) and (x64; : : : ; x96). Since
the subsets have 32 variables, the intermediate image
BDDs have 32 variables in their support and are less
likely to blow up, but there is a price in loss of accu-
racy since interaction between the variables in di�er-
ent subsets is lost.

Using overlapping projections [7], we could capture
some interaction by choosing the subsets (x1; : : : ; x64),

_
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Figure 1: Example to illustrate potential of using aux-
iliary variables

(x33; : : : ; x96) and (x1; : : : ; x32; x65; : : : ; x96). The in-
termediate image BDDs have 64 variables in their sup-
port, but it captures more interaction between the
state variables than the disjoint partition case.

However, the only interaction between state vari-
ables (x65; : : : ; x96) and the other state variables hap-
pens through the signal hit. By introducing an auxil-
iary state variable for the wire hit, interaction between
the state variables is captured by choosing the subsets
(x1; : : : ; x32), (x33; : : : ; x64), (x65; : : : ; x96; hit), and do-
ing symbolic reachability [7] over them. The largest
subset in this case is of size 33, but it captures the
critical correlation between all 96 state variables in
the design.

The contribution of this paper is to show how aux-
iliary state variables enable more re�ned approximate
reachability. The new scheme is more general than
overlapping projections [7] which in turn is more gen-
eral than disjoint partitions [4]. Signi�cant improve-
ment is obtained when this simple enhancement is ap-
plied to several control modules from the I/O unit in
the Stanford FLASH Multiprocessor, and to the larger
ISCAS89 circuits.

2 Background

We analyze synchronous hardware, given as a Mealy
machine M = hx; y; q0;ni, where x = fx1; : : : ; xkg is
the set of state variables, and y is the set of input sig-
nals. The set of states is given by [x! B], where B =
f0,1g. The initial state q0 is in [x ! B]. The next state
function is n : [x ! B]� [y ! B] ! [x ! B]. BDDs
can be used to represent sets and manipulate them [3].
Let R(x) (a BDD with support in x) represent a set
of states, then image of R under n is computed as,

Im(R(x);n(x; y)) = 9x; y:(x0 = n(x; y)) ^ R(x):

Let w = (w1; : : : ; wp) be a collection of not nec-
essarily disjoint subsets of x. We de�ne the operator
�j(R) which projects a BDD R(x) onto the variables

in wj . Let z consist of all of the Boolean variables in
x that are not in wj . We can de�ne �j as

�j(R(z; wj)) = 9z:R(z; wj):

The projection operator � projects a BDD R(x) onto
the various wj 's, and the concretization operator 

conjoins the collection of projections.

�(R(x)) = (�1(R); : : : ; �p(R)):


(R1; : : : ; Rp) =

p^

j=1

Rj :

The operator � allows us to represent a big BDD
with support in x by a list of potentially smaller BDDs
with limited support, at the cost of loss of accuracy.
The operator 
 can potentially result in a bigger BDD
with bigger support, hence we would like to avoid com-
puting 
(R1; : : : ; Rp) explicitly. During approximate
reachability, the intermediate images are stored as an
implicit conjunction of the elements of a list of BDDs,
R : (R1; : : : ; Rp), where each Rj has support in wj .

The key operation is the approximate image com-
putation: Given an implicit conjunction of BDDs R :
(R1; : : : ; Rp), compute a list S : (S1; : : : ; Sp) whose
implicit conjunction is the set of states than can be
approximately reached in one step using the next state
functions n. More formally S = �(Im(
(R);n(x; y))).
An e�cient algorithm to compute S was proposed in
DAC98 [7], which we also use here.

Starting from the initial state q0, then repeatedly
computing approximate images until we reach a �xed
point gives an overapproximation of the reachable state
set. A more formal treatment was given in DAC98 [7].
(Even though we have a single initial state, the method
can be applied to any arbitrary choice of initial states).

3 Auxiliary State Variables

An auxiliary state variable is useful because it cap-
tures important properties of many state variables into
a single new state bit. This can be added to the
other subsets to capture correlation between many
state variables, even as the number of variables in dif-
ferent subsets is small.

3.1 What can be an Auxiliary State Variable?

We make use of auxiliary variables by converting them
to state variables. A next state function is assigned to
each of them as in the following example.

A typical hardware design, as shown in �gure 2, has
a set of state holding elements ((x1; x2; x3) in �gure 2)
and some combinational logic. Each state variable has
an associated next state function logic ((n1; n2; n3) in
�gure 2). Let a be some internal wire in the design,
and let a = g(x) be the function that determines the
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Figure 2: Typical Design

value of a in time t as a function of the state variables
x at time t.

If we let the subscript denote the time stamp, we
have: at = g(xt) and at+1 = g(xt+1). Using xt+1 =
n(xt; yt), we get at+1 = g(n(xt; yt)), which is the re-
quired next state function for auxiliary state variable
a. This transformation is shown in �gure 3. Note
that we would not have been able to do the trans-
formation above if g involved some input variables in
its support. If a = g(x; y) (where y is the input bits)
then at+1 = g(xt+1; yt+1) and we cannot represent the
inputs in the next cycle, yt+1, in terms of xt and yt.

We conjecture this limitation can be circumvented
by including the inputs as part of the state (as in a
Kripke structure). We never used this for any of our
results here, but the Mealy machine M = hx; y; q0;ni,
can be transformed to another Mealy machine M 0 =
hx0; y0; q0

0
;n0i, where x0 = x [ y and the initial con-

dition q0

0
= q0. The y0 component is a set with a

primed version for each variable in y. The next state
function for the x state variables remains the same,
but for the y variables, their next state function is the
corresponding input variable from y0. Assuming to-
tally unconstrained input environment, the machines
M and M 0 allow the same externally visible behaviors
and hence have the same set of reachable states (pro-
jected on to the x variables). However M 0 allows us
more 
exibility in choosing auxiliary state variables.

3.2 Initial Condition for Auxiliary State Variables

The auxiliary state variables need to be initialized.
Let a : (a1; : : : ; am) be the list of auxiliary variables
and g : (g1; : : : ; gm) be the list of Boolean functions
(represented as BDDs) such that gi(x) determines the
value of ai at time t in terms of state variables x at
time t. The initial condition for the a : (a1; : : : ; am)
variables is obtained by the following image computa-
tion, Im(q0;g). In our applications, initial condition
q0 is a single state, and this reduces to computing
gi(x) # q0 for each auxiliary variable ai. (The # is the
generalized cofactor [6] operator).
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Figure 3: Design including Auxiliary State Variables

3.3 Heuristics to Choose Auxiliary State Variables

Our scheme for choosing which internal abstractions to
convert to auxiliary state variables is presently man-
ual, and relies on being able to inspect the RTL source.
We believe that it helps to look at the RTL source,
because designers often create internal abstractions
themselves, while coding up their design using a hard-
ware description language (such as Verilog). Hence
we can take leverage o� this high level information
directly by inspecting the RTL description.

First, we �nd the FSMs by inspecting the Verilog
source. The next state transition for every FSM was
typically encoded as part of an always block in the
Verilog source. By inspecting the always block it is
possible to extract the internal wires that a�ect the
next state transition of each FSM, and if those internal
wires in turn depend on many state variables they are
chosen as auxiliary state variables.

However the gate level descriptions of circuits like
the ISCAS 89 benchmark circuits are devoid of any
high level information. For such circuits, we look for
internal wires which have a high fanin and high fanout,
and are at the same time solely determined by the
state variables in the design (i.e their fanin cones in-
volve only state variables). The intuition behind our
heuristic is that such high fanin internal wires carry
some information about the large number of state vari-
ables in their fanin cone. Hence including these wires
as auxiliary state variables in other subsets of w, al-
lows us to capture some correlation between the state
variables in the other subsets and the large number of
state variables in the fanin cone of the internal wire.

4 Experiments

The method was evaluated on a collection of con-
trol circuits from the MAGIC chip, a custom node
controller ASIC in the Stanford FLASH Multiproces-
sor [9]. The circuits are control intensive, and the state
bits do not include data path bits. Table 1 gives a brief
description of the sizes of various control modules ex-



tracted from the I/O unit, in terms of the number
of state variables, auxiliary state variables and input
variables. (IOQ ReqD stands for the module obtained
by combining the submodules IOInboxQCtl and Re-
qDecode, whereas ReqS ReqD stands for the module
obtained by combining ReqService and ReqDecode).
(The results for these modules appear in the same or-
der in Table 2). We were unable to �nd the exact
reachable set for any of these control modules.

Table 1: Control Modules in I/O unit in FLASH

Module State Auxiliary Total Input
IOQ ReqD 60 6 66 25
ReqS Req 78 14 92 48
PciInterface 88 20 108 55

The experimental implementation of the method
was in LISP, calling David Long's BDD package (im-
plemented in C) via the foreign function interface.
Our approximate algorithm returns a superset of the
reachable states. To quantify the size of the super-
set, we compute the satisfying fraction of the the su-
perset. (Please refer to the appendix for the algo-
rithm that was used to compute an upper bound on
the satisfying fraction). Since projection induces an
over-approximation, smaller satisfying fraction indi-
cates better results.

We compare our results with the earlier reported
numbers obtained with overlapping projections of the
usual state variables alone. The same variable order-
ing was used for both the schemes. The maximum
number of nodes for each experiment is preset at Node
Limit and we try to get the best results using the two
schemes (overlapping projections of usual state vari-
ables alone vs overlapping projections of augmented
set of state variables). Node Count keeps track of the
largest number of nodes that existed at a time dur-
ing the experiment. The Time column lists the cpu
time (in seconds) needed to reach the �xed point on
a MIPS R4300 with 768MB of RAM. Sat fr records
the size of the approximate reachable state set (a su-
perset) in terms of satisfying fraction. The last col-
umn under the heading Relative is the ratio between
the satisfying fraction obtained by using usual state
variables alone and the satisfying fraction obtained on
adding auxiliary variables. Thus, larger �gures in the
Relative column indicate better results with auxiliary
variables.

The results in Table 2 show that the use of overlap-
ping subsets over the augmented set of state variables
is very e�ective at improving over-approximations of
the reachable state set. The improvement is at the
expense of some increase in the BDD node count.
However, it would not be possible to obtain such a
tight approximation using overlapping subsets over
the usual state variables alone, since that would re-
quire prohibitively large subsets, resulting in BDD
blowup problems.

4.1 ISCAS Benchmarks

We have also tried our algorithm on the larger cir-
cuits from ISCAS 89 benchmark suite. We use the
partitions used by Cho et al [4] to identify the FSMs
in the design. To these partitions, small overlaps were
added to report the numbers in DAC98 [7] to show
the potential of approximate reachability on overlap-
ping subsets of the usual state variables. Here, we fur-
ther add some auxiliary state variables to some of the
overlapping subsets, and compare with the recently
reported results in [7]. Table 3 gives a brief descrip-
tion of the size of the various benchmark circuits used
in this work. (We omit s1238 because it is a small
circuit amenable to exact traversal. We are unable
to report comparative �gures for s35932 because we
could not procure the partitions used by Cho et al for
s35932). We tried our new algorithm on s1423, but un-
fortunately could not improve on the results reported
in [7]. (We suspect it is because s1423 has a highly
interconnected STG. Some high level insight into the
design, which ISCAS benchmark circuits are devoid of,
could better guide the choice of auxiliary variables).
However for s13207, s15850 and s38584, we report im-
provement by at least an order of magnitude.

Table 3: Large Circuits from ISCAS 89 Suite

Circuit State Auxiliary Total Input
s13207 669 39 708 31
s15850 597 14 611 14
s38584 1452 12 1464 12

Given the large number of state variables in these
circuits, and that we allow for overlaps among the var-
ious subsets, it is very di�cult to compute the size of
the approximate reachable set. The numbers in Table
4 under the Sat Fr column for Auxiliary Variables are
upper bounds on the size of the reachable set. (Please
refer to the appendix for the algorithm used to com-
pute an upper bound on the size of the approximate
reachable set). We believe that the true size of the
approximate reachable set using auxiliary state vari-
ables, is much smaller than what we report here.

Note that we use TMBM algorithm [4] for these
benchmarks. TMBM starts o� as TFBF [4] and then
switches to MBM [4] after a few iterations. The Iter
column in Table 4 lists the number of iterations of
doing TFBF + the number of iterations in the outer
greatest �xpoint of MBM.

5 Conclusions

Our experiments show that a few appropriately chosen
internal conditions added as auxiliary variables can
substantially improve the quality of the overapprox-
imation. We need to look at automatic methods to
choose collection of subsets for gate level descriptions.



Table 2: FLASH I/O Circuits: Size of Approximate Reachable Set

Node Limit Usual State Variables Adding Auxiliary Variables Relative
Sat. Fr. Time Node Count Sat. Fr. Time Node Count

100,000 2.570e-08 22.65 63,180 1.485e-09 47.62 97,685 1.731e+01
150,000 " " " 1.399e-09 60.52 111,517 1.838e+01

Node Limit Usual State Variables Adding Auxiliary Variables Relative
Sat. Fr. Time Node Count Sat. Fr. Time Node Count

1,000,000 3.835e-09 553.34 644,667 2.632e-09 1,301.88 846,476 1.457
2,000,000 " " " 2.282e-09 1,232.27 1,832,354 1.680

Node Limit Usual State Variables Adding Auxiliary Variables Relative
Sat. Fr. Time Node Count Sat. Fr. Time Node Count

1,000,000 1.801e-05 308.18 466441 5.892e-06 1,471.88 971,880 3.057
10,000,000 2.175e-06 2,907.86 1,260,260 7.003e-07 9,174.01 8,349,050 3.105

Table 4: ISCAS 89 Circuits: Size of Approximate Reachable Set

Circuit Usual State Variables Adding Auxiliary Variables Relative
Sat. Fr. Iter Node Count Sat. Fr. Iter Node Count

s13207 1.136e-115 10+5 198779 1.241e-117 10+5 1171473 9.155e+01
s15850 3.938e-102 10+4 336048 3.918e-103 10+4 339031 1.005e+01
s38584 5.764e-57 10+5 1853461 1.198e-58 10+4 1952730 4.813e+01

6 Appendix

6.1 Sat Fr of Superset for FLASH I/O circuits

Given S : (S1; : : : ; Sp), corresponding to the collection
of possibly overlapping subsets w : (w1; : : : ; wp), we
want to compute sat fr of 
(S). Let a : (a1; : : : ; am)
be the set of auxiliary state variables. Correspond-
ing to each auxiliary state variable ai, let gi(x) be the
Boolean function (represented as a BDD) which de-
termines the value of the auxiliary state variable ai in
time t as a function of the value of the usual state vari-
ables at time t. Our algorithm substitutes the function
gi for every instance of ai in the elements of the list S.
At this point S has only the usual state variables in
its support. The algorithm then explicitly computes

(S) and �nds its satisfying fraction.

for j=1 up to p by 1 do
for i=1 up to m by 1 do

Substitute gi for every instance of ai in Sj
endfor

endfor
Compute �nal bdd = ^

p

j=1
Sj

return sat fr (�nal bdd)

For the larger ISCAS 89 benchmark circuits it is
not feasible to explicitly compute final bdd = 
(S).
Hence we use the conservative algorithm given in [7]
and we normalize the result, to compensate for in-
crease in number of state variables. (If m is the num-
ber of auxiliary state variables added, we multiply the
result obtained from the algorithm in [7] with 2m

to obtain an upper bound on the satisfying fraction
for the reachable states over the usual state variables
alone). An alternative method, Monte Carlo simula-
tion technique appears to be ine�ective because of the
extreme sparsity of the state space covered by 
(S).
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