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Abstract

High-level synthesis operates on internal models known as
control/data 
ow graphs (CDFG) and produces a register-
transfer-level (RTL) model of the hardware implementation
for a given schedule. For high-level synthesis to be e�cient
it has to estimate the e�ect that a given algorithmic de-
cision (e.g., scheduling, allocation) will have on the �nal
hardware implementation (after logic synthesis). Currently,
this e�ect cannot be measured accurately because the CD-
FGs are very distinct from the RTL/gate-level models used
by logic synthesis, precluding interaction between high-level
and logic synthesis. This paper presents a solution to this
problem consisting of a novel internal model for synthesis
which spans the domains of high-level and logic synthesis.
This model is an RTL/gate-level network capable of rep-
resenting all possible schedules that a given behavior may
assume. This representation allows high-level synthesis al-
gorithms to be formulated as logic transformations and ef-
fectively interleaved with logic synthesis.

1 Introduction

High-level synthesis (HLS) is the process which maps a be-
havioral hardware-description language speci�cation into an
RTL network. In most methodologies, this RTL network is
then submitted to logic synthesis for gate-level optimization
which attempts to produce a design satisfying certain area
and delay constraints. Clearly the quality of the �nal result
depends on the quality of the two tools.

In order to produce an e�cient RTL network, HLS has
to estimate or compute the e�ect that a given high-level
algorithmic decision will have on the �nal gate-level net-
work. This e�ect is translated into costs (usually based on
the number of states and number of resources) which are
used in most HLS algorithms, such as scheduling, allocation
and resource sharing (e.g., [1, 2]). These cost metrics give a
rough indication of the complexity and performance of the
�nite-state machine (FSM) and datapath area of the �nal
design. However, they almost completely ignore important
aspects such as the size and delay of the control logic, multi-
plexers and registers. The inaccuracy of these costs makes it
impossible for any scheduling, allocation or resource sharing
algorithm to produce optimal results (as measured in the
quality of the �nal hardware).

The main problem in computing these costs accurately
is that the internal model in which HLS operates is too
distinct from the �nal RTL network. In all HLS systems,
this internal model is the Control and Data Flow graph [3, 4],
which is basically a more structured representation of the
parse-tree generated by the language parser.

A CDFG represents the speci�cation of the design at a
very di�erent level than the �nal hardware implementation.
Although the CDFG may contain edges and nodes repre-
senting values and hardware operators such as adders and
subtracters, it usually does not contains any explicit speci�-
cation of the multiplexers and control logic required by the
implementation.

The �nal implementation (and cost) of a given CDFG
node/edge is not really known until after HLS or even after
logic synthesis, making it very di�cult to measure hardware
costs accurately during HLS. The main reason is that these
costs are computed on a representation that is closer to the
language level than it is to the hardware level that it is
trying to measure. Moreover, the fact that HLS and logic
synthesis operate on di�erent representations makes it very
ine�cient for the two domains to interact.

This paper presents a novel internal representation for
high-level synthesis - called Behavioral Network Graph
(BNG) - which solves the problems described above. This
representation is an RTL/Gate-level network which can rep-
resent complete unscheduled behavioral descriptions.

The problem in representing unscheduled behaviors us-
ing RTL networks is primarily the determination of the
states. In an RTL network the states are the registers and
their number and transition relations are known. In a be-
havioral description, the states are not known a priori. An
unscheduled behavior may be mapped into multiple RTL
networks. The scheduling task in HLS determines this map-
ping by placing operations (from the CDFG) into controller
states. This de�nes both the FSM states as well as the
datapath states (registers). Hence, the question is how can
one represent a behavior, where the states are unknown,
using an RTL network where all registers need to be prede-
�ned. This paper presents a solution to this problem which
consists of an RTL network that can represent all possible
schedules that a given unscheduled behavioral speci�cation
can assume.

Another goal of this work is to create an unambiguous
representation of a given behavior. The representation de-
scribed in this paper addresses this problem by representing
behaviors using a logic network, thus allowing boolean al-
gebra to be used in synthesizing the behavior. Although
not part of this paper, this representation allows high-level
synthesis algorithms, such as scheduling and allocation to
be formulated in terms of logic transformations (similar to
existing logic synthesis systems [5, 6, 7]), thus e�ectively uni-
fying the behavioral and logical domains. To the best of the
author's knowledge, this is the �rst work that demonstrates
that behavioral and logical domains can be represented as a
single RTL/gate-level model.

2 High-Level Synthesis Background

The system proposed in this paper is organized as shown in
Figure 1. The CDFG is used as an extended parse tree,
representing the same semantics as in the hardware lan-
guage. Besides the compiler-like optimizations, the CDFG
can also be submitted to certain domain-speci�c transfor-
mations such as reordering for parallelism extraction [2] and
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Figure 1: Organization of the BNG-based high-level synthe-
sis system

loop unfolding [8]. After these transformations, the order of
operations in the CDFG is considered to be �xed. The next
step is the mapping of this �xed-order CDFG into the BNG
representation, which is an RTL/Gate-level representation
of all possible schedules that the �xed-order CDFG can as-
sume.

The tasks of scheduling, allocation and resource sharing
are performed on the BNG. Since it is a logic-level represen-
tation, one can also perform logic transformations and static
timing analysis on the design in order to evaluate accurately
the costs involved during high-level synthesis. After these
tasks, the BNG itself represents the �nal RTL/Gate-level
network.

2.1 Control and Data Flow Graphs

This work uses a CDFG similar to [4] consisting of separate
control-
ow and data-
ow graphs. Figure 2 shows a simple
VHDL description and the corresponding CFG and DFG.
This example will be used throughout this paper.

This VHDL description can be synthesized in di�erent
ways by HLS, ranging from a solution where no states are
inserted (i.e., the description is treated as an RTL speci-
�cation) to a solution where several states are created by
scheduling to satisfy certain constraints (i.e., it is treated as
a behavioral speci�cation). The BNG representation pre-
sented here allows the full range of schedules to be modeled.

2.2 Data-Flow Analysis

An essential step in language-based synthesis is data-
ow
analysis (DFA) [9]. Given that data-
ow analysis is essential
for the BNG generation algorithm, it is important that its
main concepts be reviewed here.

DFA is a technique for computing the de�nition-use or
lifetime of a given value. A value is de�ned as any assign-
ment to a language variable, and two assignments to the
same variable count as two values. In VHDL terms, values
are de�ned as any assignment to variables and signals.

DFA computes the exact path in the CFG where a given
value is de�ned, alive and used for the last time. In Fig-
ure 2(b), for example, the value assigned to variable A in
operation O3 is alive at operations O8, O9, O10, O12, O13,
O14, O15, O16, and continues to be alive in the following
iteration of the graph (through the feedback edge). This
value is not alive at operation O11 because it assigns a new
value to A, thus terminating the lifetime of the previous
value along that path.

The lifetimes of values determine the possible intercon-
nections between operations that create a value and those
using the value. For example, operation O12 uses variable
B as input. At this operation there are four possible values
of B alive, assigned from: (1) O2 if M1 equals 0, or (2) O4

if M1 equals 1, or (3) O0 if M1 equals 2, or (4) O7 if M1
equals 3. Depending on the schedule, these values may come
from a register or the operators directly, and may have to
be channeled through a multiplexer into the operator imple-
menting operation O12.
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port ( clock: in bit;

       in1, in2, m1: in integer range 0 to 3;

       m2: in boolean;

end bde;

Architecture behavior of bde is

Begin

  Process

    Variable A, B : integer range 0 to 3;

  Begin

    Wait until not clock’stable and clock=’1’;

    B := 0;                         -- O0

    Case (m1) is                    -- O1

      when  0  =>  B := in1 + in2;  -- O2

                   A := A + B;      -- O3

      when  1  =>  B := 3;          -- O4

      when  2  =>  A := in2;        -- O5

      when  3  =>  A := 0;          -- O6

                   B := 2;          -- O7

    end Case;                       -- O8

    out1 <= A;                      -- O9

    If  (m2)                        -- O10

    then  A := in1;                 -- O11

    else  out2 <= B;                -- O12

          out3 <= A + in1;          -- O13

    end if;                         -- O14

    out4 <= A + B;                  -- O15

  end process;                      -- O16

end behavior;

(b)(a)

       out1,out2,out3,out4: integer range 0 to 3);

Figure 2: (a) VHDL description; (b) Separate control and
data-
ow graphs

2.3 Scheduling Basics

Scheduling decides the controller states in which the CDFG
operations will be executed, and indirectly determines the
values that will need to be stored in registers. To be able to
handle general types of designs it is important that sched-
uling algorithms be able to handle control and data-
ow
operations e�ciently. This requires a full analysis of all
paths in the control-
ow graph - such algorithms are called
control-
ow-based schedulers (e.g., [10, 11, 12]). The CFGs
considered in this work are general, including conditional
operations, loops and non-series-parallel topologies.

Scheduling a CFG implies �nding places in the graph
where states are going to start and end. The term state-cut
will be used hereafter to denote these places. In Figure 2(b),
if the scheduling goal were to �nd a solution with only one
addition operation per state, one possible solution would be
to place state-cuts between operations O2�O3, O3�O8, and
O13 � O14, resulting in the FSM shown in Figure 3(a). If
this FSM is implemented using one-hot encoding the result is
the logic network shown in Figure 3(b). There is an implied
assumption that the �rst node in the CFG is also the initial
state, which is similar to say that the feedback edge going
into the �rst node has an implicit state-cut .

Each state-cut has direct implications on the storage ele-
ments and interconnections in the datapath. When a state-
cut is placed inside the lifetime interval of a value (as com-
puted by DFA), it forces that value to be stored in a register
since its de�nition is in one state and its use in another. A
value that is used as input to an operation may come directly
from the operation creating the value, if there is no state-cut
between the two operations, or from a register storing the
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Figure 3: (a) FSM for scheduled CFG in Figure 2(b),
(b) Hardware implementation of FSM using one-hot encod-
ing

value, if there is a state-cut .
It is clear that the positions of the state-cuts determine

the basic control and datapath logic. Hence, for the BNG to
represent all schedules, it needs to encompass the di�erent
hardware con�gurations for di�erent choices of state-cuts .

3 Behavioral Network Graph

The Behavioral Network Graph is an RTL/gate-level repre-
sentation of a behavioral speci�cation. The BNG uses the
CFG as a starting point for creating a logic network rep-
resenting the FSMs for all possible schedules. It uses the
DFG and the results of data-
ow analysis to create a logic
network representing the datapaths for all schedules (prior
to resource sharing and logic optimizations). This is accom-
plished by the use of special logic gates called State-Value
Node, Register-Value Node and Current-Value Node.

The algorithms describing the generation of the control
and data parts of the BNG are given in the next sections.

3.1 Control BNG

As shown in Figure 3, each state-cut creates a new state
starting at the succeeding operation, hence there is a direct
correspondence between state-cuts and registers in the one-
hot encoded FSM. State-cuts can be placed at any CFG
edge.

Let SCi - denoted state-cut variable - be a variable associ-
ated with each predecessor edge of control-
ow node i. This
variable can assume values 0 and 1 depending on whether a
state-cut is placed at node i (i.e., on the control-
ow edge
preceeding node i). If a control-
ow node has multiple pre-
decessor edges then state-cut variables SCia, SCib,.., are as-
sociated with each predecessor edge.

The State-Value Node (STN) is a logic structure which
represents the choice of either having or not having a state-
cut on a particular control-
ow edge. The STN is a switch
which can choose between storing the input value, or passing
it through the output immediately, controlled by a state-cut
variable. The logic for a STN is given in Figure 4.

If SCi is 0 (no state-cut on edge), the STN simpli�es to
a wire, thus not enforcing a new state. If SCi is 1 (there is a
state-cut ), the STN simpli�es to a register, thus enforcing
a state transition.

In the BNG representing all possible schedules, SCi is
a variable. Once the schedule is �xed, the SCi for each
control-
ow edge is set to 0 or 1, and the network can then
be simpli�ed by means of constant propagation.

The algorithm for Control BNG generation uses the CFG
as input and consists of the following steps:
1. Traverse the CFG and associate a SCi variable with
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Figure 4: State-Value Node logic representation

each edge preceeding control-
ow node i. If a node has mul-
tiple predecessors (a join node) then variables SCia, SCib
are associated with each predecessor edge.
2. Traverse the CFG and for each control-
ow node i with
a single predecessor and a single successor, create a State-
Value node STNi . The net at the output of the STNi gate,
also called STNi net, represents the control signal activating
the operation in control-
ow node i.
3. For join nodes, create a State-Value node STNij for
each predecessor edge and connect all STNij nets to a single
OR gate. The output of the OR gate is called net STNi .
4. For nodes with multiple successor edges (fork nodes),
create a State-Value node STNi and connect its output net
to as many AND gates as successor edges. Each AND gate
has two inputs: the �rst input is net STNi (for the fork
node) and the other input is a net representing the condi-
tion on the corresponding successor edge. This condition
net may be a primary input or a net coming from the data-
path. The output of each AND gate is called net STNij .
5. Connect the multiple STNi boxes in the same topology
as the CFG.

The resulting Control BNG for the CFG in Figure 2(b)
is shown in Figure 5(a). Note that the extra STNi boxes
created for each predecessor edge in a join node are needed
in order to allow state-cuts to be placed on each edge inde-
pendently of the other.

Prior to assigning values to all SCi variables, this BNG
network represents all possible schedules for a given �xed-
order CFG. By choosing di�erent sets of values for all SCi
variables, one can e�ectively generate the resulting FSMs
for multiple schedules. For example, to implement the same
schedule as shown in Figure 3, one would simply set the SCi
variables corresponding to the chosen state-cuts to 1 and
all other to 0. Hence, variables SC0 (for the initial state),
SC3, SC8a and SC14b should be set to 1. After constant
propagation, the BNG is simpli�ed to the network shown
in Figure 5(b), which is logically equivalent to the FSM in
Figure 3(b).

The STNi nets are the controlling conditions of all op-
erations in the CFG. When a net STNi is 1 it means that
operation i is active (i.e., being executed). After schedul-
ing is set and the Control BNG simpli�es to a single FSM,
several STNi nets may become the same net, which simply
means that the corresponding operations are all scheduled
in the same state.

In order to evaluate the FSMs for di�erent schedules, one
has only to assign values to all SCi variables, propagate the
constants and evaluate the logic. All of which can be done
with simple logic transformations.

This process results in a one-hot encoded FSM, which
can be further optimized by means of state-encoding and
state minimization.

3.2 Data BNG

The Data BNG is composed of gates representing registers,
operators and interconnections, as well as the required con-
trol signals. Prior to �xing the schedule, it is unknown
whether a value will become a register and therefore it is im-
possible to derive the �nal interconnections. As mentioned
in Section 2.3, the positions of the state-cuts determine the
FSM states as well as the values in the DFG that need to
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Figure 5: (a) Control BNG for
CFG in Figure 2(b), (b) Control BNG after setting state-
cut variables SC0; SC3; SC8A; SC14b to 1

be stored in registers. Once these registers are �xed, it is
possible to derive all interconnections between datapath op-
erators and from/to registers and operators.

The Data BNG is a logic network which represents all
possible value-to-register mappings and all possible result-
ing interconnection and control structures, for all possible
schedules. This 
exibility is achieved by the use of two
special gates called Register-Value Node and Current-Value
Node.

A few de�nitions are required at this point. Let P = fOi,
Oj ; :::;Omg, be a path in the CFG containing operations
Oi;Oj; :::;Om such that they are all connected in sequence
by control-
ow edges (possibly including conditional edges).
Given such a path, one can de�ne the following conditions:

Path-Closing Condition - PCC(P ) - is the condition un-
der which all operations in the path P are scheduled and
executed in the same state.

Path-Breaking Condition - PBC(P ) - is the condition
under which the �rst operation in P , Oi is not scheduled
and executed in the same state as the last operation Om.

These two conditions will assume values 0 or 1 depending
on the position of the state-cuts and on the values of the con-
ditions on the control-
ow edges along the path. As shown
in Section 3.1, prior to scheduling the state-cuts are repre-
sented by SCi variables and the conditions on the edges are
represented by the STNi nets in the Control BNG. Hence
it is possible to write the PCC and PBC equations for all
paths in the CFG for all possible schedules in terms of the
SCi variables and STNi nets along the path.
Computing PCC(P ) and PBC(P ):

For a basic block BBpt = fOp;Oq ; :::;Otg in the CFG
these conditions are represented by the formulae:

PCC(BBpt) = STNp ^
Wt

i=p+1
SCi

PBC(BBpt) = STNp ^
Wt

i=p+1
SCi

where STNp is the net associated with the control-
ow edge
from the �rst operation Op to the succeeding operation Oq .
The formula for PCC implies that if the �rst operation in
the basic block is active (STNp = 1) and all SCi variables
are 0 (no state-cuts in the basic block), then PCC = 1.
Similarly for PBC, if the �rst operation is active and at least
one SCi variable is 1 (at least one state-cut) then PBC = 1.

These formulae can be expanded recursively to handle
paths spanning multiple basic blocks. For a path P = fOi,
..,Of1,..,Of2,..,Ofn,..,Omg, with multiple basic blocks BBi,
BBj, .., BBm connected by fork nodes Of1;Of2; ::;Ofn

these formulae become:

PCC(P ) =
^

t=all BB in P

PCC(BBt)

= STNi ^ STNf1 ^ :::^ STNfn ^

m_

r=i+1

SCr

PBC(P ) = STNi ^ f(
_

all SCj inBBi

SCj) _ PBC(P �BBi)g

The formula for PCC(P ) implies that the Path-Closing Con-
dition for a path involving multiple basic blocks is the logical
AND of the PCC conditions for the individual basic blocks.
The formula for PBC(P ) implies that if the Path-Breaking
Condition for any of the basic blocks in P is true then the
condition for P is also true. The term PBC(P �BBi) de-
notes the condition for the remainder of path P excluding
basic block BBi.

As an example, consider the path P = fO3, O8, O9,
O10, O12, O13g in the CFG in Figure 2(b) and the corre-
sponding Control BNG in Figure 5(a). The PCC and PBC
conditions for this path are:
PCC = STN3^STN10b^(SC8a _ SC9 _ SC10 _ SC12 _ SC13)
PBC = STN3 ^

fSC8a_STN8^[SC9_SC10_STN10b^(SC12_SC13)]g
Let x be a DFG variable and Vi be a value being assigned
to x at CFG/DFG operation Oi.
Let LP (x;Vi) = fOi;Oj; :::;Opg, denoted Live-Path, be a
path in the CFG ranging from the operation creating the
value (Oi) to the last operation where Vi is alive (Op). A
given value may have multiple live-paths, starting at the
same operation Oi and ending at di�erent operations.

The basic rule of register inference states that if a value
is assigned in one state and used in another then it must be
stored. This rule can be formulated in terms of live-paths
and path-breaking conditions. Given a Live-Path LP (x; Vi)
for a variable x and a value Vi, if the path-breaking condition
PBC(LP (x; Vi)) is true then the value Vi must be stored in
a register. By collecting the path-breaking conditions for all
assignments to variable x under all live-paths in the CFG,
one can create the logic network representing all possible
ways in which variable x needs to be stored, as well as the
load-enable signals to register x, under all possible schedules.

The logic structure representing such con�guration is
called the Register-Value Node (RV N ). It consists of a
register fed by a Selector gate, which selects among all possi-
ble values that may need to be stored in the register (under
di�erent schedules). The Load-Enable signal for the register
is the logical OR of all path-breaking conditions for all live-
paths associated with the variable being stored. Figure 6(a)
shows the logic structure for a Register-Value Node.

For a given DFG variable x, the set of values V (x) =
fV0,V1,..Vn�1g that can be stored (under any possible sched-
ule) is given by all the values assigned to variable x which
have non-empty lifetimes. Given that an assignment value
with empty lifetime is redundant and can be eliminated by
data-
ow analysis, the set of values V (x) will include all
values assigned to x.

Figure 6(b) and (c) give the RV N for variables A and
B (from the CFG/DFG in Figure 2(b)). The inputs are
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indicated as the operations in the CFG assigning values to
A and B, and the load-enable conditions are given in terms
of the STNi and SCi nets in Figure 5(a).

After the scheduling is �xed, if all Load-Enable condi-
tions connected to a register-value node are false, it means
that no register is needed for the corresponding variable and
the RV N gate can be deleted.

The interconnections between datapath elements are also
dependent on the schedule. Consider, for example, opera-
tion O12 in Figure 2(b) which uses variable B as input. If
the design is synthesized without any state-cuts, all the as-
signments to B (from operations O0;O2; O4;O7) are alive
at operation O12 and none of the corresponding path-closing
conditions is false (since all SCi variables are zero). This
means that these values may be used by operation O12 in
the same state in which they are created; therefore, they will
need to be multiplexed. If, however, a state-cut is placed be-
tween operations O9 and O10 then all these values will be
stored in a register (for B) and its output will be connected
to the input of operation O12. This is the case when all
path-closing conditions are false.

Given a variable x used as input to operation Oi, the
interconnection structure selecting a value for x under all
possible schedules will depend on: (1) all values assigned
to x and alive at operation Oi, and (2) the path-closing
conditions for the live-paths from all assignment operations
to Oi. The logic element implementing such a structure is
called the Current-Value Node for variable x at opera-
tion Oi (CV Nx;Oi

). It consists basically of a Selector gate

multiplexing among all assignment values plus the register-
value node for the variable. The register-value node is nec-
essary for the case where none of the assignment operations
is scheduled in the same state as Oi, in which case the reg-
ister is used. Figure 7(a) illustrates the logic structure for
a Current-Value Node. Figures 7(b) and (c) present the ac-
tual Current-Value Nodes and Select signals for the use of
variables A and B by operation O15 in the CFG/DFG in
Figure 2(b).

The last element required in the Data BNG is the Oper-
ator Node which implements a DFG operation. Operators
can be anything from multibit adders and multipliers to logic
gates. Conditional operations (e.g., If, Case statements) are
implemented as decoders whose outputs are connected to
the Control BNG. Initially, there is a one-to-one mapping
between DFG operations and BNG operators. This map-
ping can be later modi�ed by resource sharing and binding.

3.3 A Complete BNG Example

This section illustrates the logic simpli�cation process that
transforms a BNG into a �xed RTL structure once schedul-
ing is de�ned. This process consists of constant propagation,
elimination of disconnected gates and simple logic optimiza-
tion.

As an example, consider the same schedule as used in
Section 2.3, that is, state-cuts are placed between operations
O2 � O3, O3 � O8, and O13 � O14 which result in SC0 =
SC3 = SC8a = SC14b = 1 and all other SCi variables equal
to 0.
Control simpli�cation
After propagating the constant SCi values through the state-
value nodes, the STNi for which SCi = 1 become a plain
register, and those for which SCi = 0 become a simple wire.
The resulting Control BNG has four states, as shown in Fig-
ure 5(b).
Datapath simpli�cation
When propagating the constant SCi values through the
Register-Value and Current-Value nodes, some of the load-
enable and select signals may become 0. In such cases, the
corresponding input is disconnected and the selector gate
simpli�ed. The resulting RTL structure, after simplifying
the Data BNG, is shown in Figure 8.

After control and data simpli�cation, the �nal BGN rep-
resents the complete RTL design and, although extensive
logic optimizations have not yet been performed, area and
delay can be measured with reasonable accuracy and used
to determine the quality of the schedule.

4 BNG-based Algorithms

The existence of the Behavioral Network Graph - an RTL
network representing all possible schedules - allows a number
of new algorithms and research avenues to be explored. This
section discusses some of these approaches.
Merging High-Level and Logic Synthesis:
The use of the BNG allows high-level synthesis, speci�cally
scheduling, allocations and resource sharing, to be formu-
lated as a series of logic transformations, similar to logic
synthesis. In addition it allows high-level and logic trans-
formations to be interleaved. At each step, the BNG can
be evaluated and a decision can be made on whether the
transformations are accepted or reverted.

For example, prior to scheduling, one can perform static
timing analysis on the whole BNG to determine the worst
possible cycle time. A transformation can then gradually set
selected SCi variables to 1 (which e�ectively inserts registers
in the path) and recompute the delays, until the cycle time is
acceptable. At the same time, logic transformations may be
used to optimize portions of the logic, which may decrease
the delays and lead to a di�erent scheduling solution. The
scope for design space exploration becomes much larger and
more accurate.
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Accurate Cost Estimation during High-Level Syn-
thesis:
The BNG represents the complete control and datapath for
all possible schedules. Even prior to scheduling, an analysis
of the BNG can reveal the worst case multiplexers that may
be needed at the inputs of registers and operators. Based on
that, algorithms can select a speci�c scheduling or resource
sharing solution to minimize the size of a given multiplexer.

Suppose, for example, that the adder at operation O15

in Figure 2(b) has a delay just under the target cycle time.
The BNG shows that the adder has a 5-input selector gate
at each input, selecting the possible values of A and B (see
Figure 7(b)). The delay of the selectors chained with the
adder would clearly exceed the cycle time. Hence the only
possible solution is to eliminate the selectors from the logic,
which is obtained by choosing a scheduling solution that
simpli�es the selectors to a single input. An analysis of the
select signals to CV NA;O15

and CV NB;O15
in Figure 7(b)

reveals that this is achieved by setting SC15 to 1, that is,
placing a state-cut between nodes O14 and O15.
Scheduling, Allocation and Logic Optimization as a
Uni�ed Problem:
Although the SCi variables were explained in the context
of scheduling, setting them to 0 or 1 actually establishes
all registers (states and datapath) and interconnections in
the design. Hence, the complete synthesis problem can be
formulated in terms of choosing values for the SCi variables
which optimize the delay and area for the whole design.
High-Level Formal Veri�cation:
The BNG comprises the union of all sets of registers (both
control and data) required by all schedules. Thus it repre-
sents a super state-machine which is the union of all state
machines for all schedules. Given an initial state in the
BNG and a corresponding state in the �nal FSM (for any
given schedule), it can be formally proven that for any in�-
nite sequence of states in the FSM there exists a matching
sequence of states in the BNG.
Direct Mapping for RTL descriptions:
The BNG can be used for mapping an RTL hardware de-
scription directly into a logic network. An RTL hardware
description (in VHDL or Verilog) is considered here to rep-
resent a design where scheduling is not needed. The descrip-
tion may contain one or more states explicitly declared as
\wait until not clock'stable and clock='1';" statements. Syn-
thesis, in this case, still requires FSM generation (based on
the prede�ned states), register inference, control and data-

path generation.
The BNG can be transformed into the �nal RTL network

by simply setting the state-cut variables corresponding to
the position of the WAIT statements to 1, and all other SCi
variables to 0, and applying constant propagation.

5 Conclusions

This paper presented the Behavioral Network Graph - a
novel internal representation for high-level synthesis which
e�ective bridges the gap between high-level and logic syn-
thesis. The BNG is an RTL/gate-level network which rep-
resents all possible schedules that a behavioral speci�cation
can assume. Using the BNG, high-level synthesis algorithms
can accurately evaluate the e�ect of high-level decisions on
the �nal hardware and perform e�cient design-space explo-
ration. The advent of the BNG makes it possible a num-
ber of new research avenues, including the merging of high-
level and logic synthesis, and high-level formal veri�cation.
A simpli�ed version of these algorithms have been imple-
mented in the Hiasynth system in IBM and examples with
thousands of operations have been successfully synthesized.
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