
e

e
xy

o
ary.
se
g
re,
on
es
ain)
n

le
ts
of
ific

ce)

al
or

e
ns
ss

a
do
e

d
ng
o

es

The Jini™ Architecture:
Dynamic Services in a Flexible Network

Ken Arnold
Sun Microsystems, Inc.

1 Network Drive
Burlington, MA 01804

+01-781-442-0720
ken.arnold@sun.com
1. ABSTRACT
This paper gives an overview of the Jini™
architecture, which provides a federated infra-
structure for dynamic services in a network.
Services may be large or small.

1.1 Keywords
Jini, Java, networks, distribution, distributed computing

2. INTRODUCTION
The Jini™ architecture provides an infrastructure for
defining, advertising, and finding services in a network.
Services are defined by one or more Java™ language
interfaces or classes. These types define a contract with the
clients of the service.

For example, if a service supports aPrinter interface it
supports a Printer service. If that interface has a
printText method, client processes that invoke the method
will be able to print a text message, regardless of the
implementation of the printing service.

Because the Jini architecture is defined in terms of the Java
programming language, the type system used for service
descriptions is universal—the Java virtual machine provides
a single execution environment, no matter which platform
hosts the virtual machine.

The Jini Lookup service provides a place for services to
advertise their presence in a network. Services place a
serialized proxy object into one or more lookup services.
The types implemented by the proxy are the service types. A
print service would register a serialized object that
implemented thePrinter interface. Each service’s proxy
object implements that interface in an appropriate way for
the particular service. If aPrinter service uses a PostScript

capable printer, the proxy object that implements th
Printer interface will convert the text to PostScript and
send it to the printer. A different printing service whos
printer uses PCL as a printing language will have a a pro
object that converts the text to PCL commands.

The universal platform provided by the virtual machine als
means that code can be downloaded to the client if necess
This means that the client can use services who
implementations were previously unknown. If a client usin
the PostScript capable print service has never used it befo
the conversion code can be automatically downloaded
demand by the virtual machine. Clients can talk to servic
that they have never seen before (and may never see ag
without any human intervention, such as installing drivers o
all the systems that will use a new printing service.

A discovery protocol lets clients and services find availab
lookup services for advertising in the local network, and le
clients find lookup services in which to search for services
desired types. Clients and services can also use spec
lookup services (such as your home system’s lookup servi
from anywhere where the lookup service is reachable.

If you want to write a service you must have a Java virtu
machine, but that machine need not be part of the device
software that is providing the service. A virtual machin
anywhere in the network can perform the required functio
on behalf of a small device or a legacy server. I will discu
some designs for such configurations.

3. GOALS
The Jini architecture [1] is designed to allow a service on
network be available to anyone who can reach it, and to
so in a type-safe and robust way. The goals of th
architecture are:

• Network plug-and-work: You should be able to plug a
service into the network and have it be visible an
available to those who want to use it. Plugging somethi
into a network should be all or almost all you need to d
to deploy the service.

• Erase the hardware/software distinction:You want a
service. You don’t particularly care what part of it is
software and what part is hardware as long as it do

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00
_

e
is
’s

an
en

ou
en

s.
va

the
ure
e

to
ain
ke

a

ct

A
le

for

ct
er
ew
e
nd
the
the
what you need. A service on the network should be
available in the same way under the same rules whether
it is implemented in hardware, software, or a
combination of the two.

• Enable spontaneous networking:When services plug
into the network and are available, they can be
discovered and used by clients and by other services.
When clients and services work in a flexible network of
services, they can organize themselves the most
appropriate way for the set of services actually available
in the environment

• Promote service-based architecture:With a simple
mechanism for deploying services in a network, more
products can be designed as services instead of stand-
alone applications. Inside almost every application is a
service or two struggling to get out. An application lets
people who are in particular places (such as in front of a
keyboard and monitor) use its underlying service. The
easier it is to make the service itself available on the
network, the more services you will find on the network.

• Simplicity: We are aesthetically driven to make things
simple because simple systems please us. Much of our
design time is spent trying to throw things out of a
design. We try to throw out everything we can, and
where we can’t throw something out, we try to invent
reusable pieces so that one idea can do duty in many
places. You benefit because the resulting system is easier
to learn to use, and easier to provide systems in. Being a
well-behaved Jini service is relatively simple, and much
of what you need to do can be automated by other tools,
leaving you with a few necessary pieces of work to do.
Equally important, a large system built on simple
principles is going to be more robust than a large
complicated system.

4. THE JAVA PLATFORM
The Java platform [2,3,4] gives the Jini architecture a
universal type system. The types are fully object-oriented,
and understood the same way on all platforms. The Jini
architecture relies upon several properties of the Java virtual
machine:

• Homogeneity: The Java virtual machine provides a
homogeneous platform: a single execution environment
that allows downloaded code to behave the same
everywhere.

• A Single Type System:This homogeneity results in
types that mean the same thing on all platforms. The
same typing system can be used for local and remote
objects and the objects passed between them.

• Serialization: Java objects typically can be serialized
into a transportable form that can later be deserialized.

• Code Downloading: Serialization can mark an object
with a codebase: the place or places from which the
object’s code can be downloaded. Deserialization can
then download the code for an object when needed.

• Safety and Security:The Java virtual machine protects

the client machine from viruses that could otherwis
come with downloaded code. Downloaded code
restricted to operations allowed by the virtual machine
security policy.

Together these properties provide a single platform that c
be trusted by users to download and execute code. Wh
code can be downloaded, the network is more flexible—y
can interact with implementations you have never se
before.

4.1 Object Oriented Types
Object oriented programming is very concerned with type
For the purposes of this paper I will describe the Ja
platform’s notion of types. I will not distinguish between
general and Java platform specific notions of types since
purpose is to introduce ideas are used in the Jini architect
with which the reader may not be familiar that, not to giv
an overview of object oriented programming in general.

The Java programming language requires each object
have a type. This type is named, and the type may cont
methods (functions), which are the requests you can ma
of the object. In ourPrinter example,Printer is a type
name, andprintText is the name of one of its methods.

Types are organized into trees. ThePrinter interface can
be implemented by, for example, aPCLPrinter class,
which means that thePCLPrinter class implements all of
the methods of thePrinter interface (and possibly more
besides). In this case thePCLPrinter object has more than
one type—it is both aPCLPrinter object, and aPrinter
object, since it can respond to bothPrinter and
PCLPrinter method calls. So any code that requires
Printer object can use aPCLPrinter object as well. The
most common term for this feature ispolymorphism,
because a single object (thePCLPrinter object) can be
viewed as having many (poly-) forms (-morph), in this case
both asPCLPrinter and asPrinter . In such a hierarchy
Printer is called asupertypeof PCLPrinter ; conversely,
PCLPrinter is asubtype of Printer .

The Jini architecture uses the polymorphism of obje
oriented types—a client can ask for aPrinter object and
get any kind ofPrinter object, including aPCLPrinter
(which is, after all, a kind ofPrinter).

A single object can implement more than one interface.
combination printer and fax machine could create a sing
service object that implemented both thePrinter andFax
interfaces. This object could be returned from searches
either type of object.

4.2 Serialization
Serialization is the process of taking the state of an obje
and turning it into a form that is transmissible to anoth
system where it will be deserialized, thereby creating a n
object that is equivalent to the original. Serialization on th
Java platform encodes the actual type of the object, a
deserialization can therefore recreate a new object of
same type. If necessary, the code can be downloaded to

t is
e

e

h
or

of
n
or
y
d
at
tly

al
he
se
kup
is
lar

n
n’t
of
a
e.
—
e

[1]
in

s
ful
is
i

ces
of
to

by

e
ce
e
e
’s
p

”

deserializing virtual machine if the type is one previously
unknown to that virtual machine.

For example, a client that is written to usePrinter objects
already knows about thePrinter type, but may not have
used a PCLPrinter before. When it deserializes a
Printer object and finds aPCLPrinter , the Java virtual
machine will try to download the code forPCLPrinter .

5. THE LOOKUP SERVICE
The lookup service is the Jini architecture’s corollary to a
traditional distributed system’s naming or directory service:
it is the place where clients go to find services. Services are
stored in a lookup service by a serialized proxy object.

When a service boots up or initially connects to a network,
it typically will find a lookup service using a Jini Discovery
protocol that sends messages to the local network(s) asking
for available lookup services. Each lookup service found is
sent a serialized object whose types are the advertised
services. A print service will use a serializedPrinter
object of an appropriate type.

When a service registers its serialized proxy object, it is
returned a lease. The lease is for an amount of time allowed
by the lookup service. The service must renew the lease to
sustain its presence in the lookup service. This mechanism
maintains the freshness of the list of services—services that
are down or no longer reachable due to network failures will
not renew their leases and be dropped from the lookup
service. So except for the “slop” time given by the lease, the
list of services in the lookup service is a list of services
actually available in the network.

When a client needs a service, it first contacts a lookup
service. It either discovers the lookup service using a
discovery protocol (just like a service), or talks to one
directly using a URL-style identifier. Once the client has a
proxy for the lookup service, it asks the lookup service to
find one or more services that match a template. Templates
define the client’s requirement on the service including the
types the client wants to use.

The lookup service uses object oriented type rules to match
a search request (such as for the typePrinter) against all
the services currently registered (such asPCLPrinter ,
PostScriptPrinter , or FaxAndPrinter). The client
may ask for a single matching proxy object, an array of
matching proxy objects, or an array of service description
information for interactive browsing of the lookup service’s
contents. For the purposes of this paper, let us suppose the
simplest “any match” form of search is performed and a
match ofPCLPrinter is found.

The lookup service returns the serializedPCLPrinter
proxy object. When the client deserializes the proxy, any
necessary code will be downloaded to the client. (The
lookup service does not store this code itself—the location
of the code is stored in the serialized object in the lookup
service. The service publishes its own code for the client to
download.)

Then the client invokes methods, such asprintText , on
the proxy to send requests to the print service. The clien
typically unaware of the details of the implementation of th
particular proxy. It will invoke thePrinter methods on
whatever object it gets back. The specific proxy’s cod
(PCLPrinter , PostScriptPrinter , or whatever) will
implement thePrinter methods as appropriate for the
given service.

5.1 Lookup Attributes
Clients and people will sometimes need to distinguis
between services by something other than their type. F
example, if you have two printers, you may care which
them you print something on. This notion of “location” ca
be as simple as a printer name (fine for a small office
workgroup) or very complex (in a large company it ma
include the country, city, building, floor, department, an
office number). Or a user may be looking for a printer th
has A4 or legal-sized paper loaded. These are not direc
expressed in the service type.

A Jini service can be stamped with one or moreattributes.
These attributes may be stamped on it by the loc
administrator (such as a location) or maintained by t
service itself (the sizes of paper currently available). The
attributes can be used when a client searches the loo
service by specifying them in the service template. Th
constrains the search to services that have particu
attributes, possibly with specified values.

The matching protocol for attributes is quite simple: you ca
say of an attribute that it must be present or that you do
care about it. If you say it must be present you can say
each field of the attribute a similar thing: it must be
particular exact value or you don’t care about the valu
Attributes are objects, and their type is also hierarchical
matching for an attribute may match a subtype of th
attribute.

This is the same matching strategy used.in JavaSpaces
and is an extension of the tuple matching model used
Linda [5]. This simple matching model, while not a
powerful as a full database query language, is power
enough for most uses that are required of it. And since it
simple and sufficient, it fits the simplicity goal of the Jin
architecture.

5.2 Lookup Groups
Lookup services can be part of one or more groups. Servi
can be configured to register with lookups that are part
particular groups. Combined, these features allow you
group sets of services into logical sets governed
particular lookup services in the network.

For example, if you have a conference room next to som
offices you probably want the people in the conferen
room to use the printer in that room, not the one for th
adjacent offices, and you almost certainly don’t want th
people in the offices printing on the conference room
printer. You can accomplish this by running two looku
services, configuring one to be in the “conference room

so

be

d
d
t
s.

is
ten
is

en
is
it
to

oin

”
ey
ice
”
then

n
It

e
p

it
es
e
el

s.
ry
y
ing
ry
in

ce
rly
ew

ng
l

group and the other to be in the default (public) group.
When a service is installed in the conference room, you
configure it to register only with “conference room” lookup
services. Other services will join the other lookup service.

When people come to the conference room they can use the
“conference room” lookup service to find only those
services in the conference room. The people in the
surrounding offices will use the default (public) lookup
service to find services. This kind of separation allows
services to be administratively grouped into practical sets.

6. THE VALUE OF A PROXY
Implementation hiding, also known asencapsulation,is
standard object oriented philosophy. It frees the designer of
the print service to design a good programming API for
network printing, rather than a good network protocol.

In traditional distributed computing systems, an abstract
interface definition (commonly expressed in an interface
definition language such as IDL [6,7]) describes the
methods that a remote server understands. This description
defines a wire protocol—a method in an IDL interface
defines bits that will be transmitted across a network to a
remote server. Once this interface is defined all servers must
be able to receive and execute the method calls. If the
Printer interface in IDL contains aprintPostScript
method, then every printer that supports the interface must
be able to receive and understand PostScript page
descriptions.

Network protocols are thus very rigid in nature—they define
exactly and only what they were originally designed to
define, and they place strong requirements at the receiving
end of the messages. The receiver must either understand
PostScript or at least be able to find a way to forward
incoming PostScript to a translator thatcan understand it,
translating it into (say) PCL. Because an IDL description
defines wire protocols, it defines either capabilities (the
printer must understand PostScript) or bottlenecks (the
printer must find some extra, remote translator process).

Defining network services at the API level is much more
flexible when combined with downloaded code. The proxy
that implements aPrinter interface in a Jini system can be
small or large, simple or complex. AprintPostScript
method can be implemented as a simple pass-through for
PostScript printers or as a PostScript-to-PCL translator for
PCL printers, or the proxy might search for a PostScript-to-
PCL translating service elsewhere in the network. Or it
might choose a completely different strategy.

The ability to add a layer of client-side code allows the
designers of remote services to concentrate on what makes a
good programming API for clients of a network printer,
rather than what makes a good wire protocol. In a Jini
system the wire protocol designs are left to the
implementors of each service, and need not be agreed upon
among vendors. Only the API must be standardized, and
only to the point of common functionality. A company can
extend the functionality of its printer services by adding

methods to its own printer proxy objects, as long as it al
supports the standardPrinter methods.

7. DISCOVERY PROTOCOLS
A discovery protocol is used for finding “nearby” lookup
services in the network. Specific lookup services can
located by a URL-style lookup location identifier of the
form jini:// host [: port] .

Because IP is a common network, we have initially define
the IP discovery protocol. In this protocol, a newly-installe
device sends out an initial “looking are lookups” multicas
message with a (configurable) time-to-live in network hop
These messages contain the groups that the service
configured to join. These messages are sent at most
times by the service at boot time. After that the service
passive.

Lookup services listen for these multicast messages. Wh
received, they are examined to see if the lookup service
managing any of the groups the service wants to join. If
does, the lookup service sends its direct URL-style name
the service, and the service engages in the unicast j
protocol using that URL.

Lookup services also intermittently multicast “here I am
messages of their existence, including the groups th
manage. This way if a service cannot reach a lookup serv
when it is booted, the service will receive a “here I am
message after the service becomes reachable and
register with the lookup at that point.

The unicast join protocol uses the URL-style locatio
definition to get the host and port of the lookup service.
then connects to it, asking for aServiceRegistrar proxy.
The ServiceRegistrar interface is the primary interface
of the lookup service. It is used just like any other servic
proxy in the Jini architecture: the implementor of the looku
service defines how theServiceRegistrar methods
(such as theregister method) are implemented in the
proxy. The service downloads the proxy code when
deserializes the lookup services’ proxy object. This giv
the same flexibility to the designers, as well as th
implementors, of the lookup service that the proxy mod
gives to all other service designers and implementors.

We have defined the discovery protocol for IP network
This is the first, but by no means the last, Jini Discove
protocol. Other networks will require different discover
protocols based on different addressing and messag
mechanisms. We invite people who require discove
protocols for other networks to initiate and/or participate
the design of those protocols.

8. LOOKUP ROBUSTNESS
The combination of the discovery protocols, defined servi
behaviors, and leasing makes the lookup model particula
robust in the presence of network failures. Let us take a f
interesting cases to illustrate:

• Suppose that the network is up, and has a runni
lookup service. All the services in the network wil

,
all
ne

, it
e’s
al
lf,
ice
the

is
ed
ce
va
r
st

re

the
er,
te
d

es
or
m,
ty
e,
y
,
a

e a

,
re
ta
ls
rd
of

able
e
he
me
in
e
or
nts
I
a

me
register. Now suppose a network partition isolates some
part of the network. The services in that part of the
network will be unable to renew their leases and so will
soon drop out of the lookup service, preserving the
general freshness of the service list.

• Now suppose the network is fixed. When the lookup
service sends its next “here I am” message, the services
that were isolated will see a lookup service in which they
are not currently registered. They will register with that
lookup service, adding them back in to the list of
available services. This heals that list with no human
intervention. Services drop back in as automatically as
they drop out.

• People often ask about replication of the lookup service.
Our initial example implementation of the lookup
service is not replicated, but there is a simple
workaround: Start a second lookup service in the
network. When the new lookup service starts up, it will
send out a “here I am” multicast of its own. When it does
so, the services will see a lookup service in which they
are not registered and then register. This will give you
two separate lookup services that both have all the
available services registered. This requires no explicit
replication strategy in the lookup service itself: the two
lookup service implementations can be completely
different and unaware of each other. The replication is as
automatic as the self healing; it comes from the same
service behavior.

• If you want replication for “fail over” recovery from a
crash of the lookup service itself, you can do this even
after the crash. The second lookup service’s “here I am”
message will cause the same registration behavior. This
is, effectively,post factofail over, with no pre-planning
required.

9. SMALL DEVICES AND LEGACY CODE
Services are composed of proxy objects and the network
entities they must use to fulfill the contracts defined by the
service types they implement. We have been talking
consistently about printers in this paper because printers are
a common piece of equipment with which we are all
familiar. But printers are relatively powerful devices
compared to many devices which one might want to make
available in a Jini system. What about smaller devices, such
as pagers, phones, and washing machines? At current cost
levels one would probably not want to add a Java virtual
machine to each of these devices.

The Jini architecture requires a Java virtual machine to be
present for each service. It places no requirements at all on
where that virtual machine should be placed, nor on how
many services might share a single virtual machine. Let us
consider, for example, a cellular phone as a service that does
not include a virtual machine, but which you want to make
available on Jini systems.

One design strategy would be this: you can create a docking
station into which the phone will be plugged in order to be
attached to a Jini system. The dock will contain a Java

virtual machine that will, when the phone is plugged in
engage in the discovery protocol and otherwise handle
the Jini service related requirements. In effect the pho
plus its dock are aPhone service in a Jini system.

This requires a dock which can be sold separately. In fact
can be created by a third party not connected to phon
manufacturer (excepting, of course, any relevant leg
requirements, which the Jini architecture does not, itse
resolve). The third party manufacturer can create this dev
to address a perceived niche market, or to compete with
phone’s own dock.

A software solution will work as well. A simpler plug,
rather than a dock, can raise a signal when a phone
connected. A software server running on a connect
computer can detect this signal and fire up its Jini servi
when the phone is plugged in. In this case a single Ja
virtual machine might perform the Jini service duties fo
any number of such phones. This might be more co
effective in many environments. And again, the softwa
solution could be provided by a third party.

Legacy servers and equipment can be incorporated in
same way. Anybody can write a proxy for a device or serv
as long as there is some way for the proxy to communica
with the device or server to provide the proxy’s advertise
service.

The fact that being a Jini service is relatively simple com
back to help us here. If you have a piece of equipment
legacy server that you want to integrate into a Jini syste
you can ask the manufacturer for help, or find a third par
that sells a proxy solution, or hire a consultant to write on
or write one yourself. The Jini technology part of the prox
will be fairly simple to write (we believe, from experience
that it takes about two weeks to the Jini service part of
proxy after you are familiar with the system). Simplicity
gives you several alternatives when you need to integrat
non-Jini device or server into a Jini system.

Combined with the flexibility of the downloadable proxy
this makes the Jini architecture an attractive infrastructu
for standardization of device administration and da
collection. Rather than defining what network protoco
various devices must all share, which often defines ha
requirements on the network types and speed capabilities
the hardware involved, companies can agree on a reason
client-level programming API for the device type and let th
separate virtual machine proxies handle the work for t
smaller versions of these devices. As hardware prices co
down and it becomes easier to install more capabilities
the devices, the programming API—the Jini servic
definition—does not have to change. Only the proxies f
the newer, more capable devices will change, and the clie
that use them will automatically adapt. A programming AP
standard is more likely to be robust over time than
network-level protocol standard.

10. SOME EXAMPLES
To give this all some concrete instantiation, here are so

the
ce
p
n
the
n
es

ly

ry
ia

or
the
e

n

,

possible uses of the Jini system:

• You could design a kiosk that allowed the user to
download information. For example, I might plug my
PDA into the kiosk and ask the kiosk for directions to
someplace. The kiosk can publish the information as a
simpleTextPublisher service, which I would use to
download the directions onto a text device such as a
pager, as well as anHTMLPublisher service which I
would use to download them onto a more capable
device, such as a PalmPilot.

• You could have expense sources (such as a taxi meter or
credit card scanner) provide anExpenseSource service
that my PDA could use to download expense details.
When I return to my office my PDA could be its own
ExpenseSource service that my spreadsheet or
company expense report software could use as a source
for expense report information.

• You could make sensors in a gas supply system be Jini
services, and have several monitoring and report
generating applications adapt automatically to new
sensors that are added to the network. Adding a new
sensor would then be as simple as plugging it into the
network: the monitoring applications would find the new
service and incorporate it into the data flow. New
“sensors” could be software services that aggregate and
analyze information from sensors into higher-level data.
The clients will be blissfully unaware of this hardware-
software distinction.

11. CONCLUSION
The Jini architecture provides a platform that is robust in
many dimensions:

• It is robust in the face of network failures: the set of
services automatically adapts the actual state of the
network and service topology.

• It is robust in the face of changes in the composition of
services: as long as the service interface is implemented,
the details of the service implementation can change as
you buy new equipment and as equipment generally
becomes more capable.

• It is robust in the face of old services: it is relatively easy
to incorporate old devices and servers seamlessly instead

of leaving them as an impediment to progress.

• It is robust in the face of competition: the minimum
standards necessary for cooperation are defined in
architecture—the definition of what constitutes a servi
(a Java type) and how you find them (in a looku
service)—and lets variation exist where it needs to. A
industry can standardize on common ground (such as
basicPrinter interface) and individual companies ca
add specific features in company-specific interfac
(such asMyCompanysPrinter) for clients that want to
use them, without breaking generic clients that on
want the commonPrinter functionality.

• It is robust in the face of scale: Jini services can be ve
large or very small, and can work with small devices v
a supporting virtual machine.

We feel that the Jini architecture is a solid base f
designing networked device and service systems. As
world becomes more networked—as it does by th
minute—the Jini architecture will be a robust platform o
which to build networked devices and services.

12. REFERENCES
[1] The Jini Architecture Team,http://sun.com/jini/specs/.

See also Arnold, K., O’Sullivan, B., Scheiffler, R.W.
Waldo, J., and Wollrath, A.The Jini Specification,
Addision-Wesley, in press.

[2] Arnold, K. and Gosling, J.,The Java Programming
Language, Second Edition,Addison-Wesley, ISBN 0-
201-31006-6.

[3] Gosling, J., Joy, W., and Steele, G.,The Java Language
Specification, Addison-Wesley, ISBN 0-201-63451-1.

[4] Lindholm, T. and Yellin, F.,The Java Virtual Machine
Specification, Addision-Wesley, ISBN 0-201-63452-X.

[5] Carriero, N. and Gelernter, D.,How to Write Par-
allel Programs: A Guide to the Perplexed, ACM
Computing Surveys, Sept., 1989

[6] The Object Management Group,Common Object
Request Broker: Architecture and Specification, OMG
Document Number 91.12.1 (1991)

[7] Rogerson, D.,y Microsoft Press (1997)

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

