
ABSTRACT
We present an ordered tree, O-tree, structure to repre-

sent non-slicing floorplans. The O-tree uses only
n (2 + lg n) bits for a floorplan of n rectangular blocks.
We define an admissible placement as a compacted
placement in bothx and y direction. For each admissible
placement, we can find an O-tree representation. We
show that the number of possible O-tree combinations is
O(n! 22n - 2 / n1.5). This is very concise compared to a
sequence pair representation which has O((n!)2) combi-
nations. The approximate ratio of sequence pair and O-
tree combinations is O(n2 (n / 4e)n). The complexity of
O-tree is even smaller than a binary tree structure for
slicing floorplan which has O(n! 25n - 3 / n1.5) combina-
tions. Given an O-tree, it takes only linear time to con-
struct the placement and its constraint graph. We have
developed a deterministic floorplanning algorithm utiliz-
ing the structure of O-tree. Empirical results on MCNC
benchmarks show promising performance with average
16% improvement in wire length, and 1% less in dead
space over previous CPU-intensive cluster refinement
method.
1. INTRODUCTION

As the circuit size gets larger, design hierarchy and IP
blocks are intensively and increasingly used to reduce the
design complexity. The floorplan or building block place-
ment is becoming critical to the performance of hierarchical
design process.

One of the key factors to most floorplanners is the repre-
sentation of geometric relationship. The structure that repre-
sents the geometric relation for a floorplan will affect the
basic operations to the structure and determine the inherent
complexity to the approaches using it.
1.1. Previous Works

For a floorplan with slicing structure[6][8], we can use a
binary tree representation. The leaves of the binary tree cor-
respond to the blocks and each internal node defines a verti-
cal or horizontal merge operation of its two descendents.

The number of possible configurations for the tree is
O(n! 25n - 3 / n1.5). Note that this complexity is an upper
bound. There are efforts to identify the redundancy[11].
Other efforts have been published to extend the binary tree
to the representation of non-slicing structure.[7][10]

For non-slicing floorplan, Onodera et al.[5] classify topo-
logical relationship between two blocks into four classes,
and use branch-and-bound method to solve the problem.
The solution space for this approach is O(2n (n + 2)), that
makes the problem too complicate to handle at a time.

In [3][4], sequence pair and bounded slicing grid
approaches were presented to handle non-slicing floorplan
with smaller solution space. These two approaches are dif-
ferent representations but they are all basically based on
constraint graph to manipulate the transformation between
the representation and their placement, which makes it com-
plicated.

In [3], Murata et al. propose a sequence pair representa-
tion. They use two sets of permutations to present the geo-
metric relation of blocks. Thus, the combination of the
sequence pair is O((n!)2). From sequence pair to its place-
ment, the transformation operation takes O(n lg n) time[9].
In [4], Nakatake et al. devised a bounded slicing grid
approach. Ann by n grid plane is used for the placement of
n blocks. The representation itself has much redundancy,
one floorplan could have several choices of representations.

J. Xu et al.[12] propose an iterative approach to optimize
area and interconnection by cluster refinement. For a smallk
as the cluster size, the run time complexity for each iteration
is O(n2+k/2). This approach is CPU-intensive and difficult to
handle if we choose a larger cluster size.
1.2. Contributions

The results of previous research show that the complexity
of problem increases a lot from slicing floorplan to non-slic-
ing floorplan. It is challenging to find a comparable or even
better representation for non-slicing floorplan.

Our thought is encouraged by the observation that any
floorplan is bound on a 2-D plane and could be represented
by a planar graph. There might be some means to reduce the
redundancy of the floorplan representation.

We first focus on a class of placement defined as admissi-
ble. Given a placement, we can derive an admissible place-
ment by compacting the blocks to the left and to the bottom
edges. An admissible placement is a compacted placement
where all blocks can neither move down nor move left. A
rooted ordered tree, O-tree, is devised to represent the
admissible placement. In the following, we describe the
advantages of O-tree:
• O-tree takes onlyn (2 + lg n) bits to describe, wheren is

This work is supported in part by grants from the NSF Project
MIP-9529077 and the California MICRO program.
*Chung-Kuan Cheng is on leave from CSE Dept., UCSD.

An O-Tree Representation of Non-Slicing Floorplan
and Its Applications

Pei-Ning Guo
Mentor Graphics Corp.
1001 Ridder Park Drive

San Jose, CA 95131, U.S.A.
pn_guo@mentor.com

Chung-Kuan Cheng*
Mentor Graphics Corp.
1001 Ridder Park Drive

San Jose, CA 95131, U.S.A.
ck_cheng@mentor.com

Takeshi Yoshimura
NEC Corp.

4-1-1 Miyazaki, Miyanae-Ku
Kawasaki 216, Japan
yoshi@swl.cl.nec.co.jp

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

the number of blocks. Note that a sequence pair takes
2n lg n bits. Even a binary tree for slicing structure
takesn (6 + lg n) bits.

• The run-time for transforming an O-tree to its represent-
ing placement is linear to the number of blocks, i.e. O(n).
For a sequence pair, its takes O(n lg n) operations to con-
struct the placement. Note that it also takes O(n) opera-
tions to construct a slicing structure from a binary tree.

• Given an admissible placement, there is an O-tree repre-
sentation. The combination of O-tree is O(n! 22n-2/n1.5).
This is very concise compared with the sequence pair.
The combination of a sequence pair is O((n!)2). The ratio
of the complexity between sequence pair and O-tree is
approximately O(n2 (n / 4e)n). The complexity of O-tree
is even lower than a binary tree structure for slicing floor-
plan which has O(n! 25n-3 / n1.5) combinations.

• We show that the transformation between O-tree and con-
straint graph can be done in linear time. This shows that
the O-tree is equivalent to constraint graph for admissible
placement.

• Another benefit of using O-tree is that the compaction
operation is already included in the structure. One
instance of O-tree will map into exactly one placement.
The transformation and its compaction are done at the
same time. O-tree needs no extra effort for the computa-
tion of compact operations.

• Because of the simplicity of O-tree, we can easily con-
template interconnect cost or other considerations as well
as area cost. The optimized chip size and wire plan can
improve the quality and performance of physical layout.

• We use a deterministic algorithm to demonstrate the first
approach using the O-tree structure. The algorithm is very
straight-forward and very fast. Within a couple tens of
seconds, we can obtain competitive and even much better
solutions to other CPU-intensive approaches in MCNC
benchmark cases.
This paper is organized as follows: Section 2 states the

floorplanning problem. Section 3 gives the descriptions of
admissible placement and constraint graph. Section 4
defines the properties and operations for O-tree. Section 5
presents a deterministic algorithm based on O-tree. Section
6 shows our experimental results for MCNC benchmarks.
Further potential applications and heuristics based on the O-
tree structure that could improve our basic deterministic
version of the approach are given to conclude this paper in
the last section.
2. PROBLEM STATEMENT

A setB = {B1, B2,...,Bn} of rectangular blocks lie parallel
to the coordinate axes. Each rectangular blockBi is defined
by a tuple (hi, wi), wherehi andwi are the height and the
width of block Bi, respectively. A placementP = {(xi, yi):
1 ≤ i ≤ n} is an assignments of coordinates to the lower left
corners of the rectangular blocks such that there is no two
rectangular blocks overlapping. A representation of a place-
ment is a set of structures and operations that realizesP. The
cost function we use for a placement consists of two parts:
one is the area of the smallest rectangle that encloses the
placement; the other is the interconnection cost between
rectangular blocks.

3. ADMISSIBLE PLACEMENT AND CONSTRAINT
GRAPH

A constraint graph for a placement are a graph G=(V,E),
where the nodes in V are placement blocks with additional
four nodes used for the boundaries of the placement, and the
edges in E are the geometric constraints between two
blocks. A geometric constraint exists when we can draw a
horizontal or vertical line between two blocks without pass-
ing through other blocks.

The edges in E are directed. There are two kinds edges:
one with the direction from a left node to a right node,
another with the direction from a bottom node to a top node.
The weightd(e) for an edgee= (Bi, Bj) is the separation dis-
tance between two nodes,d(e) is equal toxj - xi - wi for hor-
izontal edge andyj - yi - hi for vertical edge. The weightd(e)
is equal to zero when two nodesBi andBj are adjacent to
each other, otherwise it is positive.

Since we consider geometric constraints in two dimen-
sions, the edges in constraint graph can be divided into two
sets: Eh for horizontal constraints and Ev for vertical con-
straints. Then, we have the horizontal constraint graph
Gh = (V, Eh) and the vertical constraint graphGv = (V, Ev).
Both Gh and Gv are s-t planar directed acyclic graphs (s-t
PDAG).

Both constraint graphsGh andGv are planar because the
placement is planar and there is no edge crossing other
edge. According to graph theory, the number of edges in a
planar graph is less than or equal to three times of the num-
ber of nodes minus six. Therefore, we have
Lemma 1 Gh andGv are planar graph, and both sizes |Eh|
and |Ev| are less than 3 |V| - 6 for |V| > 3.
Definition[L-compact and B-compact] A placement is L-
compact if and only if there is no block that can shift left
from its original position with other components fixed.

In other words, a placement is L-compact when it is x-
direction compacted to the left edge. The definition for B-
compact placement is similar, substituting ‘left’ by ‘bot-
tom’, and ‘x-direction’ by ‘y-direction’.
Definition [LB-compact placement] A placement is LB-
compact if and only if it is both L-compact and B-compact.

For any placement, we can fix the bottom and left edges,
and performx-direction andy-direction compaction itera-
tively. The final placement after all compact operations con-
verge is an LB-compact placement respect to the original
placement. We have
Lemma 2 Given any placementP1, we can find a corre-
sponding LB-compact placementP2 by a sequence ofx-
direction andy-direction compactions. The overall area of
P2 is equal or less than the overall area ofP1.
Definition [Admissible placement]A placement is admis-
sible if it is a LB-compact placement.
4. O-TREE AND PLACEMENT

A tree contains a finite setT of one or more nodes. There
is one specially designated node called the root of the tree.
The root has zero or more branches, the branches are
directed edges pointed from the root to its children. Let
m ≥ 0, T1,..., Tm be a set of trees. We callT1,..., Tm the sub-
trees of the root.

An O-tree is a rooted directed tree in which the order of
the subtreesT1,..., Tm is important. When we visit the tree
using depth-first-search (DFS), the order of the subtrees
T1,..., Tm determines the DFS order when we traverse the
tree.
4.1. Tree Encoding with (T, π)

To encode a rooted ordered tree withn nodes[1], we need
a 2(n-1)-bit string T to identify the branching structure of
tree, and a permutationπ as the labels ofn nodes. The bit
stringT is a realization of the tree structure. We write a ‘0’
for a traversal which descends an edge and a ‘1’ when it
subsequently ascends that edge in tree. The permutationπ is
the label sequence when we traverse the tree in depth-first
search order. The first element in permutationπ is the root
of tree. The following example demonstrates the encoding
of an 8-node rooted ordered tree:

Given a 8-node tree shown in Fig. 1, its root node has
three subtrees rooted ata, b andc. We can represent it by
(00110100011011,adbcegf). Starting from the root, we visit
nodea first and record a bit ‘0’ to T and a label ‘a’ to π.
Then we visit noded and record a bit ‘0’ to T and a label ‘d’
to π. On the way back to the root from nodesd anda, we
record two bits ‘11’ to T. Then we visit subtreesb andc in
sequence, and record the remaining ofT andπ respectively.
The length of the bit stringT is 16.
Space needed to store (T,π) Given a tree withn nodes in
addition to its root, each label of node can be encoded into a
lg n bit string. Therefore, we needn(2 + lg n) bits to
store(T,π) where 2n bits forT, andnlg n bits forπ.
Count of possible (T,π) configurations The total number
of possible(T,π)’s for a n-node tree is the product of possi-
ble configurations of bit stringT and permutationπ. We can
derive the asymptotic form[2] of the number of configura-
tions as O(n!22n-2/n1.5).
4.2. Horizontal O-Tree

A horizontal O-tree(T,π) represents a placement by the
following ways: the nodes in(T,π) is the set of placement
blocksB and an additional left boundary node as the root.
The edges in(T,π) determines the horizontal related posi-
tions between blocks and the permutationπ determines their
vertical relationship. The definition is as follows:

The root of the O-tree represents the left boundary of the
chip. Thus, we set itsx-coordinatexroot = 0 and its width
wroot = 0. The children are on the right side of their parent

with zero separation distance inx-coordinate. LetBi be the
parent ofBj, we have

xj = xi + wi (1)
The permutationπ determines the vertical position of the

component when two blocks have proper overlap in theirx-
coordinate projections. For each blockBi, let ψ(i) be the set
of blockBk with its order lower thanBi in permutationπ and
interval (xk, xk + wk) overlaps interval (xi, xi + wi) by a non-
zero length. Ifψ(i) is non-empty, we have

yi = maxk ∈ψ(i) yk + hk (2)
otherwise yi = 0 (3)

From an horizontal O-tree, we can find a placement by
visiting the tree in DFS order. The placement is always B-
compact by its definition, but not necessarily L-compact.
Fig. 2 shows a placement which is represented by the hori-
zontal O-tree in Fig. 1.

Similar to horizontal O-tree described above, and use a
bottom edge as the root of tree.
Definition [Admissible O-Tree] An O-tree is admissible if
its corresponding placement is admissible. Fig. 3 shows two
O-tree where the one at the left is admissible, and the other
is not.

Lemma 3 Given an admissible O-tree, it is equal to the
shortest path spanning tree (SPST) embedded in the con-
straint graph of its corresponding placement.
Corollary Given an admissible placement, we can construct
a horizontal constraint graph. The shortest path spanning
tree of the graph is the horizontal O-tree of the placement.
The same result applies to vertical O-tree as well.
4.3. O-Tree to Its Orthogonal Constraint Graph

Given an O-tree, we can build up its orthogonal constraint
graph by using DFS and maintaining a contour structure.
Based on the definition of O-tree, we develop an algorithm
(O-Tree To its Orthogonal Constraint Graph,OT2OCG)
which first finds the corresponding placement of the O-tree
by solving equations (1)-(3), and then builds up its orthogo-
nal constraint graph.

a b c

d
e f

g

0 1

0

0 0

0 0

0

1

1 1

11

1

Figure 1: Encoding of an 8-node tree

a

b

c

d

e g

f

Figure 2: O-tree and placement

admissible

a

b

c

d

e

(0011001101,adbec)

Figure 3: Admissible o-tree
not admissible

a

b

c

d

e

(0100101011,abdec)

Algorithm OT2OCG
Input: O-tree(T[0:2n-1], Π[0:n])
Output: orthogonal constraint graph G=(V,E), x[1:n], and y[1:n]

set V = Π + {Vs,Vt};
set perm = 1;
set contour = NULL;
set current_contour = 0;
for code = 0 to 2n - 1

if T[code] = 0 then
set current_block = Π[perm];
if current_contour = 0 then

set x[current_block] = x[current_contour] + w[current_contour];
else set x[curent_block] = 0;

end if
set y[current_block] = find_max_y(contour, current_block)
update_constraint_graph(G, contour, current_block)
update_contour(contour, current_block)
set current_contour = current_block ;
set perm = perm + 1

else set current_contour = prev[current_contour];
end if

end for
A contour structure is used inOT2OCG algorithm to

reduce the run time for finding they-coordinate of a block
while solving the equations (2) and (3). The run time is lin-
ear to the number of blocks without the contour structure.
By maintaining a contour structure, the amortized cost of
finding anyy-coordinate becomes a constant time.

The contour structure is a double linked list of blocks,
which describes the contour line in current compact direc-
tion. We use a variablecurrent_contourto record the block
where we want to insert next block to in the contour. Fig. 4
shows howfind_max_ydetermines they-coordinate of cur-
rent block, howupdate_constaint_graphadds edges in the
constraint graph, and howupdate_contourupdates the con-
tour structure when we add a new block to the placement.

The algorithm visits each node twice, one at the node’s
encode ‘0’ and the other at encode ‘1’. The time for updat-
ing constraint graph and contour structure is amortized con-
stant time, because the total number of edge added for the
constraint graph is |E|. Therefore, the run time is
O(|V| + |E|). By Lemma 2, we have
Lemma 4 The run time for algorithm OT2OCG is linear.
4.4. Constraint Graph to Its O-Tree

Given a constraint graph, we can build its O-tree by SPST
algorithm. because the constraint graph created by algo-
rithm OT2OCG is either L-compact or B-compact, we can
construct an O-tree whose edges all have weights equal to
zero. Instead of using a breadth-first-search algorithm as a
traditional approach of SPST, we use a depth-first-search

algorithm (Constraint Graph To O-Tree,CG2OT) which
has the same performance and needs less explicit memory
space. The run time of this algorithm is linear to the number
of blocks.
Algorithm CG2OT
Input: constraint graph G=(V,E)
Output: O-tree(T[0:2n-1], P[0:n])

set all mark to false
set perm = 0;
set code = 0;
DFS traverse on the graph G

set n = current node
set p = parent[n]
if not mark[n] and weight[edge(p,n)] = 0 then

set mark[n] = true
set P[perm++] = 0;
set T[code++] = n;
for c in children[n]

traverse(c);
end for
set P[perm++] = 1;

end if
4.5. Admissible O-Tree Transformation (AOT)

Given any O-tree, we can construct an admissible O-tree
by invokingOT2OCG andCG2OT iteratively in sequence
until convergence is achieved. Given a horizontal O-treeT,
we can get a vertical constraint graphGy by OT2OCG.
BecauseGy is B-compact, we can get a vertical O-treeTy by
CG2OT. After applying the same proceduresOT2OCG
and CG2OT, we can get a horizontal O-tree which repre-
sents an L-compact placement.

All moves in the compaction are monotone because all
blocks are either moving down or moving left. Therefore,
the convergence of above iteration is assured and we can get
an admissible O-tree.
Lemma 5All operations OT2OCG and CG2OT in the main
loop are linear. The run time complexity for each iteration
of the main loop in AOT is linear to the number of blocksn.
5. FLOORPLAN ALGORITHMS USING O-TREE

We develop a deterministic floorplan algorithm using the
O-tree structure described in section 4. Systematically per-
turbing a given O-tree, we can find an optimized solution
according to a preset cost function.
Perturbing the O-Tree

We perturb the O-tree by the following steps: (a) select a
blockBi in the original O-tree(T,π), (b) delete blockBi from
O-tree(T,π), (c) insert blockBi in the position with the best
value of cost function among all possible inserting positions
in (T,π) as an external node, and (d) perform (a)-(c) on its
orthogonal O-tree

The selection of inserting position from all above will cre-
ate many useful configurations for the perturb operation. We
may also select other method to insert a node to the tree, but
it needs more additional operation to split and merge its
descending subtrees. It is one of our choices to not include
them in our approach.

Given any O-tree withn nodes, the number of possible
inserting positions as external nodes is 2n - 1. In Fig. 5,
there are 15 possible inserting positions in a 8-node tree.
The operation of finding these positions on(T,π) is simply
adding a string ‘01’ to any position in bit stringT and add-

new contour

old contour

current block

blocks that determine the y pos of new block and
edges pointing to new block added to constraint graph

current insert point

Figure 4: updating constraint graph and contour

ing the label to its related position inπ.

A perturbed O-tree need not be admissible. We can apply
AOT to get an admissible O-tree and then evaluate it by the
preset cost function to find which move is the best.

A deterministic algorithm is derived by perturbing O-tree
in sequence. We select nodes in sequence and find the best
perturb position for each of them. Given a fixed sequence of
node, we can always find a best O-tree and its correspond-
ing placement. The advantage of deterministic algorithm is
that its implementation is straightforward and easy to com-
prehend.
Deterministic algorithm
Input: array of blocks with width, height, and pin positions and I/O pad
position and networks
Output: blocks with position and orientation

initiate O-tree T and its placement
for each block b

set min_cost = infinite
remove (T, b)
for each possible position p of b in T and T’s orthogonal

set T1 = new O-tree and placement for p
get admissible T1 using AOT
set c = cost (T1)
if c < min_cost then

set min_cost = c
set min_T = T1

end if
end for
set T = min_T

end for
Output placement for T

Similar to the method of the deterministic algorithm, we
can get a constructive algorithm for initial placement as the
follow:
Initiate (constructive algorithm)

set O-tree T = {}
same as the main loop above, replace cost() by partial_cost()
Output T
There are twofor loops in the algorithm. The first loop

perturbs all blocks in placement for total ofn times, and the
second one evaluates 4n-2 possible inserting points in the
O-tree. The functionAOT in the inner loop contributes O(n)
time to the overall procedure. The run time complexity for
the algorithms is O(n3).
6. EXPERIMENTAL RESULTS

The experiments are carried out for the MCNC building
block examples. There are five test cases and the number of
blocks ranges between 9 and 49. The largest caseami49is a
circuit with 49 blocks, 42 I/O pads, 408 nets, and 931 pins.
The circuit characteristics in MCNC benchmark can be

found in [12].
Our program is written in C language. The core part of O-

tree operation is around 1,000 lines of codes, and the overall
package including an X Windows interface is a little more
than 6,000 lines of source codes. The program is running on
the platform of a 200MHz Ultra-1 Sparc station with
512MB memory.

We compare the wire length and chip area with the result
of cluster refinement[12]. Table 1 shows the results of initial
placement using the given sequence order and the results
after one run of deterministic algorithm. The cost function
here is solely by the wire length, which is the sum of half
bounding box of all nets in the circuit. In each table entry,
there are three numbers: the first number is the chip area
(mm2), the second number is the wire length (mm), and the
last one is the CPU time in seconds.

In Table 1, we achieved results with better wire length for
the three largest cases while their chip area are comparable.
Note that the CPU time is much less than the cluster refine-
ment approach, the comparable results can be reached with
only a few minutes for the largest case.

Based on the basic version of initial and deterministic
algorithm, we can use a randomly generated sequence
instead of the original sequence in MCNC benchmarks.
Joint with different weights to area and to wire length in
cost function, we have the results that an optimized solution
can be found when the weights are balanced.

In Table 2, the distribution for the results of MCNC
testcase using 100 runs of randomized sequences is given.
We use a cost function likew1×area+ w2×wirelength,
where the weightsw1 andw2 are for area and wire length
respectively and two termsareaandwirelengthare normal-
ized. The table shows three sets of {w1, w2} values: {0, 1},
{0.5, 0.5}, and {1, 0}. Each table entry has two numbers:
the first one is the minimum value of results among all runs,
and the second one is the average of the results.

Fig. 6 shows the area/wirelength plot for theami49 cir-
cuit. We run 100 randomized sequences for different
weights in the cost function. When the weights are 0.5 for
both area and wire length, the plots are very concentrated
near the area of 45o line where chip size and wire length are
almost balanced at that region.

Comparing the best results with cluster refinement, we
have 1% to 23% improvement in the wire length, and -3% to
4% improvement in area. Forhp case, we can find a better
solution which has 4% improvement in area and 17%
improvement in wire length. In average, we can get about
16% improvement in wire length while the chip area is com-
parable. In Fig. 7, the placement after improvement shows a
better interconnection than the placement before improve-

Figure 5: possible inserting positions as an external node

a

b

c

d

e g

f

inserting
position

Table 1: Area / wirelength / CPU comparisons

circuit cluster refinement initial placement deterministic
algorithm

apte 48.4 / 321 / 224 63.3 / 330 / 0.14 63.3 / 330 / 0.65
xerox 20.3 / 477 / 18.8 25.9 / 506 / 0.44 23.8 / 478 / 0.99

hp 9.58 / 185 / 18.0 14.3 / 178 / 0.26 9.91 / 167 / 6.32
ami33 1.21 / 64 / 603 1.69 / 61.9 / 2.83 1.34 / 50.9 / 24.3
ami49 37.7 / 764 / 1860 54.6 / 676 / 11.2 45.5 / 673 / 177

ment.

7. CONCLUSION
We have successfully found a simpler layout representa-

tion and incorporated the capability for geometric compac-
tion into the structure itself. O-tree, a simplified structure to
present the geometric relation, is developed and proposed to
replace the commonly used constraint graph which we find
is complicated and has expensive operations. The tree struc-
ture is well-known in applied mathematics and computer
science and the properties of trees are very straightforward
and simple.

Our algorithm shows improvement in both chip area and
wire length. The implementation of algorithm is achieved
with much less CPU time. Other measures, such as timing,
congestion, and routability, are now formulated to our

approach. Further studies on the properties of O-tree are
undergoing. A varieties of approaches based on O-tree are
under development, and there are some promising results
already.
8. REFERENCES
[1] K. Keeler and J. Westbrook,Short Encoding of Planar

Graphs and Maps, Discrete Applied Mathematics, vol. 58,
pp. 239-252, 1995

[2] D.E. Knuth, The Art of Computer Programming, 2nd Ed.,
Vol. 1, Addison-Wesley Publishing Co., pp. 385-395, 1973

[3] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajatani,Rect-
angular-Packing-Based Module Placement, ICCAD, pp. 472-
479, 1995

[4] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani,Mod-
ule Placement on BSG-Structure and IC Layout Applications,
ICCAD, pp. 484-491, 1996

[5] H. Onodera, Y. Taniguchi, K. Tamaru,Branch-and-Bound
Placement for Building Block Layout, DAC, pp. 433-439,
1991

[6] R. H. J. M. Otten,Automatic Floorplan Design, Proc. ACM/
IEEE Design Automation Conf., pp. 261-267, 1982

[7] P. Pan and C.L. Liu,Area Minimization for Floorplans, IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and System, pp. 123-132, January 1995

[8] B. T. Preas and W. M. VanCleemput,Placement Algorithms
for Arbitrarily Shaped Blocks, DAC, pp. 474-480, 1979

[9] T. Takahashi,An Algorithm for Finding a Maximum-Weight
Decreasing Sequence in a Permutation, Motivated by Rectan-
gle Packing Problem, IEICE, vol. VLD96, pp. 31-35, 1996

[10] T.-C. Wang, and D. F. Wong,An Optimal Algorithm for
Floorplan Area Optimization, DAC, pp. 180-186, 1990

[11] D. F. Wong, and C. L. Liu,A New Algorithm for Floorplan
Design, DAC, pp. 101-107, 1986

[12] J. Xu, P.-N. Guo, and C.-K. Cheng,Cluster Refinement for
Block Placement, DAC, pp. 762-765, 1997

3.5 4 4.5 5 5.5 6 6.5 7

x 10
7

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

6

Figure 6: randomized sequence with different weights
area

w
ire

 le
ng

th

+: w1=0 w2=1

o: w1=0.5 w2=0.5

x: w1=1 w2=0

Table 2: Minimum / average distribution with different weights

circuit
w1=0, w2=1 w1=w2=0.5 w1=1, w2=0 improve over CR

(area/wire)area wire area wire area wire
apte 48.3 / 56.9 317 / 347 47.6 / 53.2 317 / 370 47.1 / 50.6 343 / 544 3% / 1%

xerox 20.4 / 24.1 368 / 426 20.4 / 22.4 367 / 447 20.1 / 21.4 444 / 702 1% / 23%
hp 9.71 / 11.2 153 / 163 9.21 / 10.5 153 / 167 9.21 / 9.97 162 / 226 4% / 17%

ami33 1.26 / 1.41 51.5 / 57.2 1.26 / 1.34 51.6 / 59.8 1.25 / 1.32 61.1 / 87.4 -3% / 20%
ami49 41.3 / 49.8 636 / 734 39.1 / 42.0 671 / 777 37.6 / 39.9 819 / 1375 0% / 17%

Figure 7: placements before and after deterministic improvement forami49

(a) before improvement
area = 40.8 (5.92 x 6.89)wire length = 810

(b) after improvement
area = 39.9 (6.17 x 6.47)wire length = 680

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

