An O-Tree Representation of Non-Slicing Floorplan
and Its Applications

Pei-Ning Guo
Mentor Graphics Corp.
1001 Ridder Park Drive

San Jose, CA 95131, U.S.A.
pn_guo@mentor.com

ABSTRACT

We present an ordered tree, O-tree, structure to repre-
sent non-slicing floorplans. The O-tree uses only
n (2 + g n0 bits for a floorplan of n rectangular blocks.
We define an admissible placement as a compacted
placement in bothx and y direction. For each admissible
placement, we can find an O-tree representation. We
show that the number of possible O-tree combinations is
O(n! 2"-2/). This is very concise compared to a
sequence pair representation which has Of()) combi-
nations. The approxmate ratio of sequence pair and O-
tree combinations is 0(1 (n/4e)"). The complexity of
O-tree is even smaller than a b|nary tree structure for
slicing floorplan which has Ogn! 2°"* 3/l combina-
tions. Given an O-tree, it takes only linear time to con-
struct the placement and its constraint graph. We have
developed a deterministic floorplanning algorithm utiliz-
ing the structure of O-tree. Empirical results on MCNC
benchmarks show promising performance with average
16% improvement in wire length, and 1% less in dead
space over previous CPU-intensive cluster refinement
method.

1. INTRODUCTION
As the circuit size gets larger, design hierarchy and IP

blocks are intensively and increasingly used to reduce the

design complexity. The floorplan or building block place-
ment is becoming critical to the performance of hierarchical
design process.

One of the key factors to most floorplanners is the repre-

sentation of geometric relationship. The structure that repre-
sents the geometric relation for a floorplan will affect the

basic operations to the structure and determine the inheren

complexity to the approaches using it.
1.1. Previous Works
For a floorplan with slicing structure[6][8], we can use a

binary tree representation. The leaves of the binary tree cor-
respond to the blocks and each internal node defines a verti
cal or horizontal merge operation of its two descendents.

This work is supported in part by grants from the NSF Project
MIP-9529077 and the California MICRO program.
*Chung-Kuan Cheng is on leave from CSE Dept., UCSD.

Permission to make digital/hardcopy of al or part of this work for personal or
classroom useis granted without fee provided that copies are not made or distributed
for profit or commercia advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or afee.

DAC 99, New Orleans, Louisiana

(c) 1999 ACM 1-58113-109-7/99/06..$5.00

Chung-Kuan Cheng*

Mentor Graphics Corp.
1001 Ridder Park Drive
San Jose, CA 95131, U.S.A.
ck_cheng@mentor.com

Takeshi Yoshimura
NEC Corp.
4-1-1 Miyazaki, Miyanae-Ku
Kawasaki 216, Japan
yoshi@swl.cl.nec.co.jp

The number of possible configurations for the tree is
Oo(n! 2 5n-3 /115 Note that this complexity is an upper
bound. There are efforts to identify the redundancy[11].
Other efforts have been published to extend the binary tree
to the representation of non-slicing structure.[7][10]

For non-slicing floorplan, Onodera et al.[5] classify topo-
logical relationship between two blocks into four classes,
and use branch-and-bound method to solve the problem.
The solution space for this approach is 2)), that
makes the problem too complicate to handle at a time.

In [3][4], sequence pair and bounded slicing grid
approaches were presented to handle non-slicing floorplan
with smaller solution space. These two approaches are dif-
ferent representations but they are all basically based on
constraint graph to manipulate the transformation between
the representation and their placement, which makes it com-
plicated.

In [3], Murata et al. propose a sequence pair representa-
tion. They use two sets of permutations to present the geo-
metric relation of blocks. Thus, the combination of the
sequence pair is O(()z). From sequence pair to its place-
ment, the transformation operation takes1@(n) time[9].

In [4], Nakatake et al. devised a bounded slicing grid
approach. Am by n grid plane is used for the placement of
n blocks. The representation itself has much redundancy,
one floorplan could have several choices of representations.

J. Xu et al.[12] propose an iterative approach to optimize
area and interconnection by cluster refinement. For a dmall
as the cIuster size, the run time complexity for each iteration

o). This approach is CPU-intensive and difficult to

s
#andle if we choose a larger cluster size.

1.2. Contributions

The results of previous research show that the complexity
of problem increases a lot from slicing floorplan to non-slic-
ing floorplan. It is challenging to find a comparable or even

better representation for non-slicing floorplan.

Our thought is encouraged by the observation that any
floorplan is bound on a 2-D plane and could be represented
by a planar graph. There might be some means to reduce the
redundancy of the floorplan representation.

We first focus on a class of placement defined as admissi-
ble. Given a placement, we can derive an admissible place-
ment by compacting the blocks to the left and to the bottom
edges. An admissible placement is a compacted placement
where all blocks can neither move down nor move left. A
rooted ordered tree, O-tree, is devised to represent the
admissible placement. In the following, we describe the
advantages of O-tree:

« O-tree takes only (2 + (g n0) bits to describe, wheneis

the number of blocks. Note that a sequence pair takes3, ADMISSIBLE PLACEMENT AND CONSTRAINT
2n [g nO bits. Even a binary tree for slicing structure GRAPH
takesn (6 + g n0) bits.

» The run-time for transforming an O-tree to its represent-
ing placement is linear to the number of blocks, i.en)O(
For a sequence pair, its takesndg n) operations to con-
struct the placement. Note that it also takes)Qipera-
tions to construct a slicing structure from a binary tree.

» Given an admissible placement, there is an O-tree repre-
sentation. The combination of O-tree isrD22"%n1-9).

This is very concise compared with the sequence pair.

The combination of a sequence pair is ®(?). The ratio ~ °N€ With the direction from a left node to a right node,
of the complexity between sequence pair and O-tree is another with the direction from a bottom node to a top node.

approximately Oﬁz (n/4e)". The complexity of O-tree The weightd(e) for an edgee; (B, By) is the separation dis-
is even lower than a binary tree structure for slicing floor- &nce between two node(g) is equal tag - x; - w; for hor-
plan which has @ 2°™3/ n!-5 combinations. !zontal edge ang; - y; - h; for vertical edge. The w_elgh[i(e)
« We show that the transformation between O-tree and con-iS €qual to zero when two nod&; and B; are adjacent to
straint graph can be done in linear time. This shows that €ach other, otherwise it is positive. o _
the O-tree is equivalent to constraint graph for admissible ~Since we consider geometric constraints in two dimen-
placement. sions, the edges in constraint graph can be divided into two
« Another benefit of using O-tree is that the compaction Sets: E for horizontal constraints and,Hor vertical con-
operation is already included in the structure. One straints. Then, we have the horizontal constraint graph
instance of O-tree will map into exactly one placement. G = (V; Ey) and the vertical constraint gragB, = (V, E,).
The transformation and its compaction are done at the Both G, and G, are s-t planar directed acyclic graphs (s-t
same time. O-tree needs no extra effort for the computa- PDAG).
tion of compact operations. Both constraint graph&;, andG,, are planar because the
» Because of the simplicity of O-tree, we can easily con- placement is planar and there is no edge crossing other
template interconnect cost or other considerations as welledge. According to graph theory, the number of edges in a
as area cost. The optimized chip size and wire plan canplanar graph is less than or equal to three times of the num-
improve the quality and performance of physical layout. ber of nodes minus six. Therefore, we have
» We use a deterministic algorithm to demonstrate the first Lemma 1 Gy, and G, are planar graph, and both siz&||
approach using the O-tree structure. The algorithm is very and E,| are less than ¥/|- 6 for V| > 3.
straight-forward and very fast. Within a couple tens of Definition[L-compact and B-compact] A placement is L-
seconds, we can obtain competitive and even much bettercompact if and only if there is no block that can shift left
solutions to other CPU-intensive approaches in MCNC from its original position with other components fixed.
benchmark cases. _ In other words, a placement is L-compact when it is x-
This paper is organized as follows: Section 2 states the direction compacted to the left edge. The definition for B-
floorplanning problem. Section 3 gives the descriptions of compact placement is similar, substituting ‘left’ by ‘bot-
admissible placement and constraint graph. Section 4tom’, and ‘x-direction’ by ‘y-direction’.
defines the properties and operations for O-tree. Section 5pefinition [LB-compact placement] A placement is LB-
presents a deterministic algorithm based on O-tree. Sectioncompact if and only if it is both L-compact and B-compact.
6 shows our experimental results for MCNC benchmarks. For any placement, we can fix the bottom and left edges,
Further potential applications and heuristics based on the O-and performx-direction andy-direction compaction itera-
tree structure that could improve our basic deterministic tively. The final placement after all compact operations con-
version of the approach are given to conclude this paper inverge is an LB-compact placement respect to the original
the last section. placement. We have
2. PROBLEM STATEMENT Lemma 2 Given any placemen®;, we can find a corre-
A setB ={Bjy, B,,..., By} of rectangular blocks lie parallel sponding LB-compact placemeR by a sequence of-
to the coordinate axes. Each rectangular biBcls defined direction andy-direction compactions. The overall area of
by a tuple b, w), whereh; andw; are the height and the P, is equal or less than the overall are®pf
width of block B;, respectively. A placemem = {(x;, Y;): Definition [Admissible placement] A placement is admis-
1<i<n}is an assignments of coordinates to the lower left sible if it is a LB-compact placement.
corners of the rectangular blocks such that there is no two4, O-TREE AND PLACEMENT

rectangular blocks overlapping. A representation of a place- A tree contains a finite sat of one or more nodes. There
ment is a set of structures and operations that reafizése is one specially designated node called the root of the tree.
cost function we use for a placement consists of two parts: The root has zero or more branches, the branches are

one is the area of the smallest rectangle that encloses thejirected edges pointed from the root to its children. Let
placement; the other is the interconnection cost betweenm> 0, Ty,..., Ty be a set of trees. We cdll,..., T,,, the sub-

rectangular blocks. trees of the root.

A constraint graph for a placement are a graph G=(V,E),
where the nodes in V are placement blocks with additional
four nodes used for the boundaries of the placement, and the
edges in E are the geometric constraints between two
blocks. A geometric constraint exists when we can draw a
horizontal or vertical line between two blocks without pass-
ing through other blocks.

The edges in E are directed. There are two kinds edges:

An O-tree is a rooted directed tree in which the order of with zero separation distance xcoordinate. LeB; be the
the subtreed,..., Ty, is important. When we visit the tree parent ofg;, we have
using depth-first-search (DFS), the order of the subtrees X =X + W (1)

Ty,..., Ty determines the DFS order when we traverse the The permutatiort determines the vertical position of the
tree. component when two blocks have proper overlap in tkeir
4.1. Tree Encoding with T, 10 coordinate projections. For each blaB let yi(i) be the set

To encode a rooted ordered tree withodes[1], we need of block By with its order lower tharB; in permutationtand
a 2(n-1)-bit string T to identify the branching structure of interval (, X + W) overlaps intervalX, x; + w;) by a non-
tree, and a permutation as the labels oh nodes. The bit zero length. (i) is non-empty, we have
string T is a realization of the tree structure. We write0a * Yi = maXy qy(y Yk + i (2
for a traversal which descends an edge and’avhen it otherwise v, =0 (3)

. . i

subsequently ascends that edge in tree. The permutaifon :)
the label sequence when we traverse the tree in depth-first _From an horizontal O-tree, we can find a placement by
search order. The first element in permutatiois the root visiting the tree in DFS order. The placement is always B-

of tree. The following example demonstrates the encoding 0MPact by its definition, but not necessarily L-compact.
of an 8-node rooted ordered tree: Fig. 2 shows a placement which is represented by the hori-

zontal O-tree in Fig. 1.

Moy =0l
~® |11
—(D

Figure 2: O-tree and placement

Similar to horizontal O-tree described above, and use a
. . bottom edge as the root of tree.
Figure 1: Encoding of an 8-node tree Definition [Admissible O-Tree] An O-tree is admissible if
Given a 8-node tree shown in Fig. 1, its root node has ijts corresponding placement is admissible. Fig. 3 shows two

three subtrees rooted af b andc. We can represent it by O-tree where the one at the left is admissible, and the other
(0011010001101;dbcegyf. Starting from the root, we visit s not.

nodea first and record a bit0’ to T and a labela’ to 1t
Then we visit nodel and record a bit0’ to T and a labeld (0011001101 ,adbec) (0100101011,abdec)

i

to Tt On the way back to the root from noddsaanda, we c
record two bits 11’ to T. Then we visit subtreels andc in b

sequence, and record the remaining aindm respectively. We
The length of the bit string is 16. < { .<

Space needed to storeT(m) Given a tree withn nodes in ~ad | > g 2| [d
addition to its root, each label of node can be encoded into a

g nObit string. Therefore, we need(2 + Og n0 bits to admissible not admissible
store(T, M) where 2 bits forT, andnlg nCbits forTt. Figure 3: Admissible o-tree

Count of possible {T,m) configurations The total number Lemma 3 Given an admissible O-tree, it is equal to the
of possible(T,m)’s for an-node tree is the product of possi- shortest path spanning tree (SPST) embedded in the con-
ble configurations of bit strin@ and permutatiom. We can straint graph of its corresponding placement.
derive the asymptotic form[2] of the number of configura- Corollary Given an admissible placement, we can construct
tions as Of!22"Int-9). a horizontal constraint graph. The shortest path spanning
4.2. Horizontal O-Tree tree of the graph is the horizontal O-tree of the placement.
A horizontal O-tree(T,m) represents a placement by the The same result applies to vertical O-tree as well.
following ways: the nodes ifT,m) is the set of placement 4.3. O-Tree to Its Orthogonal Constraint Graph
blocksB and an additional left boundary node as the root. ~ Given an O-tree, we can build up its orthogonal constraint
The edges in(T,m) determines the horizontal related posi- graph by using DFS and maintaining a contour structure.
tions between blocks and the permutatiosietermines their ~ Based on the definition of O-tree, we develop an algorithm
vertical relationship. The definition is as follows: (O-Tree To its Orthogonal Constraint Grap@T20CG)
The root of the O-tree represents the left boundary of the which first finds the corresponding placement of the O-tree
chip. Thus, we set itg-coordinatex,,ot = 0 and its width by solving equations (1)-(3), and then builds up its orthogo-
Wyoot = 0. The children are on the right side of their parent nal constraint graph.

Algorithm OT20CG

Input: O-tree(T[0:2n-1], M[0:n])

Output: orthogonal constraint graph G=(V,E), x[1:n], and y[1:n]
setV=T1+{VgV;

set perm =1;

set contour = NULL;

set current_contour = 0;

forcode=0to2n-1

if T[code] = 0 then
set current_block = M[perm];
if current_contour = 0 then
set x[current_block] = x[current_contour] + wcurrent_contour];
else set x[curent_block] = 0;
end if
set y[current_block] = find_max_y(contour, current_block)
update_constraint_graph(G, contour, current_block)
update_contour(contour, current_block)
set current_contour = current_block ;
set perm = perm + 1
else set current_contour = prev[current_contour];
end if

end for) _)

A contour structure is used I@T20CG algorithm to
reduce the run time for finding thecoordinate of a block
while solving the equations (2) and (3). The run time is lin-
ear to the number of blocks without the contour structure.
By maintaining a contour structure, the amortized cost of
finding anyy-coordinate becomes a constant time.

The contour structure is a double linked list of blocks,
which describes the contour line in current compact direc-
tion. We use a variableurrent_contoutto record the block
where we want to insert next block to in the contour. Fig. 4
shows howfind_max_ydetermines thg-coordinate of cur-
rent block, howupdate_constaint_graphdds edges in the
constraint graph, and houpdate_contouupdates the con-
tour structure when we add a new block to the placement.

current insert point current block

new contour

‘>

old contour

blocks that agtermine the y pos of new block and
edges pointing to new block added to constraint graph

Figure 4: updating constraint graph and contour
The algorithm visits each node twice, one at the node’s
encode 0" and the other at encodd’ The time for updat-

algorithm (Constraint Graph To O-Tre€G20T) which

has the same performance and needs less explicit memory
space. The run time of this algorithm is linear to the number
of blocks.

Algorithm CG20T

Input: constraint graph G=(V,E)

Output: O-tree(T[0:2n-1], P[0:n])

set all mark to false

set perm = 0;

set code = 0;

DFS traverse on the graph G

set n = current node
set p = parent[n]
if not mark[n] and weight[edge(p,n)] = 0 then
set mark[n] = true
set P[perm++] = 0;
set T[code++] = n;
for ¢ In children[n]
traverse(c);
end for
set Plperm++] = 1,
end if
4.5. Admissible O-Tree Transformation (AOT)

Given any O-tree, we can construct an admissible O-tree
by invoking OT20CG andCG20T iteratively in sequence
until convergence is achieved. Given a horizontal O-free
we can get a vertical constraint gra@, by OT20CG.
Becauses, is B-compact, we can get a vertical O-tiggoy
CG20T. ,Kfter applying the same procedur€¥T20CG
and CG20T, we can get a horizontal O-tree which repre-
sents an L-compact placement.

All moves in the compaction are monotone because all
blocks are either moving down or moving left. Therefore,
the convergence of above iteration is assured and we can get
an admissible O-tree.

Lemma 5 All operations OT20CG and CG20T in the main
loop are linear. The run time complexity for each iteration
of the main loop in AOT is linear to the number of bloaks

5. FLOORPLAN ALGORITHMS USING O-TREE

We develop a deterministic floorplan algorithm using the
O-tree structure described in section 4. Systematically per-
turbing a given O-tree, we can find an optimized solution
according to a preset cost function.
Perturbing the O-Tree

We perturb the O-tree by the following steps: (a) select a
block B; in the original O-tre€T,m), (b) delete blockg; from
O-tree(T,m), (c) insert blockB; in the position with the best
value of cost function among all possible inserting positions
in (T,7) as an external node, and (d) perform (a)-(c) on its

ing constraint graph and contour structure is amortized con- orthogonal O-tree
stant time, because the total number of edge added for the T selection of inserting position from all above will cre-

constraint graph is E|. Therefore, the run time is
O(M + [E]). By Lemma 2, we have
Lemma 4 The run time for algorithm OT20CG is linear.

4.4. Constraint Graph to Its O-Tree

ate many useful configurations for the perturb operation. We
may also select other method to insert a node to the tree, but
it needs more additional operation to split and merge its
descending subtrees. It is one of our choices to not include

Given a constraint graph, we can build its O-tree by SPST them in our approach.

algorithm. because the constraint graph created by algo-

rithm OT20CG is either L-compact or B-compact, we can

Given any O-tree witm nodes, the number of possible
inserting positions as external nodes is-2. In Fig. 5,

construct an O-tree whose edges all have weights equal tathere are 15 possible inserting positions in a 8-node tree.
zero. Instead of using a breadth-first-search algorithm as aThe operation of finding these positions @hm) is simply
traditional approach of SPST, we use a depth-first-searchadding a string ‘01’ to any position in bit strinfand add-

ing the label to its related positionin

(e) >
inserting
‘ 0 ® e @ position

(@) (@)=

Figure 5: possible inserting positions as an external node

A perturbed O-tree need not be admissible. We can apply
AOT to get an admissible O-tree and then evaluate it by the
preset cost function to find which move is the best.

A deterministic algorithm is derived by perturbing O-tree

in sequence. We select nodes in sequence and find the bes

perturb position for each of them. Given a fixed sequence of

node, we can always find a best O-tree and its correspond-|

ing placement. The advantage of deterministic algorithm is
that its implementation is straightforward and easy to com-
prehend.

Deterministic algorithm
Input: array of blocks with width, height, and pin positions and 1/O pad
position and networks
Output: blocks with position and orientation
initiate O-tree T and its placement
for each block b
set min_cost = infinite
remove (T, b)
for each possible position p of b in T and T's orthogonal
set T, = new O-tree and placement for p
get admissible T, using AOT
set ¢ = cost (T4)
if ¢ <min_cost then
set min_cost=c¢
setmin_T=T,
end if
end for
setT=min_T
end for
Output placement for T
Similar to the method of the deterministic algorithm, we
can get a constructive algorithm for initial placement as the
follow:
Initiate (constructive algorithm)
set O-tree T={}
same as the main loop above, replace cost() by partial_cost()
Output T
There are twdor loops in the algorithm. The first loop
perturbs all blocks in placement for total mtimes, and the
second one evaluate$12 possible inserting points in the
O-tree. The functio®OT in the inner loop contributes @Y
time to the overall procedure. The run time complexity for
the algorithms is @€).
6. EXPERIMENTAL RESULTS
The experiments are carried out for the MCNC building
block examples. There are five test cases and the number o
blocks ranges between 9 and 49. The largest aag49is a
circuit with 49 blocks, 42 1/0O pads, 408 nets, and 931 pins.
The circuit characteristics in MCNC benchmark can be

found in [12].

Our program is written in C language. The core part of O-
tree operation is around 1,000 lines of codes, and the overall
package including an X Windows interface is a little more
than 6,000 lines of source codes. The program is running on
the platform of a 200MHz Ultra-1 Sparc station with
512MB memory.

We compare the wire length and chip area with the result
of cluster refinement[12]. Table 1 shows the results of initial
placement using the given sequence order and the results
after one run of deterministic algorithm. The cost function
here is solely by the wire length, which is the sum of half
bounding box of all nets in the circuit. In each table entry,
there are three numbers: the first number is the chip area
(mn?), the second number is the wire lengthr(), and the
last one is the CPU time in seconds.

Table 1: Area / wirelength / CPU comparisons

T+

circuit | cluster refinemerjt initial placement dgtlgg::'tﬂ';“c
apte | 48.4/321/224 | 63.3/330/0.14 63.3/330/p.65
xerox | 20.3/477/18.8| 25.9/506/0.44 23.8/478/0.99
hp |9.58/185/18.0| 14.3/178/0.26 9.91/167/6.32
ami33| 1.21/ 64 /603 | 1.69/61.9/2.83 1.34/50.9/P4.3
ami49| 37.7 /764 /1860 54.6/676/11.p 45.5/673/[177

In Table 1, we achieved results with better wire length for
the three largest cases while their chip area are comparable.
Note that the CPU time is much less than the cluster refine-
ment approach, the comparable results can be reached with
only a few minutes for the largest case.

Based on the basic version of initial and deterministic
algorithm, we can use a randomly generated sequence
instead of the original sequence in MCNC benchmarks.
Joint with different weights to area and to wire length in
cost function, we have the results that an optimized solution
can be found when the weights are balanced.

In Table 2, the distribution for the results of MCNC
testcase using 100 runs of randomized sequences is given.
We use a cost function likev;xarea+ wyxwirelength
where the weightsv; andw, are for area and wire length
respectively and two termereaandwirelengthare normal-
ized. The table shows three sets of;{ w,} values: {0, 1},

{0.5, 0.5}, and {1, 0}. Each table entry has two numbers:
the first one is the minimum value of results among all runs,
and the second one is the average of the results.

Fig. 6 shows the area/wirelength plot for thei49 cir-
cuit. We run 100 randomized sequences for different
weights in the cost function. When the weights are 0.5 for
both area and wire length, the plots are very concentrated
near the area of #3ine where chip size and wire length are
almost balanced at that region.

Comparing the best results with cluster refinement, we
have 1% to 23% improvement in the wire length, and -3% to
4% improvement in area. Fdwp case, we can find a better
solution which has 4% improvement in area and 17%
fmprovement in wire length. In average, we can get about
16% improvement in wire length while the chip area is com-
parable. In Fig. 7, the placement after improvement shows a
better interconnection than the placement before improve-

approach. Further studies on the properties of O-tree are
undergoing. A varieties of approaches based on O-tree are

ment.
’ +: wy=0 =1
of 5 W 05 o 051 already.
* 0: wy=0. =0.
s 7S WS 8. REFERENCES
: I x:wi=1 w=0 1]
..'C_, 1.6F
= pp. 239-252, 1995
QD .l) [2]
g
§ 12F B [3]
T | 479, 1995
0.8} * + 4 [4]
} ﬁ%+$ j;::{; e

. ‘ ‘ ICCAD, pp. 484-491, 1996

7. CONCLUSION

We have successfully found a simpler layout representa- 7]
tion and incorporated the capability for geometric compac-
tion into the structure itself. O-tree, a simplified structure to
present the geometric relation, is developed and proposed tdé]
replace the commonly used constraint graph which we find
is complicated and has expensive operations. The tree strucl®!
ture is well-known in applied mathematics and computer

area
Figure 6: randomized sequence with different weights

.5 6 6.5 . 1077 [5]
1991

under development, and there are some promising results

K. Keeler and J. WestbrookShort Encoding of Planar
, Graphs and MapsDiscrete Applied Mathematics, vol. 58,

D.E. Knuth, The Art of Computer Programmin@nd Ed.,
Vol. 1, Addison-Wesley Publishing Co., pp. 385-395, 1973
H. Murata, K. Fujiyoshi, S. Nakatake, and Y. KajataRiect-
angular-Packing-Based Module Placemd@CAD, pp. 472-

S. Nakatake, K. Fujiyoshi, H. Murata, and Y. KajitaiMod-
ule Placement on BSG-Structure and IC Layout Applications

H. Onodera, Y. Taniguchi, K. TamariBranch-and-Bound
Placement for Building Block LayouDAC, pp. 433-439,

[6] R. H.J. M. Otten Automatic Floorplan DesignProc. ACM/

IEEE Design Automation Conf., pp. 261-267, 1982

P. Pan and C.L. LiuArea Minimization for FloorplanslEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and System, pp. 123-132, January 1995

B. T. Preas and W. M. VanCleempuwRJacement Algorithms

for Arbitrarily Shaped BlockDAC, pp. 474-480, 1979

T. TakahashiAn Algorithm for Finding a Maximum-Weight
Decreasing Sequence in a Permutation, Motivated by Rectan-
gle Packing ProblemEICE, vol. VLD96, pp. 31-35, 1996

science and the properties of trees are very straightforward[10] T.-C. Wang, and D. F. WongAn Optimal Algorithm for
Floorplan Area OptimizationDAC, pp. 180-186, 1990
Our algorithm shows improvement in both chip area and [11] D. F. Wong, and C. L. LiuA New Algorithm for Floorplan

and simple.

wire length. The implementation of algorithm is achieved
with much less CPU time. Other measures, such as timing,
congestion, and routability, are now formulated to our

Table 2: Minimum / average distribution with different weights

Design DAC, pp. 101-107, 1986
2] J. Xu, P.-N. Guo, and C.-K. Chen@iluster Refinement for
Block PlacementDAC, pp. 762-765, 1997

circuit wq=0, wy=1 _ w1=w,=0.5 _ wy=1,w,=0 _ improve over CH
area wire area wire area wire (area/wire)
apte | 48.3/56.9 31771347 47.6/58.2 317/370 47.1/50.6 343/544 3%/ 1%
xerox | 20.47/24.1] 3687426 2047204 367/447 20.1/P1.4 444702 1% / 28%
hp | 9.717/11.2] 1537163 921/105 153/167 9.21/D.97 162/226 2% 1 17%
ami33 | 1.26/1.41 515/57p 1.26/1|34 51.6/5%9.8 1.25/[1.32 61.1]87.4 -3%/20%
ami49 | 41.3/49.d 636/734 39.1/4P0 671/477 37.6/B9.9 819/[1375 0%/ /%

area = 40,8 (5.92 x 6.89)ire length = 810
(a) before improvement

Figure 7: placements before and after deterministic improvement foami49

area = 39.9 (6.17 x 6.4Tyire length = 680

(b) after improvement

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

