
Functional Verification of the Equator MAP1000 Microprocessor

Jian Shen�, Jacob Abraham Dave Baker, Tony Hurson, Martin Kinkade,
Computer Engineering Research Center Gregorio Gervasio, Chen-chau Chu, Guanghui Hu

The University of Texas at Austin Equator Technologies Inc.
Austin, Texas Austin, Texas

Abstract

The Advanced VLIW architecture of the Equator
MAP1000 processor has many features that present signif-
icant verification challenges. We describe a functional ver-
ification methodology to address this complexity. In par-
ticular, we present an efficient method to generate directed
assembly tests and a novel technique using the processor it-
self to control self-tests and check the results at speed using
native instructions only. We also describe the use of emula-
tion in both pre-silicon and post-silicon verification stages.

1 Introduction

The complexity of modern microprocessors has grown
dramatically in recent years making design verification a
huge bottleneck for large chip designs. In many compa-
nies, verification efforts consume most of the design re-
sources and there are more verification engineers than de-
signers, making verification the real limiter of time to mar-
ket [1]. Simulation-based verification is the primary means
for functional verification. The ever increasing line den-
sities and operating frequencies, together with increasing
amount of interacting functional modules on a chip have
created new and more complicated problems. Post-silicon
at-speed verification has become crucial to exposing fail-
ures. Recent publications show that pseudo-random test
generation techniques have been the backbone of the verifi-
cation effort in the industry [1–9]. All of these recent work
dealt with superscalar processors. We will present our func-
tional verification methodology and results, particularly at-
speed verification, for the Equator VLIW media processor.

Equator Technology Inc. was founded in 1990 by the
original members of Multiflow, one of the pioneers in
VLIW architecture. Equator has been developing a mul-
timedia processor coded MAP1000 that handles video, au-
dio, imaging and communications. The MAP1000 proces-

�Jian Shen was supported in part by an internship at Equator Technolo-
gies Inc. and in part by the Texas Technology Development & Transfer
Program under Project 003658-433 at the University of Texas at Austin.

sor is supported by advanced compiler techniques that allow
program developers to do their work in C and still get fast
performance. The Advanced VLIW architecture of the pro-
cessor has many features that present significant verifica-
tion challenges. These include a large amount of functional
units, a large and comprehensive instruction set, a compli-
cated multi-ported data cache, a multi-ported DMA mech-
anism, and complicated bus/IO interface units with support
for various clock domains.

There are two salient features of the MAP1000. First,
the MAP1000 has much more complex cache control and
DMA mechanisms, compared with the superscalar proces-
sors. Since there are multiple operations per instruction, the
memory system must support multiple functional units. In
addition to pseudo-random tests, directed tests targeting the
memory system microarchitecture are essential. Due to the
VLIW architecture, much of the complicated mechanism
for hazard detection/scheduling is moved from hardware to
software (compiler). Thus, the instruction scheduling block
is not the threshhold for the MAP1000, in contrast to super-
scalar processors. Second, the MAP1000 has strong soft-
ware support. The MAP1000 processor is supported by ad-
vanced compiler techniques and application software devel-
opment efforts. The efforts directly contribute to the func-
tional validation and performance verification. In this pa-
per, we will address these issues and describe our unique
methodology.

In Section 2, we give an overview of the verification
methodology. In Section 3, we present the technique of di-
rected test generation. In Section 4 we introduce the tech-
nique for at-speed post-silicon verification. The results are
presented in Section 5, followed by the conclusions in Sec-
tion 6.

2 Functional Verification Methodology

The term “functional verification methodology” used in
this paper refers to an integrated set of techniques in a uni-
fied process to produce an error-free microprocessor design.
Figure 1 shows the overview of the methodology.

Trace and final
state comparison

Trace and final
state comparison

model (REF)
Reference

simulation
Real chip

emulation

Signature
comparison

Design under
test (DUT)

RTL simulation

Mini-kernel

FailureFailureFailureFailure

Applets

random C tests

pseudo-random tests

C compiler QA tests

Pre-silicon Design Verification Post-silicon Prototype Verification
Tests

debug

Analysis
&

Quickturn

TG directed tests Boot: PCI & ROM

RTOS

IO system test

Applications + RTOS

MPEG2

AC-3

Bug tracking system Notification

Figure 1. Functional verification flow.

2.1 Verification Environment

2.1.1 Models

The simulation based verification environment mainly con-
sists of a register transfer level (RTL) design of the
MAP1000 and a reference model. Both the design and ref-
erence model include the memory. This allows both models
to execute programs as the real chip does in a system. Later
in the verification stage, the RTL design is synthesized into
a gate-level design - a model on an emulation system.

The reference model (REF) needs to be fast and correct.
Prior to the development of the RTL model (DUT), one in-
struction set level reference model written in C and a more
accurate version had been extensively used for architecture-
level analysis. As the development of RTL continued, a cy-
cle accurate reference model was developed. Although the
cycle accurate REF models the pipeline stages, caches and
some of the other internal memories, it represents a higher
abstraction level than the RTL and is able to execute at a
speed over 100 times faster the RTL model.

There are three common checking methods for sim-
ulation: assertion checkers inside the RTL model, self-
checking tests, and comparisons between the RTL model
and the reference model [2]. These assertion checkers
can only be applied to some events. The method of self-
checking tests is not fine grained and disturbs the code se-
quence with a large amount of self-checking instructions.
Since we have a reference machine with enough details, we
relied on the trace comparison between the design and sim-
ulation model for the majority of our effort. Only when tar-
geting a block for which the REF was not accurate enough,
did we resort to self-checking tests on the RTL.

2.1.2 Bug Tracking System
In the verification database, in addition to the diagnostic test
tree, there is a bug tracking system with a Web interface. A
reported bug has several attributes which can be queried.
Thesourceis the location or nature of the bug, such as the
integer unit, the floating point unit, or occasionally the as-
sembler. Thestatuscan indicate “new”, “fixed”, “work in
process”, “rejected” or “completed”. Theowneris the per-
son responsible for fixing the bug. Thecauseis the means
by which it is detected, such as directed test, random tests,
emulation, etc. The bug statistics are periodically posted on
the Web. Whenever the status of a bug changes, or a re-
gression result becomes available, the system automatically
notifies corresponding designers and verification engineers.

2.1.3 Queueing System
Quickturn Cobalt

Chip

PC PC
PC

Board

REF
simulation simulation

RTL Quickturn
emulation

real
chip

LSF queuer

Workstation

Workstation

Figure 2. Queueing for all verification jobs.

To develop the leading edge processor MAP1000, shar-
ing resources and equitable distribution of the processing
load is not only a need, but also a critical requirement for
being productive. A job queueing system should offer large
job throughput, reliability, fault tolerance and flexibility in
terms of type and number of the jobs the system is able to
handle. We chose LSF from Platform Computing Corpora-
tion for this purpose. With the assistance of LSF, thousands
of jobs were run daily, from either individual designers or
regressions. We had dozens of queues with different priori-
ties and number of jobs allowed. For example, there are re-
gression queues: regression-daytime, regression-night, 24-
hour-random, etc. Although regressions and interactive de-
bugging took a lot of processing power, every design engi-
neer had ready access to sufficient computing resources.

We have a unified queueing system, as shown in Fig-
ure 2. The RTL simulations were queued to run on worksta-
tions and REF simulations were sent to PCs. The Quickturn
Cobalt system and the real chip each connected to a PC were
eventually added under LSF control. This unified queueing
system increased productivity significantly and allowed the
groups in Campbell, Austin, Seattle and Irvin to work on
different tasks “concurrently”, fully utilizing the expensive
resources.

2.2 Test Case Sources

A test case is a diagnostic test program to be run on the
RTL model of the processor to check a particular area of
functionality. According to a report at Hewlett-Packard [3],
running test code from as many sources as possible was of
high value for microprocessor verification. Each test effort
has its own focus and unique value, but each also has its
blind spots. A large overlap in coverage of different tests
proved to be an invaluable safety net against the limitations
and blind spots of individual test generators. To address
the verification complexity of the processor, we relied on
test case sources including directed tests, pseudo-random
tests, chip level tests converted from block level test vec-
tors, C compiler quality assurance (QA) tests, random C
tests, mini-kernel and real media applets (small application
programs). The random C tests were generated by a modi-
fied compiler which inserted random harmless codes into a
C source program to stress the hardware, adding more CPU
and memory traffic loads.

2.3 Verification Process

There were two main stages of functional verification:
the pre-silicon design stage and the post-silicon prototyping
stage.

2.3.1 Pre-silicon Design Verification
At the beginning of the pre-silicon design verification stage,
we mainly relied on directed assembly tests targeting each
area of the functionality. In Section 3, we describe our ef-
ficient technique to generate directed tests. We were able
to complete the directed tests for the core in a period of six
weeks. These thousands of tests became the first part of
the regression suite. Tests for the other blocks of the chip
were also generated using this technique. Every morning
the designated designers and members of the verification
team were notified about the status of the nightly regression.
The detailed information included the number of pass/fail
tests, categories of failures (DUT fails or runaways, REF
fails or runaways, final states mismatch, traces mismatch).

Compared to superscalar processors, VLIW processors
place more programming constraints on assembly pro-
grams. When most of the directed tests passed and the
RTL was stabilized, the pseudo-random assembly test gen-
erator also gathered enough knowledge about the processor
microarchitecture. We then used the pseudo-random tests,
compiler QA C tests, and chip level tests converted from the
block level. Special dedicated queues for random assembly
tests and random C tests issued batch jobs every 30 minutes.
A failing test would be copied into a repository and reported
to the bug tracking system.

The verification and design teams jointly created test
plans for each block of the processor. Directed tests were
used to complete the micro-architectural level test plan. Fi-
nally, we used the commercial tool Vericov to measure the

verification coverage in terms of RTL sequential code block
covered, under the assumption that untested blocks poten-
tially have bugs. While high block coverage doesn’t guaran-
tee the completeness of the test suite, it is mandatory. Veri-
cov showed most of the area on which this technique fo-
cused to be over 90% covered (sequential block coverage).
Most of the sequential RTL code blocks not covered were
those error checkers which were not supposed to be asserted
in a normal case.

As the bug curve became flat, we started a major effort
to set up the Quickturn Cobalt emulator for the synthesized
design. Since Equator was one of the first companies to
load such a complex system on a Quickturn Cobalt box and
the project had a very tight schedule, this was a challenging
goal for the MAP1000. Engineers from different groups
such as verification, design, system engineering, OS, and
Quickturn field engineers joined the effort on a 24-hour ba-
sis. The Quickturn model became fully functional in an im-
pressively short period of time, and was plugged into a sys-
tem to demonstrate media applications. Thus the functional
Quickturn model not only was an important milestone for
the functional verification, but also served for software pro-
totyping and demonstration for investors and customers. In
addition, dozens of problems not found on the RTL level
simulation, such as combinational loops and unconnected
ports, were found much earlier than tape release.

2.3.2 Post-silicon Prototype Verification
The techniques in the pre-silicon design verification were
adequate to find nearly all of the bugs in the processor and
produced a working first pass silicon useful for prototyp-
ing. However, there are three major reasons for post-silicon
verification. First, there might be design bugs that elude
the comparison between the processor design and the refer-
ence model, due to bugs either in the RTL simulator or/and
the reference model. Second, by attempting to run at high
speed, the chip will expose subtle bugs that only show up
at high speed or bugs preventing the chip from operating at
the target speed. Third, some bugs need a large number of
cycles or interaction with other devices to be exposed.

However, it is much harder to find the internal signals in
a chip. There are much fewer capabilities in post-silicon de-
bugging, aggravated by the difficulties in pass/fail decision
and the generation of a large number of tests for the fast real
chip. We applied the regression test suite to the chip on a
tester and compared the response with the pre-captured pin-
output. Also, we developed a native mode self-checking
technique to generate self-checking tests. This will be dis-
cussed in detail in Section 4, and elsewhere.

A major effort during post-silicon verification was run-
ning real media applications using the chip on a board. The
in-house “pciplay” utility provided the debug environment
for both Quickturn and the chip. Through the PCI bus, we
could effectively use a PC to access the internal memories

of the chip or the Quickturn model on the board. We ran a
sequence of tests on the chip. First, directed IO tests. Sec-
ond, AC-97 audio, modem interface, NTSC in/out, trans-
port channel, SVGA out, USB host. Third, OS boot. There
are two ways to boot the chip, one may either boot the chip
stand-alone using a flash ROM, or boot the chip through
PCI. We successfully booted the chip both ways and ran the
Real Time Operating System (RTOS). Last, media applica-
tions: stand-alone of MPEG, AC-3 video and audio decom-
pression, and both video and audio integrated with RTOS.

The extraordinary achievements of the software groups
should be mentioned. All of the application and operating
system software had been verified on the reference model,
and no major software bugs were found during post-silicon
verification.

3 Directed Test Generation

Publications in recent years show that more companies
are exploiting pseudo-random test generators as test case
sources [1–9]. However, most of these test generators were
developed over years based on several progressive architec-
tures in a company. They have high development cost, for
example, the one at IBM cost $3,000,000 [4]. Since the
MAP1000 is the first processor at Equator, and due to its
VLIW architecture, we decided to rely mainly on the fo-
cused or directed tests. However, manually generating the
tests for the complex processor with a large instruction set
and a large number of functional units could be very time
consuming. To meet the verification challenge, we devel-
oped an efficient test creation method, with the type of test
calledTG. Native assembly languages and Perl language
are combined to provide full control and efficiency during
test generation.

3.1 Operand Selection

Most of the directed tests target a group of instructions,
or an area of the functionality. To test each instruction com-
prehensively using a compact test, operands must be se-
lected systematically. We studied the instruction set, and
designed a set of operands. For each immediate field in the
instruction set, we chose a set of immediate numbers, then
categorized and listed them in a library.

For example, for the 8-bit immediate operands, we chose
the Reed-Muller code:f11111111, 11110000, 11001100,
..., 00001111g. Similarly, for the general register operands,
we also constructed their corresponding array of patterns,
representing the general and special values. For floating
point operations, we added floating point special numbers
such asNaN, Normalized number, Infinity, Zero, etc. In
a TG test, if the routine for the value patterns has an in-
dex parameter, the indexed array element will appear in the
compiled assembly test. Otherwise, a random pattern fitting
the instruction field requirement is generated. By pseudo-

enumerating the combinations of the short operand arrays,
we verified individual instructions comprehensively.
3.2 Instruction Set Categorization

Similarly to the immediate operands, we also listed all
the instructions in the library categorized by their function-
ality and instruction syntax. For example, the integer arith-
metic operationop iarith array contains the following in-
structions: add.32, adds2.32, adds4.32, adds8.32, etc.

3.3 Macro Construction

The standard assembly program preamble and postam-
ble were written as subroutines into the library. Similarly,
basic operations such as initializing the data TLB and com-
paring two lists of registers followed by a branch, were also
written as macros in the library. Higher and higher levels of
subroutines were gradually constructed. As a result, writing
a test program testing an area of functionality was almost as
efficient as writing a C program, but with direct control on
instruction sequence, operands, address, etc.

The MAP1000 has a complicated multi-ported data
cache. To validate the data cache controller, a suite of
micro-architecture levelTG tests was written manually. It
would be unlikely for a simple pseudo-random generator to
cover all the corner cases, and it would be too inefficient to
write all the cases manually.

3.4 TG Tests

TheTG tests are highly readable and compact. Figure 3
shows an example of a manually createdTG test and the
compiled native assembly test. In addition to manually writ-
ing the tests, stand-alone programs or scripts were used to
generate such tests. For example, to test the DMA engines
between multiple memories, we progressively built subrou-
tines at higher and higher levels. Then a test generator
was able to create hundreds of tests automatically exercis-
ing dozens of parameters comprehensively. This approach
has proven to be much more efficient than writing the as-
sembly or C tests manually, and offered more control and
ease than a dedicated test generator for the processor like
the one in [4].

#——–TG test ——————————#Extended assembly test——
for($i=0; $i< 64; $i++)f LDI(r0, 0xffffffff)
$j = $i% 12; LDI(r1, 0xffff 0000)
;LDI(r$i, $tglib::imm32[$j]) LDI(r2, 0xff00ff00)
g ...
for($i=0; $i< $nr; $i++)f LDI(r63, 0x33333333)
$j = ($i+32)% 64; instr cl0 add r0, r0, r32;
$op = int(rand(10)); instr cl0 sub r1, r1, r33;
;instr cl0 $tglib::alu[$op] ri, ri, r$j; instr cl0 add r2, r2, r34;
g ...

instr cl0 xor r63, r63, r31;

Figure 3. A sample of the TG test and com-
piled assembly test.

4 Native Mode Self-Test

One major difference between pre-silicon design veri-
fication and post-silicon prototype verification is the diffi-
culty of the test pass or failure decision. During pre-silicon
design verification the simulation trace of the design is com-
pared with that of a reference model. For a post-silicon
test, there is no trace of the test. However, modern proces-
sors have large memory modules, register files and powerful
ALUs with comprehensive instructions, which can be used
to generate and control at-speed self-test and to evaluate the
response of the tests at speed [5]. Based on the instruction
set and architecture of the processor, we can use a native as-
sembly routine to compute the signature of the processor in-
ternal state represented by general registers. The signature
computation routine can be stored in the main memory. To
avoid interrupting the normal control flow of the test pro-
gram, the instruction sequence can be scheduled carefully
such that the effects of the sequence are spread over many
registers. Then, signature compression is done for all the
registers, instead of compressing the target registers after
each normal operation under test. By systematically incor-
porating the signature computation routines into the func-
tional test sequence, we can achieve at speed self-test.

sequence T
Operations

under
test

ErrorCorrect signature S(IS0) Comparison

Internal
state

compression
routine

routine

Signature S(IS’)
instruction

Input Internal
state (IS’)
(registers)

Indicator

Figure 4. Native mode signature computation.

The compression algorithm is similar to a multiple input
signature register (MISR) used in built-in self-test (BIST).
We use the ALU shift and exclusive-or operations to imple-
ment the multiple input signature compression for registers.
We define this process as “native mode signature computa-
tion”, as shown in Figure 4. Only native instructions of the
processor are involved in compressing the responses, and no
modification of the processor circuitry is necessary. Thus
our method has no area overhead or performance impact, in
contrast to conventional built-in test approaches. Since the
functional tests are designed to be closed loop tests with-
out the need for a tester, we can run them at native speed.
The functional test takes much less time and avoids the cost
of expensive test equipment. At the same time, storing the
test program in the main memory significantly reduces the
memory capacity needed when compared to storing it to the
tester memory [6].

We can use prime characteristic polynomials to mini-
mize the probability of fault masking. For a processor with
32-bit registers, if we choose 32-bit parallel load signature
compression, the probability of masking is only approxi-

mately2�32. The compressed signature can be compared
periodically with a predetermined golden signature to fur-
ther reduce the probability of masking a fault. We can re-
run the test but with a different characteristic polynomial
by changing the compression routine. This flexibility is
an advantage over using hardware signature analyzers, in
addition to the savings in area and performance overhead.
Compared with random testing using BIST hardware, our
technique is more helpful for failure analysis, since the tests
are functional test vectors. To debug a failure and identify
the failing units, we can increase the frequency of signa-
ture comparison by a divide-and-conquer method. Existing
software based self-test techniques as in [7] require a sig-
nificant amount of memory storage for holding the correct
outputs associated with test vectors. Our native mode signa-
ture compression technique saves on both memory storage
and bandwidth.

check the signature

check the signature

modify the operation

modify the operands

initialize the registers initialize the registers

modify the operands
and store back to memory

the instruction to be modified

the instruction to be modified invalidate the icache line

and store back to memory

modify the operation

(a) Icache disabled (b) Icache enabled

signature compression

signature compression

and store back to memory

and store back to memory

Figure 5. Self-test with self-modifying code.

In addition to monitoring a test, the processor under test
can also be used to generate self-test without any BIST
hardware logic. A test which contains self-modifying code
and nested loops can effectively generate numerous opera-
tions at run time. Thus a short test with dozens of instruc-
tions may stress a particular group of operations thousands
of times at high speed. Consider, for example, a generic
assembly instruction: add r1, r2, r3. The opcode for the in-
structions isf00000000000001; 000001; 000010; 000011g
with bits[31:18], bits[17:12], bits[11:6] and bits[5:0] cor-
responding to the operation (add), the destination register
(r1), the first and second source registers (r2 and r3), re-
spectively. Increasing or decreasing the operand fields will
change the registers to be used in the instruction; increas-
ing or decreasing the operation field will exercise other re-
lated instructions, such as add.s32, add.u32, sub, sub.s32,
sub.u32. A simple program flow to generate tests and peri-
odically compress the signature is shown in Figure 5(a).

If the instruction cache is enabled, the cache invalidation
instruction should be included in the program, as shown in
Figure 5(b). By modifying the instruction in the memory
and invalidating the cached instruction, we verified the in-
struction cache invalidation operation, and generated tests
at run time. We also used the method at the RTL level dur-
ing pre-silicon verification, and detected design errors in the
instruction cache invalidation operation. This bug was fixed
prior to tape release.

We applied the method to the MAP1000 prototype pro-
cessor. One group of tests loaded the test program into a
chip internal buffer of 4K bytes. This technique has proved
to be highly effective. It enabled the chip to execute ALU
operations numerous times running a small program stored
in this 4K buffer. The signature thus obtained was compared
with that from the Quickturn model. Again, the Quickturn
emulation has proved to be of high value, providing the sig-
nature for a test in a few minutes, while RTL simulation
takes hours.
5 Results

The effective bug detection mechanism is demonstrated
on Figure 6. It shows that more than half of the bugs were
found using the directed tests. It should be noted that many
problems detected when setting up the Cobalt system were
not documented here, partially because they were not func-
tional errors of the design. But the Colbalt system did speed
up the tape release. The goal of functional first pass sili-
con has been achieved. The chip was able to execute all
the instructions. The chip on a board could boot the RTOS
operating system and perform media applications, such as
MPEG2 video decompression, AC-3 audio decompression,
and both audio and video decompression integrated with the
RTOS.

Directed tests 69%
Random assembly tests 16%
Mini kernel 1%
OS boot 1%
DVD applet 2%
3D applet 2%
2D applet 1%
Emulation 1%
Others 7%

Figure 6. Effectiveness of tests.

6 Conclusions

In this paper, we have described the verification of the
MAP1000 – a world-class media processor. The directed
test generation technique has been proven to be highly ef-
ficient and effective. Also, we have presented the post-
silicon native mode self-test technique. We used the pro-
cessor to generate tests at run-time by self-modifying code,
and to perform signature compression using native instruc-
tions only. The processor compared the signature with the
one obtained from emulation. To the best of our knowledge,
this is the first time such a technique has been applied to a

commercial processor. All the above mentioned techniques
have contributed to the success of a first-silicon running pro-
cessor.

Quickturn emulation was an important verification tech-
nique for both the pre-silicon and post-silicon stages. How-
ever, setting up the Cobalt system required a significant
hardware load.

Acknowledgements

The authors would like to thank all of the different
teams who contributed to the successful functional veri-
fication of the MAP1000. Special thanks to all of the
individuals in the verification group (particularly Andrew
Peebles, Anoosh Hosseini, Krist Roginski, Murali Chin-
nakonda, Steve Dougherty, George Moussa and Tohru No-
jiri), the design group (particularly Sarang Paldalkar and
Mayur Mehta), the system group, the OS and application
groups (particularly Rhadika Thekkath and Wim Colgate).

References

[1] T. B. Alexander, K. A. Dickey, D. N. Goldberg, R. V. La
Fetra, J. R. McGee, N. Noordeen, and A. Prakash. Ver-
ification, characterization, and debugging of the HP PA
7200 processor. InHewlett-Packard Journal, pages 1–
12, February 1996.

[2] M. Kantrowitz and L. M. Noack. I’m Done Simulating;
Now What? Verification Coverage Analysis and Cor-
rectness Checking of the DECchip 21164 Alpha micro-
processor. InProc. of the Design Automation Conf.,
pages 325–333, June 1996.

[3] S. T. Mangelsdorf, R. P. Gratias, R. M. Blumberg, and
R. Bhatia. Functional verification of the HP PA 8000
processor. InHewlett-Packard Journal, pages 1–13,
August 1997.

[4] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein,
Y. Malka, C. Metzger, M. Molcho, and G. Shurek.
Test Program Generation for Functional Verification of
PowerPC Processors in IBM. InProc. of the Design
Automation Conf., pages 279–285, June 1995.

[5] J. Shen and J. A. Abraham. Native Mode Functional
Test Generation for Microprocessors with Applications
to Self Test and Design Validation. InProc. Intl. Test
Conf., pages 990–999, 1998.

[6] C. Hinchcliff. Simplified Microprocessor Test Genera-
tion. In Proc. Intl. Test Conf., pages 176–180, 1982.

[7] A.J. van de Goor and O. Jansen. Self Test for the In-
tel 8085. InMicroprocessing and Microprogramming,
29:165–175, 1990.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

