
Improving Symbolic Traversals by means of Activity Profiles

Gianpiero Cabodi Paolo Camurati Stefano Quer

Politecnico di Torino
Dip. di Automatica e Informatica

Turin, ITALY

Abstract
Symbolic techniques have undergone major improvements in the last few
years. Nevertheless they are still limited by the size of the involved BDDs,
and extending their applicability to larger and real circuits is a key issue.

Within this framework, we introduce “activity profiles” as a novel
technique to characterize transition relations. In our methodology a learn-
ing phase is used to collect activity measures, related to time and space
cost, for each BDD node of the transition relation. We use inexpensive
reachability analysis as learning technique, and we operate within inner
steps of image computations involving the transition relation and state
sets.

The above informations can be used for several purposes. In partic-
ular, we present an application of activity profiles in the field of reacha-
bility analysis itself. We propose transition relation subsetting and partial

traversals of the state transition graph. We show that a sequence of par-
tial traversals is able to complete a reachability analysis problem with
smaller memory requirement and improved time performance.

1 Introduction
State-of-the-art approaches for reachability analysis and formal
verification of circuits modeled as Finite State Machines (FSMs)
exploit symbolic techniques based on Binary Decision Diagrams
(BDDs).

Given the transition relation of a system,TR(s; x; y)1, and
a set of statesF(s), the set of statesT(y) reachable in one step
from the states inF is computed as

T(y) = Image(TR(s; x; y);F(s))
= 9x;s(TR(s; x; y) � F(s))

(1)

This formula is the core computation of all symbolic reacha-
bility analysis problems. For medium-small circuit it is usually
quite efficient. Nevertheless it reaches its limits on large practical
examples. Several improvements have thus been proposed to the
basic idea, in order to deal with realistic circuit sizes.

Transition relations have been represented and used in parti-
tioned forms because of the BDD explosion when building them

1In the sequel we useTR, s,x andy to indicate respectively a transition relation,
present state variables, primary inputs, and next state variables.

monolithically. Dynamic variable reordering techniques have been
introduced to find good variable orders, with large improvements
whenever intermediate results of computations may be individu-
ally optimized. Approximate traversals/verifications and abstrac-
tions of sub–components are other very popular approaches to
scale down the complexity of large problems.

Recently, many researchers have followed the trend of par-
tial traversals, partitioning the problem and interleaving breadth
and depth–first strategies, moving away from the traditional sym-
bolic breadth–first analysis of the state transition graph. The ad-
vantages of such approaches are the following: (1) Focusing on
a target property or behavior may result in dramatic space and
time improvements; (2) even in the case of full traversals, the
whole reachable state set is computed through a sequence of parti-
tioned/partial traversals. Since traversals often produce the largest
BDDs during intermediate steps, a sequence of simpler traversals
is a good way of lowering intermediate peak memory require-
ments. Several techniques have been proposed to tailor parti-
tioned/partial traversals. Among the other: BDD subsetting and
decomposition based on high density [1, 2], over–approximate
forward traversals to prune exact backward verification [3], parti-
tioning based on Shannon decomposition [4, 5], manual insertion
of guardsin the hardware description [6].

In this work we propose a novel technique for characterizing
theactivityof recursive operators involving the transition relation.
For each BDD node of a given transition relation wedynamically
and automaticallyderive activity indicators (that we callactiv-
ity profiles). These informations are collected during an initial
learningphase. We use easy-to-perform reachability analysis as
learning phase. The derivedprofiles might be used for several
purposes, as an additional information to bias reordering, decom-
positions, and optimizations.

Among the possible applications, we exploit profiles to opti-
mize reachability analysis in a mix breadth and depth–first analy-
sis framework, using transition relation subsetting. The resulting
technique reduces peak memory requirements and execution time
of traversals.

This is an important issue today for reachability analysis and
verification tools to allow them to reach a larger acceptance be-
yond the actual advocate community limits.

2 Overview of the Presented Approach
Given an FSM represented by its transition relationTR, we start
by gatheringTR usage statistics from partial exact or approxi-
mate traversals. Statistics are collected for each BDD node of

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

TR, and they are intended to record the involvement of that node
during image computations. We observe recursive calls, opera-
tion cache hits, and amount of newly generated BDD nodes. We
call activity profile of theTR the set of all the node statistics col-
lected. The memory overhead associated to the node statistics (a
few counters) is acceptable and often negligible, sinceTR nodes
are usually a fraction of the BDD nodes generated in reachability,
and we use them in low cost learning traversals. Anyway, every
application using activity profiles should take into account this
overhead.

Given an activity profile, we use it to performTR subsetting,
pruning nodes with a low activity, i.e., unused BDD nodes, or
with a high activity, i.e., used too often or involved in expensive
operations. The prunedTR is used to compute a subset of the
whole reachable state set. Complete reachability is still possible
by means of a sequence of partial traversals. This allows scaling
down the space/time complexity of FSM traversals.

Similar in its inspiration to other recent works, this technique
partially moves away from purely breadth–first traversal of the
state transition graph. The method contains original contributions
and similarities with known published techniques.

� Programs exploitinglearningphases (either static or dynamic)
are used in several fields of electronic CAD. In the field of
reachability analysis, [6] exploits preliminary simulations to
bias partial symbolic traversals. In our work, we introduce a
new metric to characterize the activity of recursive BDD op-
erators collecting statistics onTR usage within (inexpensive)
symbolic traversals.TR activity profiles are collected in an
automaticway, on a node by node basis, with low time and
space overhead. The method can be viewed as a measure of
the interaction between theTR and the reachable states through
the IMAGE operator, and it could be generalized to other BDD
operators as well.

� We follow the most recent trends in FSM reachability analysis:
Not merely optimizing image computations, but simplifying
the intermediate reachable state sets. Traversals are enhanced
by working directly on their core function, the transition re-
lation, as we introduceTR subsetting based onTR profiles
computed in preliminary (learning) traversal steps. This is a
novel “self-tuning” approach to scaling down the complexity
of traversals by focusing them on the more “active” subset of
TR. Moreover this is the way to isolate sub–behaviors of the
FSM: We follow the most (or the least) active ones, given a
heuristic evaluation function. Complete reachability is per-
formed through a sequence of partial traversals, with a final
one using the whole (non pruned)TR.

� The idea of a partial and focused traversal is presently adopted
in many reachability based tasks. BDD subsetting was origi-
nally presented by Ravi and Somenzi [1]: They prune reach-
able state sets following a criterion of maximum density, i.e.,
the ratio between the number of states and the BDD size. Narayan
et. al.[5] use window functions to partition (i.e., generate sub-
sets of) aTR. Cabodiet. al.[4] use cubes and “idle” latches to
generateTR partitions.

We follow a different approach, since we do not look for high
density BDDs, and we do not prune reachable states. More-
over, we do not use externally provided constraints to select

proper working subspaces. Our solution is orthogonal and com-
plementary to other approaches, aiming at a moreautomated
process, with a learning initial phase biasing the subsequent
process. We use a subset of the state transition graph, with ben-
efits in terms of reachable state sets as a consequence. More-
over and more importantly, we exploit automatically gener-
ated activity informations directly coming from the traversal
process. This is an additional and relevant input, making our
pruning process inherently superior than any pruning scheme
merely working on the BDD structure of the pruned BDD.

The remainder of the paper is organized as follows. The ac-
tivity profile of a transition relations model is introduced in Sec-
tion 3. Section 4 describes transition relation subsetting based on
activity profiles, and a traversal approach exploiting this informa-
tion. Section 5 shows some experimental results. Section 6 closes
the paper with conclusions and some indications on possible fu-
ture work.

3 The Activity Profile of a Transition Relation
We work in a traversal environment where IMAGE (see Equa-
tion 1) is the key operation. State–of–the–art approaches imple-
ment it as a sequence of relational products, i.e., a sequence of
conjunction–quantification operations, applied to a conjunctively
partitioned (clustered) transition relation.

We aim at measuring the involvement and the impact of a
transition relation in IMAGE operations on a BDD node by node
basis. We use a set of activity counters associated with each
TR node. We upgrade these counters within the relational prod-
ucts procedure using alearningmethodology during “initial” IM-
AGE operations. In particular, given two functionsf andg, and
a variablev, we observe recursive calls of the relational products
operators9v(f � g). During this phase we consider a node asac-
tive if it produces a non-zero result. We also heuristically take
into account the operation cache, which avoids sub–problem re-
computation, and the cost of each relational product recursion in
terms of newly generated BDD nodes.

More specifically, given the generic BDD nodet of a tran-
sition relation, we define three counters recording the activity on
the node:

� t.act.rec : Active recursions ont .

� t.act.cacheHits : Cache hits returning a result different
from zero.

� t.act.sizeCost : Node increment within the BDD man-
ager due to recursions ont.

The counter of cache hits is an activity indicator for the whole
subtree rooted att , that produced the cached results. We heuris-
tically keep a single counter, ignoring here that several cache en-
tries may refer to the samet nodey.

The sizeCost indicator is related to the amount of BDD
nodes generated by recursions ont . Since exactly measuring the
size of the results produced would require a higher computational
overhead, we estimate size cost very efficiently as the overall in-
crease in BDD nodes produced by a recursion, which is easily
provided by global counters maintained by BDD packages. This

yDifferent9v(p � t) may refer to the samet operand.

is not the size of the result (though often related to it), indeed, it
is a good memory cost indicator of the operation performed.

Figure 1 shows our modified relational product operation,
handling the previously defined counters. It describes the re-
cursive procedure for the relational product (the RP function)
9v(p � t), with activity counters on thet factor.

RPPROFILE(v , p, t)
if (terminal case)

return (result)
if (result of (RP,v , p, t) is cached)

if (result 6= 0)
t.act.cacheHits++

return (result)
let � be the top variable ofp andt
r0 RPPROFILE(v , p� , t �)
if (� 2 v)

if (r0 = 1)
r 1

r1 0

else
r1 RPPROFILE(v , p� , t �)
r r0 + r1

else
r1 RPPROFILE(v , p� , t �)
r reduced, unique BDD node for (� , r0, r1)

cache the result of this operation
if (r 6= 0)

t.act.rec++
t.act.sizeCost += (total node increase)
return (r)

Figure 1: Relational Product with activity counters handling.

Relational product is quite similar to theAND Boolean op-
erator, from which it differs whenever the top variable (�) must
be existentially quantified. This is done through anOR operation
(r0 + r1). Our modifications are indicated by the bold type. The
increments of active cache hits and recursion counters are condi-
tioned by a non0 result. Size cost is finally incremented in the last
line before the return command. A negative increment is possible
for size cost, whenever a recursion tree produces more released
nodes then newly created ones.

Due to the nature of the node–by–node analysis, dynamic re-
ordering is not allowed while gathering statistics: The drawback
is not relevant for our application, since we presently collect pro-
files in learning phases, which are by far cheaper than the over-
all traversal process. Nonetheless, dynamic reordering could be
allowed, with an abort–and–repeat scheme (like for most BDD
recursive operators), with profiles created and used across sifting
activations.

4 TR Subsetting using Activity Profiles
Given an activity profile, we may use it forTR subsetting, based
on the following alternatives:

� Nodes with no or low activity may be pruned, i.e., replaced
by the constant0, the aim being to isolate the most impor-
tant/active subset of a transition relation

� Nodes with an excessively high activity may be pruned, in or-
der to remove those nodes of a transition relation that are too

costly.

In the latter case we avoid removing the whole BDD rooted
at the node, rather we clip it by pruning one of its cofactors, fol-
lowing an idea derived from the heavy branch subsetting tech-
nique [1]. Two choices are available: Pruning (replacing with0)
either the heavier or the lighter cofactor, where cofactor weight is
given by itssizeCost indicator.

The process results in a subset of the originalTR, with a sim-
pler BDD, since it is derived from the original one, by replacing
some of its nodes with the0 constantz.

The recursive pruning procedure is shown in Figure 2. The
BDD t (a transition relation) is recursively visited depth–first.
Subtrees are pruned fromt , depending on the chosen heuristic
(Recur or Size).

PRUNE(t , th , heu , cacheHits)
if (terminal case)

return (t)
cacheHits += t.act.cacheHits
if ((PRUNE, t , th , heu , cacheHits) is cached)

return (result)
let � be the top variable oft
if (heu = Recur) and

((t.act.rec+cacheHits)< th))
return (0)

if ((heu = Size) and
(t.act.sizeCost > th))

if (RECURONTHENCOFACTOR(t))
r0 0

r1 PRUNE(t � , th , heu , cacheHits)
else

r0 PRUNE(t � , th , heu , cacheHits)
r1 0

else
r0 PRUNE(t � , th , heu , cacheHits)
r1 PRUNE(t � , th , heu , cacheHits)

r reduced, unique BDD node for (� , r0, r1)
cache the result of this operation
return (r)

Figure 2: BDD pruning based on activity profiles.

More specifically, with theRecur heuristic we aim at prun-
ing BDD nodes with no or low activity. We use for this purpose
the number of recursions traversing a node, augmented with the
number of cache hits upper in the recursion tree. This is the rea-
son why the cacheHits parameter is passed and incremented with
the cache hits recorded in the presentt node. In the second case
(Size), we clip nodes that show a large size cost. The goal here
is finding nodes ofTR that produce BDD explosion (i.e., high
increments in overall node amount) within image computations.
Clipping of t is operated by recurring on one of the two cofac-
tors, while forcing a0 result for the other one. Cofactor selection
is expressed by function RECURONTHENCOFACTOR(Figure 2),
which takes a decision after comparing the size costs of the (then
and else) cofactor root nodes. We allow either chosing the heav-
ier or the lighter cofactor, since we experimentally found both
choices valid, depending on the circuit.

zThis is not always the case for BDDs with complemented edges, where different
profiles (and pruning) might be produced by a BDD and its complement

Going to the usage of prunedTRs, we propose a straightfor-
ward application of partial traversals. A full traversal is achieved
through the following steps:

� Learning traversal &TR pruning: A limited number of fast
exact or approximate traversal iterations is done to gather an
activity profile. A subsetTRp of the transition relation is com-
puted using function PRUNEand the activity profile.

� Partial traversal: A traversal which usesTRp and produces a
reachable state set Rp, which is a subset of the full one (R).

� Full traversal: A final traversal that computes R starting from
Rp and uses (the original)TR.

The learning traversal is much cheaper than the other ones.
Thepartial traversal is intended to explore a subset of the State
Transition Graph with lower peak memory requirements than a
full traversal. The final full traversal, which starts from the result
of the previous one, has a lower cost, compared with a standard
traversal.

Of course, the scheme proposed is one among a large variety
of choices for sequences of mixed breadth/depth–first traversals.
We propose it as a simple way to show the potential improvements
available throughTR subsetting.

5 Experimental Results
The presented technique is implemented within a traversal pro-
gram built on top of the Colorado University Decision Diagram
(CUDD) package [7]. Activity data are generated dynamically
and associated to BDD nodes by means of hashing. This is due to
the fact that BDD nodes in CUDD have no extra field available for
user defined data. Our experiments ran on a266 MHz Pentium
II Workstation with a256 Mbyte main memory, runnning Red-
Hat Linux 5.2. Experiments were done with a128 Mbyte mem-
ory limit. We present data on a few ISCAS’89 and ISCAS’89–
addendum benchmarks, selected with different sizes, within the
range of circuits manageable by state–of–the–art reachability tech-
niques. Both the software and an updated set of experiments are
available through the authors’ home pages [8].

To allow a fair comparison with state–of–the–art traversals,
we compare our tool (without and with the optimizations pre-
sented here) with a popular publicly available tool, VIS [9] (ver-
sion 1.3), compiled with the same BDD package (CUDD). The
initial static variable ordering is the one generated by VIS (de-
fault settings) for the BDDs of the circuit. For all the experiments
we experimentally determine proper cluster size thresholds (gen-
erally in the range from100 to 5000 nodes). We enable dynamic
reordering (group sifting with groups made up of corresponding
present/next state variables) with the default settings of the CUDD
package.

Table 1 collects statistics on the transition relations of the cir-
cuits.

It shows number of primary inputs (# I) and latches (# L) of
the circuits. The sequential depthDepth of the circuit, and the
final number of statesStates are also reported. For all circuits
we first computed the BDDs of the next state functions, then we
generated a clustered transition relation. Column# Cl indicates
the number of clusters of theTR and columnjTRj reports its
BDD size in terms of BDD nodes.

We present two sets of experimental data. The first one de-
scribes the activity profiles collected. The second one compares
standard reachability with the three–phase traversal usingTR prun-
ing (see Section 4).

Table 2 shows some statistics concerning the activity profiles
of transition relations.

Data are recorded through the learning traversals described in
the sequel. We present average, standard deviation and maximum
values for active recursions, cache hits and size cost. These values
are reported normalized to respect to the number of image com-
putations performed in each case. Concerning the profiles, they
roughly show dense distributions around the average values, with
high maximum attained by a few nodes.

Optimized traversals, using the three–step sequenceLearn-
ing, Partial andFull traversal, are described in Tables 3 and 4.

Memory usageMem. is reported in Mbytes ([Mb]) and CPU
time in seconds.

Table 3 compares overall performance of the profile based
technique with our standard breadth–first implementation and VIS.

We report peak BDD size for intermediate products within
image computations, memory, and execution time. Our standard
traversal performance is very similar to VIS, with slight differ-
ences on cluster sorting, which explain different performance.
Overall execution times are dominated by sifting (overall sifting
time is reported between brackets), due to the choice done for our
experiments. We believe this is the most common practice, al-
though we are aware of better performance in some cases, work-
ing with optimal settings (cache size, optimum variable ordering,
sifting disabled, etc).

We omit here circuits that we are not able to traverse with
any technique. Our three–step traversal largely outperforms the
standard one in terms of memory and of time in nearly all cases.
It is also able to complete the traversal ofs3271, that is aborted
by standard traversals for memory limits. In the case of circuit
s5378opt, we have a higher BDD node peak, but this was due to
the first iteration of the full traversal, computing the image of the
whole reachable state set resulting from the partial traversal. All
other iteration had lower peaks.

A more detailed description of the partial traversal approach
is shown in Table 4.

Iter. columns show the number of traversal iterations (im-
age computations) of the different phases. Here we show more
detailed statistics for all the three phases. The Learning phase
is always the cheapest one. In theIter. column, (a) and (e) in-
dicate using approximate or exact reachability analysis, respec-
tively. Partial traversal and the following full traversal are more
balanced, with performance dominated by either of the two, de-
pending on theTR subsetting done. It is also interesting to ob-
serve that theSize heuristic was better than theRecur one on
all cases but one. We believe this is partly due to the fact that
memory statistics are a better measure for performance of traver-
sals, and partly to the looser efforts we made with theRecur
heuristic.

6 Conclusions
We present a new approach to characterize the involvement and
the impact of transition relations within the core operations of

Circuit # I # L Depth States # Cl jTRj

s1269 18 37 9 1.13�10 9 19 14177
s1512 29 57 1023 1.66�1012 2 6230
s3271 26 116 16 1.31�1031 8 15554
s3330 40 132 7 7.28�1017 9 14537
s4863 43 183 4 2.19�1019 50 58601
s5378opt 35 121 42 2.58�1017 5 9057

Table 1: Circuit and Transition Relation Statistics.

Circuit Recursions/Img Cache Hits/Img Size Cost/Img
Avg StD Max Avg StD Max Avg StD Max

s1269 0.55 0.89 11.44 0.22 0.69 16.89 0.06 1.92 119.89
s1512 4.96 9.60 101.25 1.25 5.15 95.95 0.25 1.70 31.30
s3271 28.22 91.75 1563.45 7.43 33.71 791.18 6.76 272.32 2314.32
s3330 12.00 17.40 133.02 0.44 1.34 16.32 14.66 145.43 7848.54
s4863 129.43 464.54 5657.54 14.50 171.54 14344.54 9.43 140.54 8772.43
s5378opt 0.23 0.31 2.43 0.29 0.11 1.67 0.72 2.21 3.83

Table 2: Activity Profiles.

reachability analysis. Activity profiles are introduced as node by
node statistics gathered duringlearning traversal steps.

Among the possible applications, e.g., reordering, decompo-
sition and optimization, we describe partial traversals based on
transition relation subsetting. Experimental results show perfor-
mance gains in terms of memory requirement and CPU time.

Future works will investigate more sophisticated techniques
to collect and use profiles. Relation with dynamic reordering has
to be better investigated. Moreover, dynamic learning is an inter-
esting path to pursue. Whereas a few circuit have a quite uniform
profile, other have a very different behavior during reachability
analysis. One way to cope with that is to apply the learning phase
more than once during reachability analysis, e.g., between im-
age computations or sifting activations. Moreover, we want to
explore other activity indicators and pruning heuristics, as well
as more sophisticated partial traversal, i.e., multi-phase traversal
as opposite as two-phase. In parallel, one target is to investigate
further applications, e.g., other BDD operators, variable ordering,
package tuning.

References

[1] K. Ravi and F. Somenzi. High–Density Reachability Anal-
ysis. In Proc. IEEE/ACM ICCAD’95, pages 154–158, San
Jose, California, November 1995.

[2] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi.
Approximation and Decomposition of Binary Decision Dia-
gram. InProc. EDA/SIGDA/ACM/IEEE DAC’98, pages 445–
450, San Francisco, California, June 1998.

[3] G. Cabodi, P. Camurati, and S. Quer. Efficient State Space
Pruning in Symbolic Backward Traversal. InProc. IEEE
ICCD’94, pages 230–235, Cambridge, Massachussetts, Oc-
tober 1994.

[4] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer. Disjunc-
tive Partitioning and Partial Iterative Squaring: an effective
approach for symbolic traversal of large circuits. InProc.
EDA/SIGDA/ACM/IEEE DAC’97, pages 728–733, Anaheim,
California, June 1997.

[5] A. Narayan, A. J. Isles, J. Jain, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Reachability Analysis Using
Partitioned–ROBDDs. InProc. IEEE/ACM ICCAD’97,
pages 388–393, San Jose, California, November 1997.

[6] M. Ganai and A. Aziz. Efficient Coverage Directed State
Space Search. InIWLS’98: IEEE International Workshop on
Logic Synthesis, Lake Tahoe, California, June 1998.

[7] F. Somenzi. CUDD: CU Decision Diagram Package – Re-
lease 2.3.0. Technical report, Dept. of Electrical and Com-
puter Engineering, University of Colorado, Boulder, Col-
orado, October 1998.

[8] http://www.polito.it/�fcabodi,querg.

[9] R. K. Brayton et al. VIS. InProc. FMCAD’96, Lecture Notes
in Computer Science 1166, Springer Verlag, pages 248–256,
Palo Alto, California, November 1996.

Circuit VIS Original Method Activity Profiles Method
Peak Mem. Time Peak Mem. Time Peak Mem. Time

[Mb] [sec] [Mb] [sec] [Mb] [sec]

s1269 1287619 60.7 7609 (7151) 1654441 71.4 3892 (3468) 69615 11.5 68 (39)
s1512 56177 13.2 818 (166) 40058 19.5 1649 (83) 12218 9.6 215 (110)
s3271 � � � � � � 610185 56.1 4983 (3521)
s3330 514839 47.5 8843 (7249) 1368358 94.2 16934 (9172) 30904 15.5 960 (720)
s4863 701506 49 5310 (4256) 805165 55 4810 (4341) 52335 181.5 528 (430)
s5378opt 53951 13.6 483 (124) 62381 15.6 703 (529) 82295 13.4 248 (134)

Table 3: Reachability Analysis Comparison.� means memory overflow.

Circuit Heuristic Learning Partial Traversal Full Traversal
Iter. Mem. Time Iter. Mem. Time Iter. Mem. Time

[Mb] [sec] [Mb] [sec] [Mb] [sec]

s1269 Size(Heavy) 10 (a) 4.9 1 5 11.5 60 8 9.3 7
s1512 Size(Light) 20 (a) 5.1 1 1023 9.6 204 259 8.2 11
s3271 Size(Light) 5 (e) 18.2 12 7 20.1 164 12 56.0 4807
s3330 Size(Heavy) 1 (e) 5.2 0 12 13.2 140 6 15.5 820
s4863 Size(Light) 2 (e) 12.2 8 3 13.4 431 3 181.8 89
s5378opt Recursion 16 (a) 11.3 3 16 12.1 207 28 13.2 25

Table 4: Three-step Improved Traversal.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

