
Distributed Application Development
with Inferno

Ravi Sharma
Inferno Network Software Solutions

Bell Laboratories, Lucent Technologies
Suite 400, 2 Paragon Way

Freehold, NJ 07728
+1 732 577-2705

sharma@lucent.com

ABSTRACT
Distributed computing has taken a new importance in order to
meet the requirements of users demanding information “anytime,
anywhere.” Inferno facilitates the creation and support of
distributed services in the new and emerging world of network
environments. These environments include a world of varied
terminals, network hardware, and protocols. The Namespace is a
critical Inferno concept that enables the participants in this
network environment to deliver resources to meet the many
needs of diverse users.

This paper discusses the elements of the Namespace technology.
Its simple programming model and network transparency is
demonstrated through the design of an application that can have
components in several different nodes in a network. The
simplicity and flexibility of the solution is highlighted.

Keywords
Inferno, InfernoSpaces, distributed applications, Styx,
networking protocols.

1. INTRODUCTION
The growth in the Internet has led to an information explosion
with users demanding information, "anytime, anywhere". Today,
applications, services and information are distributed in and
accessed from multiple physical locations. To meet the "anytime,
anywhere" requirements, the focus on developing computing
technologies to universally access, manage and present services
and information has intensified. Distributed computing has taken
a new importance in this context and most of the problems
(reliability, recovery and concurrency, to name a few) associated
with these requirements are addressed in this domain. As a
result, there are numerous distributed computing paradigms
(object and file based) and solutions available to an application

developer.

Inferno facilitates the creation and support of distributed services
in the new and emerging world of network environments. These
environments include a world of diverse terminals, network
hardware, and protocols. Inferno is designed to insulate the
diverse providers of content and services from the equally varied
transport and presentation platforms. A critical Inferno concept
enables the participants in this network environment to present
their resources as files in a hierarchical name space. The objects
appearing as files may represent stored data, but may also be
devices, dynamic information sources, interfaces to services,
control points. This approach unifies and provides basic naming
and structuring mechanisms for the system resources. The
approach is usable even without adopting a new operating
system.

The Inferno operating system provides a software infrastructure
for distributed, network applications that allows any application,
written in the Limbo programming language, to run across
multiple platforms and networks under the Dis virtual machine.
Inferno provides an elegant file-like interface to resources and
services that allows the dynamic construction of a user
Namespace (described in the next section). An Inferno
application can access the resources and services in its
Namespace even though they may be distributed throughout the
network.

InfernoSpaces extends many of the Inferno Namespace
capabilities to non-Inferno platforms. It is currently available as a
software component in C and as a class library in Java on Solaris
and Windows operating Systems. InfernoSpaces can be extended
to support additional languages, operating systems and hardware
platforms. InfernoSpaces allows legacy applications to easily take
advantage of the Inferno capabilities.

2. NAMESPACE
The Inferno Namespace operations provide a powerful set of
features for delivering distributed applications. They provide a
simple programming model and network transparency while also
providing great flexibility in delivering resources to meet the
many (sometimes conflicting) needs of diverse users. It results in
applications that are simpler to develop, have fewer lines of

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

code, are scalable and are easier to maintain than those on other
platforms.

The Inferno Namespace is the hierarchy of resources available to
a program. There are two features that make Namespace a major
component of the Inferno system. First, Inferno represents most
resources as files. Files are not just data; files may also be
devices, network connections, and interfaces to services. So, the
(file) Namespace actually represents a diverse resource space.
Second, Inferno and InfernoSpaces offer a unique set of
operations to manage that Namespace. These operations allow
programmers and application developers to cope with complexity
in today’s networked and distributed environments.

Even within a single system, this hierarchical structure with its
attached access control provides a familiar scheme for naming,
classifying, and acquiring the system resources. More important,
this approach provides a very natural way to build distributed
systems, because the technology for attaching remote file systems
is well known. In brief: if system resources are represented as
files, and there are remote file systems, you have automatically
constructed a distributed system, just because the resources
available in one place are usable from another place.

3. INFERNO DESIGN
Inferno was designed with a technical model of three basic
principles. First, all resources are named and accessed like files
in a forest of hierarchical file systems. Second, the disjointed
resource hierarchies provided by different services are joined
together into a single, private name space. Third, a
communication protocol, Styx, is applied uniformly to access
these resources, whether local or remote. Applications see a
fixed set of files organized as a directory tree. Some of these
files contain ordinary data, but others represent more active
resources. System services live behind file names. Devices
themselves are also represented as files, and device drivers
attached to a particular hardware system present themselves as
small directories. These directories typically contain two files,
data and ctl, which respectively perform actual device I/O and
control/status operations.

The glue that connects the separate parts of the resource name
space together is the Styx protocol. Within an instance of
Inferno, all the device drivers and other internal resources
respond to the procedural version of Styx. The Inferno kernel
implements a mount driver that transforms file system operations
into remote procedure calls for transport over a network. On the
other side of the connection, a server unwraps the Styx messages
and implements them using the local view of resources (which
themselves may have been mounted from other remote
locations). The Styx protocol lies above and is independent of
the communications transport layer; it is readily carried over
TCP/IP, PPP, etc.

This approach has a number of advantages:

• Simple programming model

• Small footprint (~2K lines of C for the interface code)

• Platform and language independence

• Built-in hierarchy fits most system design

• Component-wise debugging of distributed systems and
dynamic reconfiguration

• Small, simple, precise definition

Inferno creates its own standard environment for applications.
Applications are written to execute in a virtual machine to
provide true portability and efficient execution on a variety of
native hardware platforms. Identical application programs can
run under any instance of this environment, even in distributed
fashion, and see the same resources and kernel services. These
kernel services include process management and scheduling,
memory management and garbage collection, namespace
construction and sharing, and device driver event management.

The purpose of most Inferno application is to present information
or media to the user; thus applications must locate the
information sources in the network and construct a local
representation of them. The information flow is not one-way; the
user’s terminal is also an information source, and its devices
represent resources to applications.

In practice, most applications see a fixed set of files organized as
a directory tree. Some of the files contain ordinary data, but
others represent more active resources. Devices are represented
as files, and device drivers attached to particular hardware
present themselves in small directories for status, control, and
data access. System services also live behind file names.

Inferno creates a standard environment for applications.
Identical application programs can run under any instance of this
environment, even in distributed fashion, and see the same
resources. Depending on the environment in which Inferno itself
runs, there are several versions of the Inferno kernel, interpreter,
and device-driver set.

When running as the native operating system, the kernel includes
all the low-level glue (interrupt handlers, graphics, and other
device drivers) needed to implement the abstractions presented
to applications. For a hosted system, for example under Unix,
Windows NT, or Windows 95, Inferno runs as a set of ordinary
processes and adapts to the resources provided by the underlying
operating system.

4. THE STYX PROTOCOL
Styx is the native file access protocol of the Inferno operating
system. It provides a view of a hierarchical, tree-shaped file
system name space, together with access information about the
files (permissions, sizes, and dates) and the means to read and
write the files. Its users (that is, the people who write application
programs), don't see the protocol itself; instead they simply see
files that they read and write, and that provide information or
change information.

In use, a Styx client is an entity on one machine that establishes
communication with another entity, the server, on the same or
another machine. The client mechanisms may be built into the
operating system, as they are in Inferno, or into application
libraries such as InfernoSpaces; the server may be part of the
operating system, or just as often may be application code on the
server machine. In any case the client and server entities
communicate by exchanging messages, and the effect is that the

client sees a hierarchical file system that exists on the server.
The Styx protocol is the specification of the messages that are
exchanged.

At one level, Styx consists of messages of 13 types for:

• Starting communication (attaching to a file system)

• Navigating the file system (that is, specifying and
gaining a handle for a named file)

• Reading and writing a file

• Performing file status inquiries and changes

However, application writers simply write requests to open, read,
or write files; a library or the operating system translates the
requests into the necessary byte sequences transmitted over a
communication channel. The Styx protocol proper specifies the
interpretation of these byte sequences. It fits, approximately, at
the OSI Session Layer level of the ISO standard classification. Its
specification is independent of most details of machine
architecture and it has been successfully used among machines of
varying instruction sets and data layout.

At a lower level, implementations of Styx depend only on a
reliable, byte-stream Transport communications layer. For
example, it runs either over TCP/IP or over IL, which is a
sequenced, reliable datagram protocol using IP packets.

4.1 Architectural approach
Styx, purely as a file system access protocol, is distinguished by
its simplicity and coherence, but that in itself is not enough to
urge its adoption; instead, it is a component in a more
encompassing approach to system design: the presentation of
resources as files. As an example, access to a TCP/IP network in
Inferno systems appears as a piece of a file system, with
(abbreviated) structure as follows:

/net
 /dns
 /tcp
 clone
 stats
 /0
 /ctl
 /status
 /data
 /listen
 /1
 ...
 ...
 /ether0
 /0
 /ctl
 /data
 ...
 /1
 ...

 ...

This represents a file system structure, in which one can name,
read, and write ’files’ with names like /net/dns,
/net/tcp/clone, /net/tcp/0/ctl and so on; there are
directories of files /tcp and /net/ether0. On the machine
that actually has the network interface, all of these things that
look like files are constructed by the kernel drivers that maintain
the TCP/IP stack; they aren’t real files on a disk. Operations on
the ’files’ turn into operations sent to the device drivers.

Suppose an application wishes to establish a connection over
TCP/IP to www.bell-labs.com. The first thing it must do is
to translate the domain name www.bell-labs.com to a
numerical internet address; this is a complicated process,
generally involving communicating with local and remote
Domain Name Servers. In this model, the action required is to
open the file /net/dns and write the literal string
www.bell-labs.com on the file, and then to read from the
same file, receiving the string 204.178.16.5.

Once the numerical Internet address is acquired, the connection
must be established; this is done by opening
/net/tcp/clone and reading from it a string that specifies a
directory like /net/tcp/43, which represents a new, unique
TCP/IP channel. To establish the connection, write a message
like connect 204.178.16.5 on the control file for that
connection, /net/tcp/43/ctl. Subsequently,
communication with www.bell-labs.com is done by
reading and writing on the file /net/tcp/43/data.

There are several things to note about this approach:

• All the interface points look like files, and are accessed
by the same I/O mechanisms already available in
programming languages like C, C++, or Java. However,
they do not correspond to ordinary data files on disk,
but instead are creations of a middleware code layer.

• Communication across the interface, by convention,
uses printable character strings where feasible instead
of binary information. This means that the syntax of
communication does not depend on CPU architecture
or language details.

• Because the interface, as in this example with /net as
the interface with networking facilities, looks like a
piece of a hierarchical file system, it can easily and
nearly automatically be exported to a remote machine
and used from afar.

5. THE CHAT APPLICATION
The chat application is an example of distributed computing,
implemented using the Namespace concept. This example
consists of a chat server and several chat clients. The chat server
supports multiple chat sessions, maintains a list of chat messages
for each chat session, and provides a dynamic list of participants
for all chat sessions. The chat clients, on the other hand, can
request a list of active chat sessions and participants from the
chat server, create, join or leave a chat session. Once in a
session, chat clients can send and receive messages to and from
the session.

In this example, the Namespace concept is implemented on an
emulated version of Inferno. A similar chat example has been
implemented using InfernoSpaces. As long as the chat server and
clients use the Namespace technology (either Inferno or
InfernoSpaces), they will interoperate.

A Namespace is created to represent a chat server. The set of
processes and functions that represent the chat server
functionality are modeled as a set of synthetic files. For the chat
application, these are operated on by simple file operations (read
and write). Since a Namespace represents the chat server, the
synthetic files can be resident anywhere on the network. Taking
this one step further, some of the synthetic files that constitute
the chat server Namespace could be in one part of the network
while others can be elsewhere in the network, i.e., the
functionality that constitute the chat server could be physically
distributed in the network.

The chat server consists of two synthetic files, chat and
chatctl in the /chan directory (see figure 1). The chat file
represents a chat session. To send messages to other participants
in a chat session, the chat client writes a message to the chat
file. To receive messages from participants it reads from the
chat file. The chatctl file is used for status information. To
find out what chat sessions exist is simple as performing a read
on the chatctl file.

Figure 1. Chat Server Application Namespace

A chat client needs to access the server Namespace for a chat
session. To do so, the chat client mounts the /chan directory on
the chat client node, /mntpt, in this example (see figure 2). It is
now able to access, chat and chatctl and begin chatting.

Figure 2. Client and Server Namespace

The chat application was implemented in three steps:

• Decompose functions into a set of synthetic files

• Create the Namespace representing the chat server

• Mount the synthetic files on the chat client

Once the Namespaces of the servers and clients are created, it is
only a matter of manipulating the simple file operations, read and
write, that are familiar to most programmers, for the Chat
application to work.

6. INFERNO AS AN OS
Inferno is a small full-service operating system. Complete
kernels including basic applications are available in 1MB of
memory. The architecture of the Inferno kernel is depicted in
figure 3. Inferno’s capabilities include its own file system,
threads, networks, and other basic services.

O
pe

ra
tin

g
Sy

st
em

Limbo Applications

DIS Virtual Machine

N
am

e
Sp

ac
e

Pr
oc

es
s

M
an

ag
em

en
t

M
em

or
y

M
an

ag
em

en
t

Se
cu

ri
ty

G
ra

ph
ic

s
L

ib
ra

ry

Styx

Device
Drivers

Network
Interface

Hosted
Operating
System

Figure 3. Inferno OS Architecture

Porting Inferno to a new platform is a relatively straightforward
task. In general, the kernel code consists of a portable part shared
by all architectures and a processor-specific portion for each
supported architecture. The portable code is often compiled and
stored in a library associated with each architecture. The kernel
is built by compiling the architecture-specific code and loading it
with the libraries containing the portable code. Support for a new
architecture is provided by acquiring or building a C compiler for
the architecture, using it to compile the portable code into
libraries, writing the architecture-specific code, and then loading
that code with the libraries.

The architecture-specific code is characterized by several simple
functions that need to be implemented in an architecture-specific
way. An atomic test-and-set function, interrupt-level
management functions, scheduler label information (program
counter and stack-frame pointer) management functions, floating-
point unit functions, etc., are all examples of such architecture-
specific code.

The new port will also require device drivers appropriate for its
configuration. These drivers can be acquired from currently
available drivers, adapted from an existing driver, or
implemented from scratch. The kernel will also need to be

loaded onto the target platform; this loading is typically provided
for by a platform-specific boot loader that also provides memory
unit initialization and interrupt-level initialization functions.
The kernel initialization completes the startup required for the
platform, by initializing the drivers loaded into it.

7. PERFORMANCE CONSIDERATIONS
In any distributed application environment, several tradeoffs
must be considered to provide effective service. Within the
kernel, the amount of message queuing, mutual exclusion
locking, and event management by various kernel processes and
device drivers affords numerous opportunities for optimization.
The distribution of an application across multiple computing
nodes exposes any inefficiencies of communication across the
partitions of the application. Not only does this type of
distribution demonstrate a classic confrontation of
communication bandwidth versus processing power or
computational resource, service delivery to numerous end-points
brings into question additional issues of reliability, scalability,
administration, and security. Dynamic use of Inferno Namespace
mechanisms offers simple yet innovative solutions to either side
of engineering exercise.

8. SUMMARY
Inferno facilitates the creation and support of distributed services
in the new and emerging world of network environments. These
environments include a world of diverse terminals, network
hardware, and protocols. Inferno is designed to insulate the
diverse providers of content and services from the equally varied
transport and presentation platforms.

Inferno and InfernoSpaces implement the Namespace technology.
The Inferno Namespace operations provide a powerful set of
features for delivering distributed applications. They provide a
simple programming model and network transparency while also
providing great flexibility in delivering resources to meet the
many needs of diverse users. It results in applications that are
simpler to develop, have fewer lines of code, are scalable and are
easier to maintain than those on other platforms are. Though
they are ideally suited to resource and memory constrained
devices there is no restriction on the size of the platforms that
they can be used in. InfernoSpaces brings the Namespace
technology to non-Inferno platforms. Applications developed in
popular programming languages (C, C++, Java, …) can take
advantage of the Namespace technology with InfernoSpaces and
will be able to inter-operate with other InfernoSpaces and Inferno
platforms.

9. ADDITIONAL REFERENCES
[1] Inferno Home Page. http://www.lucent.com/inferno.

[2] Dorward, Sean M., et al, “The Inferno Operating System”,
Bell Labs Technical Journal, Volume 2, Number 1 (Winter
1997), pp. 5-18.

[3] Mooken, Thomas, “Inferno, InfernoSpaces, and Distributed
Computing”, Proceedings of the Embedded Systems
Conference, Spring 1999, Chicago, IL.

[4] Rau, Larry, “Inferno: One Hot OS”, BYTE, Volume 22,
Issue 6 (June 1997), pp. 53-54.

[5] Sharma, Ravi, “Inferno, Limbo take Java to coding task,”
EE Times, January 1, 1997, p.60.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

