
Developing an Architecture Validation Suite
Application to the PowerPC Architecture

Laurent Fournier, Anatoly Koyfman, Moshe Levinger
IBM Research Lab in Haifa

{laurent, koyfman, mosh}@vnet.ibm.com

Abstract
This paper describes the efforts made and the results of creating
an Architecture Validation Suite for the PowerPC architecture.
Although many functional test suites are available for multiple
architectures, little has been published on how these suites are
developed and how their quality should be measured. This work
provides some insights for approaching the difficult problem of
building a high quality functional test suite for a given architec-
ture. By defining a set of generic coverage models that combine
program-based, specification-based, and sequential bug-driven
models, it establishes the groundwork for the development of
architecture validation suites for any architecture.

1 Introduction
IBM has set up a certification process for designs aimed at imple-
menting the PowerPC architecture. This process grants PowerPC
licences to designs that comply with PowerPC architecture. For
this purpose, one of the defined criteria is the successful running
of a representative set of functional test programs, called the
PowerPC Architecture Validation Suite (AVS). Our goal was to
build a test set which, on a successfully passing, induces the high-
est possible confidence that a given design indeed implements the
PowerPC architecture.

Although the AVS has been built for the PowerPC architecture,
its framework is generic and can be applied to the development of
such a suite for any architecture. In fact, this paper focuses on
providing the groundwork for the development of architecture
validation suites in general, rather than elaborating on details
appropriate to a specific architecture (e.g., PowerPC). The Pow-
erPC architecture itself serves as a probing example of the suita-
bility and efficacy of the proposed scheme.

As an architecture suite, the AVS puts aside design-dependent
details. However, since it is run on designs and not on architec-
tures, its ultimate purpose is to uncover bugs. Therefore, beyond
the obvious covering of the architecture, the goal was to take
some generic properties shared by current designs and to include
them in the coverage models. For example, superscalar and out-
of-order executions of programs are typical aspects of today’s
designs; the AVS attempts to capture and cover some of their
complexity. In short, the AVS, while naturally overlooking spe-
cific design dependent properties, extends its expected architec-
ture scope towards generic design properties. This dichotomy,

separating design dependent properties from the more generic
ones, induces a desired black-box/white-box structure within the
verification process.

Numerous suites of tests are commercially available, notably for
the x86 architecture[3] . They are typically very expensive and
yet they do not usually have a clear quality guarantee. Their main
attraction lies in the fact that they have already been used in suc-
cessful design processes. However, their lack of defined coverage
measurements renders them to be of little benefit. They merely
constitute a threshold to be passed and do not reveal much
regarding the real state of the design[4] . For example, a test
possessing a simple branch from low memory to high memory
detected a bug in an IBM x86 design after all the existing suites
of tests had been successfully run.

In contrast, the AVS uses clear coverage measurements and pro-
poses a new model for architecture validation suites. It consists of
test programs yielded by a combination of three different cover-
age domains: specification-based, program-based and sequential
design-bug models. The specification-based model is the best
known and most widely used; it requires the test programs to
cover a list of predefined tasks. The program-based model uses a
behavioral simulator of the design, and applies software coverage
techniques to induce coverage subsets. Finally, the sequential-bug
model stems from a study of bugs that have escaped in the
past[7] and an overall understanding of the generic properties of
state-of-the-art mechanisms in today’s designs.

The AVS also includes subsets targeted at multiprocessor
designs, but their report is beyond the scope of this paper.

The rest of the paper is organized as follows: Section 2 briefly
reviews the main tools necessary for construction of an AVS.
Section 3 introduces the different coverage models which consti-
tute the foundation of the overall compliance subset. Section 4
elaborates on the properties of the AVS and the results obtained
for PowerPC. Some concluding remarks appear in Section 5.

2 AVS Tools
The process of building an Architecture Validation Suite involves
creating a set of tests which cover all the targeted coverage mod-
els. Given those models, the development of an AVS requires the
means to perform three major tasks: test creation, test validation
and coverage evaluation. This section briefly surveys the corre-
sponding tools used for PowerPC AVS construction. The focus is
on the key capabilities needed for edification of any AVS. Section
2.1 describes the overall scheme used to build the AVS. To create
the tests, we used an automatic pseudo-random test generator,
Genesys[1][2] , which is introduced in Section 2.2. A short
description of the test format is included. Section 2.3 discusses
the importance of the reference model while Section 2.4 presents
the tool used to measure coverage.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

2.1 Construction Scheme
An automatic test generator is mandatory to cope with the huge
number of tests required to cover all the tasks derived from the
coverage models (see Section 4.1). Given such an automatic gen-
erator, we adopted the following simple scheme: massive pseudo-
random generation of tests is filtered to keep only those tests that
contribute to the coverage of new tasks. More optimized schemes
for keeping tests might be theoretically appealing[6] , but the
relatively small gain they provide (in terms of more compact
suites) was deemed unnecessary. Due to the richness of the test
generator used (Genesys), this simple method enabled us to reach
a high coverage percentage (in the order of 95%). For the remain-
ing uncovered tasks, specific tests (in contrast to the ones coming
from pseudo-random generation) had to be added. This last step
is by far the most expensive, both in time and in the expertise
required. Indeed, covering those last tasks typically takes more
than 90% of the overall time, while acute expertise both in the
architecture and in the generation tool is usually needed as the
uncovered cases are often complex corner cases. As a positive
side-effect, the detection of such holes serves as feedback used to
enhance the generation tool.

2.2 Genesys - the Test-Program Generator
The PowerPC AVS tests were generated by Genesys, a model-
based test generator which dynamically generates tests using a
generation-simulation cycle for each instruction. The system is
termed ‘model-based’ as a formal model of the architecture lies
at its heart.

The system consists of three basic interacting components: a
generic, architecture-oblivious test generator which is the engine
of the system, an external specification (the model) which holds a
formal description of the targeted architecture, and a behavioral
simulator which is used to predict the results of instruction execu-
tion. The external specification model also allows the incorpora-
tion of complex testing knowledge.

Genesys enables the creation of programs ranging from com-
pletely deterministic to totally random. Control is given to guide
the generation to the desired extent, while any parameter not
explicitly constrained is randomly set to any consistent value.

The output of the generator is a test file which contains a
sequence of instructions starting from a given initial state and a
section of expected results describing the expected values of the
various processor resources at the end of the test. Genesys tests
are therefore not self-checking and do not start from reset. This
helps provide short, easy-to-debug and incisive tests. In order to
accommodate environments not adapted to this kind of tests, the
AVS has also been translated into a Self-Checking AVS (SCAVS)
composed of self-checking tests starting from reset.

2.3 The Reference Model
There is a need for a tool that verifies the correctness of each test,
i.e., a reference model which can distinguish between valid and
invalid tests. This is done using a behavioral simulator that imple-
ments the PowerPC architecture. Even though such simulators
are usually available for each design (see Section 3.1), no refer-
ence model is available for the pure PowerPC architecture itself.
The distinction is subtle, but worth elaborating upon. Indeed, the
transfer from a simulator written for a specific design to a pure
PowerPC simulator is a surprisingly far from being a straightfor-
ward process. A very deep understanding of the architecture is
needed to spot all those cases left undefined by the architecture.
Moreover, even after having compiled and implemented all the

identified “undefined behaviors”, there is no additional reference
model for double-checking. New problems can thus be found
(and have been found) with each new design that implements an
undefined case in an unexpected manner. To make the problem
tangible, Table 1 shows an example of a tough-to-detect unde-
fined case.

The development of an accurate pure architecture simulator is a
critical step as it is the ultimate validator of all the AVS tests. We
have not found a way to automatize this step, however, one of the
major lessons learned from this work is that this step should not
be underestimated. It is definitely a costly mistake to start build-
ing tests before a significant effort has been made on the simula-
tor itself. Indeed, finding a bug in the pure simulator means that
all the existing tests should be revalidated, possibly causing some
tests to be removed and replaced to preserve coverage. Given the
subtle nature of bugs in this context (undefined behavior) and the
high cost of correction, it is worthwhile to start by investing a sig-
nificant period of time on the reference model.

2.4 Comet - the Coverage Measurement Tool
Comet [8] is a new coverage tool developed at IBM’s Haifa
Research Lab. Its main property is the separation between the
coverage model definition and the generic coverage analysis
engine. This enables the user to employ a single tool for all the
coverage models. The user can define the exact coverage model
targeted and enjoy at the same time all the benefits of a powerful
coverage tool. The definition of the models is written in SQL,
while the huge quantity of data is handled by a DB2 database.

3 Coverage Models
Coverage is defined as any metric of completeness with respect to
a test selection criterion. The coverage models represent the basic
foundation of the suites. Their appropriate selection is therefore
the most crucial step in the establishment of a coverage suite
[9] . Given the models, the derivation of the tests may require
some sophisticated tools (see Section 2), but it is a purely techni-
cal process. The first step in selecting the models has been to par-
tition the coverage tasks into tasks derived from individual
instructions and tasks derived from sequences of instructions. For
individual instructions, a combination of program-based and
specification-based coverage has been adopted (Sections 3.1,
3.2). The more complex tasks stemming from sequences have
been tackled using a bug-model (Section 3.3).

3.1 Program-Based Coverage
Using a program that implements the application to be covered,
program-based coverage uses software testing techniques to yield
some coverage measurements. A PowerPC behavioral simulator
has been used for the development of the program-based cover-
age subsets of the AVS. The basic rationale behind this approach
is that the behavioral simulator can be viewed as a formal, correct
and complete representation of the architecture. This is because
very early in the verification phase, the behavioral simulator is
used heavily, debugged and tested. Assuming then that a behavio-
ral simulator is a representation of an architecture, the problem of
measuring the quality of a test subset with respect to the architec-
ture can be reduced to evaluate its quality with respect to the
behavioral simulator. Implementation in PowerPC and properties
of the program-based approach are described in Sections 3.1.1
and 3.1.2, respectively.

3.1.1 Program-based coverage of PowerPC
architecture
The program-based subset of the AVS was obtained by covering

the code of the reference model. We used standard software con-
trol flow coverage criteria, such as branch and multi-conditions,
using available evaluators. The first observation from applying
those models is that relatively small subsets of tests are obtained.
This compactness stems from the fact that, in real-life programs,
the same block can be covered via many different types of inputs.
For example, it might be reasonable to assume that the same
block for floating-point exception handling is used for all the
floating-point instructions. Furthermore, in some cases, different
instructions (such as add and subtract) can use the very same
code lines almost all the time. This gave us the incentive to
improve those basic models by applying themseparatelyto each
architecture instruction of the simulator. Using this approach,
code, which is shared by multiple instructions (and this is com-
mon), must now be covered by each instruction. These models
subsequently cover the operation of each instruction. This strat-
egy gives rise to significantly bigger subsets and may catch func-
tionality that is implemented differently in the design. Of course,
it added a level of complexity since the problem of knowing
whether some code can be reached by some function (instruction)
is, in general, undecidable due to data dependency.

3.1.2 Properties of the program-based approach
The program-based approach has the following advantages:

1. Well-defined measure.The program-based approach pro-
vides a well-defined level of design testing. This property is
rarely found in simulation-based verification.

2. Subset size control.Software models of gradual complexity
can be applied, resulting in subsets of gradual sizes. For
instance, the entire spectrum, starting from the simple state-
ment coverage to the unreasonable path coverage, is theoreti-
cally available. Our attempt to apply statement coverage for
eachinstruction is an example of the advance along the axis
of this spectrum. Size is an important property as it is directly
linked to the time needed to run the subset. In practice, a hier-
archy of subsets can be built, where the appropriate level
selected for use is dictated by the amount of time available.

3. High level of abstraction. This method maintains a high
level of abstraction in contrast to methods based on directly
covering the design code. It focuses on the design behavior as
specified by the architecture, and is not disturbed by the huge
number of details brought by the implementation itself. High
level programming languages allow compact representation
of the architecture books. Typically, the size of a behavioral
simulator is one hundredth of its corresponding design (in
terms of lines of code). This allows relatively cheap coverage
evaluation.

4. Correctness and relative completeness.As stated above,
correctness and relative completeness stem from the fact that
the simulator has typically been extensively used for other
purposes at early stages of the design.

5. Homogeneity/uniformity of verification. Program-based
coverage naturally induces a homogeneous level of testing
throughout all the architecture behavior.

This approach has two main disadvantages: some features present
in the architecture might be overlooked because of the depend-
ence on implementation, and missing code can not be found by
code coverage.

3.2 Specification-Based Coverage
A more standard way of inducing a partition of the input domain
of a program is to review its specification and derive a task list
which covers all the listed properties. As programs are usually
specified informally (usually by means of a textual document),
derivation of the task list must be done manually.

3.2.1 Specification-based coverage of PowerPC
architecture
As the PowerPC architecture books span a few hundred pages,
establishing a task list has been a tedious process. We first listed
the domains that needed to be covered: the instructions, the
address translation mechanism, the interrupt mechanism, and so
forth. Then we further partitioned the targeted task space by iden-
tifying “important” properties within each domain. The impor-
tance of these properties is directly underlined by the architecture
itself. The following examples are typical properties:

• Following the IEEE classification, the input domain of a
floating-point register was divided into 10 types: +/- zero, +/-
denormal, +/- normal, +/- infinity, SNaN, and QNaN.

• The address translation scheme defines many types of differ-
ent behaviors, including different kinds of exceptions (protec-
tion violation, page faults, etc.).

• There are many different interrupt types in the PowerPC
architecture. Each type includes many different possible
causes.

In general, the list of tasks for each domain will include the enu-
meration of all possible permutations of the identified properties.
For instance, the input domain for a 2-input floating-point
instruction was divided into 100 groups, covering the cross-prod-
uct of the 10 possible values for each of the two operands.

3.2.2 Properties of the specification-based
approach
The specification-based approach completes the program-based
approach by being tightly coupled with the architecture proper-
ties. Each of the desired properties is assigned its set of coverage
tasks. As a result, the coverage task is independent of a specific
implementation.

On the negative side, a manual scan of a processor architecture is
a long and error-prone process. Because several people usually
develop the task list, the process is exposed to oversights of the
reviewers, and classification of the input domains may be done
inconsistently.

3.3 Sequential Bug-Model Coverage

3.3.1 Background
Modern computer architectures are complex. A typical architec-
ture includes hundreds of instructions, a few dozen resources
(main-memory, general-purpose registers, special-purpose regis-
ters), and complex functional units (e.g., floating-point, address
translation).

Aggressive performance requirements drive designs to perform
complex algorithms in order to improve their instruction per sec-
ond (IPC) ratio. For example, superscalar mechanisms, in which
instructions are routed in parallel through several pipelines, have
become popular. Out-of-order and speculative execution of
instructions are other examples of now standard, but complex,
design mechanisms. Maintaining the correct execution of instruc-
tions in such designs is a very challenging and bug-prone proc-
ess.

PowerPC architecture, among other RISC architectures, favours
the implementation of these complex mechanisms by using a
fixed-sized instruction set, where each instruction performs a rel-
atively simple task.

There are no comprehensive models for human design errors. It
was found though, from an analysis of design bugs which were

uncovered late in the verification process of several PowerPC
designs[7] , that a relatively large number of bugs are associated
with superscalar-related mechanisms. We derived two instruction
sequential models for design bugs from this analysis.

The information gathered points out that short sequences are
uncovering a high number (45%) of the reported bugs. The
sequences include resource dependencies or interleaving instruc-
tions from different logical groups with all types of precise inter-
rupts (including no interrupt). Table 2 presents a description of a
few bugs belonging to these categories.

Clearly, models requiring the coverage of all these sequences are
attractive. Indeed, by focusing not only on the replication of test
scenarios for bugs discovered late in IBM designs, such a meth-
odology attempts to generalize the underlying causes for such
design bugs, and should therefore be suitable for predicting the
location of a large amount of potential bugs in other designs as
well.

3.3.2 The bug-models
We included two design-bug sequential coverage models: Inter-
dependency model and Interleaving Instructions with Interrupt
model.

The importance of checking sequences of instructions that have
resource dependencies cannot be overstressed. The interdepend-
ency coverage model lists, as tasks, every possible pair of instruc-
tions which use the same resource as an operand. The operand
can be either input or output, and the resource can be either a spe-
cific register (both general-purpose and special-purpose), or a
memory location. The instructions should be ‘close’ in time,
meaning that only up to two instructions can appear between
them in the sequential list of instructions. This maximizes the
probability of creating hazards in pipelined designs.

In contrast, the need for covering sequences which interleave
instructions from different logical groups with all kinds of inter-
rupts is less intuitive. This results from the fact that an interrupt is
typically a traumatic event requiring distinctive handling, espe-
cially in a design implementing out-of-order execution. Hence,
exercising each type of interrupt is obviously important, but the
type of instructions causing the interrupt and immediately follow-
ing it is also important. The instructions were grouped using mul-
tiple criteria. We started with the simple architecture
classification and added more elaborated reasoning induced from
experience with previous designs (e.g., idempotent or instruction
duration). The coverage tasks of this model included pairs of
instructions from all possible groups, with all possible precise
interrupts in between them. Precise interrupts[5] are associated
with the execution of a specific instruction, and thus are more dif-
ficult to serve in the context of out-of-order implementations. All
the instructions which follow the interrupted instruction in the
program order must cancel execution, even if their execution has
already been started or even completed. Again, the two instruc-
tions should be relatively ‘close’ in time.

3.3.3 Properties of the bug-model approach
Three main properties are distinguished:

• As opposed to program-based and specification-based
approaches, the bug-model approach focuses on a different
aspect of the compliance validation. Instead of testing the
correct execution of the properties defined in the PowerPC
architecture per se, it targets complex mechanisms in the
design’s implementation. These mechanisms are empirically
known to be bug-prone.

• Definition of the models, and grouping of the architecture
facilities (instructions, interrupts) are done manually, based
on empirical statistics, and not on well-defined criteria.

• For the instruction-interrupt interleaving model, a refinement
of the partitions (up to a singleton group for each instruction)
can yield higher quality coverage models, on account of the
much larger test suites.

4 AVS Structure, Properties and Results
4.1 Structure
The AVS consists of various types of tests packaged in several
subsets. A subset consists of several test files. All tests in a subset
are of the same type; they all consist of target testing of the same
area in the PowerPC architecture using the same type of coverage
criteria, and they all depend on the same assumptions regarding
the alternative behaviors proposed by the architecture (see Sec-
tion 4.3). The architecture instruction set was separated into four
major domains: Floating Point, Fixed Point, Branches and Load/
Store. Therefore, when we covered this set using specification-
based or program-based coverage criteria, we generated separate
subsets for each one of the above-mentioned domains. The tests
that cover the two bug models are not included in either of the
mentioned domains; they appear in separate subsets.

Separate test suites were completed for 32-bit (about 87,000
tests) and 64-bit (about 150,000 tests) designs. See Table 6 for a
complete description of the test suite.

4.2 Properties
It is obvious that no set of tests can yield complete confidence in
a design’s correctness. No matter how big and comprehensive the
set is, it is always easy to show that some potential bugs are left
untargeted. Therefore, Architecture Validation Suites cannot
replace the full verification process, but they can be seen as an
important constituent of this process[4] . The following subsec-
tions discuss several significant properties of the AVS.

4.2.1 Black-Box testing
The testing offered by the AVS leaves aside design dependent
properties. This mimics the well known black-box/white-box
partition of software testing, where specification and details
belonging to the code implementation are tested separately.
Beyond the structural benefit, this approach in microprocessor
designs is not only adequate for multiple designs implementing a
given architecture (as in the PowerPC example), but also for suc-
cessive versions of the same architecture (for example, the x86
architecture). Indeed, the AVS will catch the nucleus of the verifi-
cation while clearly-defined verification items will be left for
each new implementation.

4.2.2 Quality of the AVS
Program-based and specification-based approaches complement
one another when covering the behavior of individual instruc-
tions. This yields a mature solution for individual instructions. In
contrast, the coverage of bugs related to sequences and stemming
from intricate (but common) design mechanisms is much more
complex to apprehend. The two models proposed here are a pre-
liminary attempt to tackle this very challenging issue. They illus-
trate the framework which should be greatly enlarged to better
cover the abovementioned mechanisms (out-of-order and parallel
instruction execution) and to capture other mechanisms as well.
Escape bugs should be studied and should induce the definition of
additional models. As an example, further studies[7] have
shown that many bugs (around 15%) are typically found due to
speculative execution of instructions, as in not taken legs of

branches. A description of such a bug appears in Table 3. This
points out that there is a need to define a model which captures
most of the speculative execution bugs encountered. In general,
the framework proposed by the AVS should augment the number
of bug-models in order to grasp most of the complex design
mechanisms responsible for bugs.

4.2.3 Genericness and alternative behaviors
Architectures typically leave many alternative behaviors for their
implementation. Since the AVS is intended to be implementation-
independent, the initial trend was to avoid the presence of such
behaviors within the suite. In general, the suite should be generic
in the sense that any implementation should be able to run it suc-
cessfully. However, it soon became apparent that restricting the
AVS to shared behaviors was very limiting: many important
behaviors present in most implementations would be left
unchecked in this manner. As an example, the 32-bit architecture
enables implementations to work with up to four Gigabytes of
physical memory, while it requires only a minimum of eight
Megabytes. Restricting all the tests to the small physical memory
would clearly significantly decrease the verification scope of the
suite. An even tougher example is related to memory alignment
exceptions: PowerPC defines a dozen memory alignment excep-
tion cases where, in each one, two different behaviors are archi-
tecturally correct (access success or interrupt).

Therefore, the following scheme was adopted: The core of the
suite includes only tests that can be run on any implementation,
i.e., they do not include behaviors where alternative options exist,
thereby concurring with the most restrictive constraints. To com-
plete the suite, specific subsets were added to cover the untar-
geted areas. Those subsets can be run conditionally: only those
implementations that fulfil the subset assumptions are required to
use them. Table 4 shows the example of memory alignment han-
dling for which each optional case is handled by a separate sub-
set.

There are also cases where the architecture leaves a behavior
completely undefined. It is clear that the AVS should not include
any test exhibiting such a behavior, as different designs may take
different, a priori unknown, decisions.

4.3 Results
The AVS has been run by a dozen different PowerPC designs,
both within and outside of IBM. As stated, the primary purpose
of the suite was to grant a PowerPC certificate license. However,
after a few designs successfully passed the suite, it became
known as an efficient bug detecting test suite, and designs within
IBM began to incorporate it as an integral part of the verification
process itself. In fact, in recent designs, it has become a tape-out
criteria. Therefore, its very effectiveness resulted in the loss of its
value as a final compliancy checker. Needless to say, designs that
used the AVS during the verification process, had no difficulty in
passing the AVS barrier, thereby causing it to deviate from its
original purpose.

This situation stresses the need for coverage subsets during the
verification process, as pointed out in[4] . Since the AVS tests
were generated by a random test generator, the solution was to
generate a second AVS out of the same coverage models, but with
potentially different tests. This strategy would ensure that the cor-
rections induced by running the first AVS were globally correct,
and not only pinpointed for overcoming the given tests.

As expected, a high number of bugs - in the order of a hundred -
were found when the AVS was used as a verification tool. Its
usage as a final checker revealed significantly less bugs (around

ten). An example of such an escaped bug appears in Table 5.

Running the AVS on different designs uncovered many problems
in the AVS itself, mostly due to cases where it was unclear that
the architecture had left possible multiple behaviors. Correcting
the tests was a very expensive process which underlined the
importance of having a correct reference model from the initial
stages of test generation (see Section 2.3).

5 Conclusion
The main contribution of this paper is to provide a generic
groundwork for the development of architecture validation suites
with clearly defined coverage measurements. While the covering
of individual instructions is relatively well understood and per-
formed, the covering of sequences of instructions, which
becomes critical due to the dependencies introduced by complex
design mechanisms, is much less mature. This paper attempts to
tackle the sequence issue by studying existing bugs and deriving
coverage models that encapsulate not only those bugs but the
underlying causes stemming from complex (albeit common)
design mechanisms. The two models proposed are a first step
towards a more generalized family of models directed toward all
generic design mechanisms.

Bibliography
[1] Y. Lichtenstein, Y. Malka and A. Aharon, Model-Based Test
Generation For Processor Design Verification, Innovative Appli-
cations of Artificial Intelligence (IAAI), AAAI Press, 1994.

[2] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y.
Malka, C. Metzger, M. Molcho, and G. Shurek, Test-Program
Generation for Functional Verification of PowerPC Processors in
IBM, DAC 95, San Francisco, pp. 279-285.

[3] M. Scheitrum and A. Smith, Behavioral Verification and its
application to Pentium Class Processors, PCI Developers’ Con-
ference, 1995.

[4] Y. Arbetman, L. Fournier, M. Levinger, Functional Verifica-
tion of Microprocessors Using the Genesys Test Program Gener-
ation - Application to the X86 Microprocessor family. DATE 99.

[5] D.A. Patterson and J.L. Hennessy, Computer Organization &
Design The Hardware/Software Interface, Morgan Kaufmann,
San Francisco, 1994.

[6] E. Buchnick, S. Ur, On Minimizing Regression-Suites using
On-Line Set-Cover, EuroStar 97.

[7] Y. Abarbanel-Vinov, S. Ur, Processor Bug Classification and
Modelling, Internal IBM Haifa publication.

[8] S. Ur, A. Ziv, R. Grinwald, E. Harel, M. Orgad, User defined
coverage - A Tool Supported Methodology for Design Verifica-
tion, DAC 98.

[9] S. Ur and A. Ziv, Off-The-Shelf Vs. Custom Made Coverage
Models, Which is the one for You? STAR98. May 1998.

Appendix. Tables

Book I Par. 4.3.5 (Floating-Point Data Handling and Precision): Book I Par. 4.4.1 (Floating-Point Invalid Operation Exception):

3. Single-Precision Arithmetic Instructions
All input values must be representable in single format; if they are not, the
result is placed into the target FPR, and the setting of status bits in the
FPSCR and in the Condition Register (if Rc=1) is undefined

An Invalid Operation Exception occurs when an operand is invalid
for the specified operation. The invalid operations are:
• Any floating point operation on a signalling NaN (SNaN)

Question:
Should an Invalid Operation Exception (which is a defined event) occur if one of the operands of the single-precision arithmetic instruction is
SNaN, not representable in single format, or should the result be undefined?

Table 1. Hidden undefined behavior

Architecture Type Category Short Description

Hybrid PowerPC/X86 Instruction group interleaved
with exception (idempotent
instruction - interrupt - any
instruction).

On an interrupt, the return address register has not been updated with the address of the
next instruction. Instead, it received the address of the current instruction, causing it to
be executed twice. To find the bug, you need to have the interrupt on an instruction
which gives different results when executed twice (idempotent).

32-bit PowerPC Memory Interdependency A load bypassing the DCBF (a Cache instruction) can cause stale data to be returned.

64-bit PowerPC Register Interdependency The instruction subf. (a type of subtraction) does not update the CR register correctly.
As a result, the branch conditional following subf. goes wrong.

Table 2. Bugs inspiring the sequence models selection

Architecture Type Category Short Description

64-bit PowerPC Speculative execution While the processor switches from real mode to translation mode, it posts a speculative ifetch
request. The request is not committed. The address is based upon the processor being in the real
mode. The pending request is committed immediately after completion of the mode switching.
This may result in there being no address corresponding to the requested address.

Table 3. Speculative execution bug

Event Alternative1 Alternative 2

The operand of a floating point load or store is not word-aligned. Interrupt Correct execution

The operand of a fixed-point doubleword load or store is not word-aligned. Interrupt Correct execution

The operand oflmw, stmw, lwarx, ldarx, ... , eciwx,or ecowx is not aligned. Interrupt Undefined results

lmw, ... , stswi,or stswx instruction and the processor is in Little-Endian mode. Interrupt Correct execution

Elementary operand or string load or store crosses a protection boundary. Interrupt Correct execution

The operand oflmw or stmw crosses a segment or BAT boundary. Interrupt Undefined results

Table 4. Alternative behavior on unaligned accesses

Two input values will cause a wrong result when used as operands of an Fctid instruction. The values are 432FFFFFFFFFFFFF and
C32FFFFFFFFFFFFF (these are two opposite numbers. This case was generated to cover a RESULT=0 coverage model task).

Table 5. Bug found by the AVS

No
Coverage

Model

Number of Test Cases

B FL FP LS Other Total Comments

32 64 32 64 32 64 32 64 32 64 32 64

1 PB 64 88 693 661 622 1476 352 695 1731 2920 No address translation

2 PB 222 235 1303 1418 1792 2200 888 1206 4205 5059 With address translation

3 PB 113 137 113 137 Cache, SCU and Interrupts

4 PB 148 1698 148 1698 Design specific resources

5 SB 795 2635 24994 52470 3338 10823 1966 4194 31093 70122 No interrupts

6 SB 2455 2564 2455 2564 Cache, SCU and Interrupt

7 SB 2494 4199 2494 4199 Design specific resources

8 BD 59 81 3401 3581 14985 19312 2600 2886 19810 31988 40885 57668 Resource Interdependencies

9 BD 6247 7179 6247 7179

FP Fixed Point Instructions 32/64 32/64 -bit Implementation LS Load/Store Instructions BD Bug-Driven

B Branch Instructions FL Floating Point Instructions PB Program-Based SB Specification-Based

Table 6. PowerPC AVS structure

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

