Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems

Youngsoo Shin and Kiyoung Choi
School of Electrical Engineering
Seoul National University
Seoul 151-742, Korea

Abstract

Power efficient design of real-time systems based on programrn
processors becomes more important as system functionality i
creasingly realized through software. This paper presents a pc
efficient version of a widely used fixed priority scheduling meth:
The method yields a power reduction by exploiting slack tirr
both those inherent in the system schedule and those arising
variations of execution times. The proposed run-time mechar
is simple enough to be implemented in most kernels. Experime
results show that the proposed scheduling method obtains a s
icant power reduction across several kinds of applications.

1 Introduction

Recently, power consumption has been a critical design const
in the design of digital systems due to widely used portable :
tems such as cellular phones and PDAs, which require low pc
consumption with high speed and complex functionality. The
sign of such systems often involves reprogrammable proces
such as microprocessors, microcontrollers, and DSPs in the
of off-the-shelf components or cores. Furthermore, an increa
amount of system functionality tends to be realized through <
ware, which is leveraged by the high performance of modern
cessors. As a consequence, reduction of the power consum
of processors is important for the power-efficient design of s
systems.

Broadly, there are two kinds of methods to reduce power ¢
sumption of processors. The first is to bring a processor in

yosq

B

anig

e

BCETMWCET
ocpooooo000
PR R P

afewqg
fesap

yioows
auojsjeum

Figure 1: The ratio between BCET and WCET for a number of
applications.

speed of the processor, great care must be taken when employing
this method in the design of a real-time system.

In this paper, we investigate power-conscious scheduling of
hard real-time systems. In particular, we focus our attention on
fixed priority scheduling and propose its power-efficient version,
which we callLow Power Fixed Priority Scheduling.PFPS). Our
approach is built upon two observations regarding the behavior of a
real-time system. The first is that the dynamics of a hard real-time
system vary from time to time. Specifically, we need a handful of
timing parameters for each of the tasks making up the system, to
analyze the system for its schedulability [1, 2, 3, 4]. One of those
parameters is theorst-case execution tinf¢/CET), which can be
obtained through static analysis [5, 6, 7], profiling, or direct mea-
surement. However, during operation of the system, the execution
time of each task frequently deviates from its WCET, sometimes
by a large amount. This is because the possibility of a task running
at its WCET is usually very low, even though a real-time system

power-down mode, where only certain parts of the processordesigner must use WCET to guarantee the temporal requirements.
as the clock generation and timer circuits are kept running when the As examples of this variation in execution time, Figure 1 shows
processor is in an idle state. Most power-down modes have a trade-the ratio between the best-case execution time (BCET) and WCET
off between the amount of power saving and the latency incurred obtained from [8] for a number of applications.
during mode change. Therefore, for an application where latency ~ The second observation is that, in fixed priority scheduling,
cannot be tolerated, such as for a real-time system, the applicabilitythere are usually some idle time intervals even when the system
of power-down may be restricted. just meets the schedulability and tasks run at their WCETs [1, 2, 3].
Another method is to dynamically change the speed of a pro- The actual number and length of these idle time intervals increase
cessor by varying the clock frequency along with the supply volt- when some of the tasks run faster than their WCET, which was our
age when the required performance on the processor is lower tharfirst observation.
the maximum performance. A significant power reduction can be In LPFPS, we exploit both execution time variation and idle
obtained by this method because the dynamic power of a CMOStime intervals to obtain a power saving for a processor while en-
circuit, which is a dominant source of power dissipation in a digi- suring that all tasks adhere to their timing constraints. To obtain
tal CMOS circuit, is quadratically dependent on the supply voltage. the maximum power saving, we dynamically vary the speed of the
Since there is a delay overhead along with an area requirement orprocessor whenever possible, and bring the processor to a power-
the processor and a power overhead in dynamically changing thedown mode when it is predicted to be idle for a sufficiently long
interval. Specifically, if there is only one task eligible for execu-
tion and its required execution time is less than its allowable time
frame, the clock frequency of the processor along with the supply

Permission to make digital/hardcopy of al or part of this work for personal or
classroom useis granted without fee provided that copies are not made or distributed
for profit or commercia advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or afee.

DAC 99, New Orleans, Louisiana

(c) 1999 ACM 1-58113-109-7/99/06..$5.00

voltage is lowered. If it is detected that there is no task eligible
for execution until the next arrival of a task, the processor enters
power-down mode. Both these mechanisms are made possible by a
slight modification of the conventional fixed priority scheduler.

The remainder of the paper is organized as follows. In the next
section, we briefly review related work, which focuses on the re-

duction of power consumption of processors, and then discuss the

motivation of LPFPS. In section 3, we intuce IPFPS and ex-
plain the advantages of the proposed scheme.
present experimental results for a number of real-time system ex-
amples, and draw conclusions in section 5.

2 Related Work and Motivation
2.1 Power Down Modes

In most embedded systems, a processor often waits for some €
from its environment, wasting its power. To reduce the waste, n
ern processors are often equipped with various levels of pc
modes. In the case of the PowerPC 603 processor [9], ther
four power modes, which can be selected by setting the appr
ate control bits in a register. Each mode is associated with a
of power saving and delay overhead. For examples|éep mode
where only the PLL and clock are kept running, power consul
tion drops to 5% of full power mode with about 10 clock cycl
delay to return to full power mode.

In the conventional approach employed in most portable ¢
puters, a processor enters power-down mode after it stays in ai
state for a predefined time interval. Since the processor still we
its energy while in the idle state, this approach fails to obtain a I
reduction in energy when the idle interval occurs intermittently
its length is short. In [10, 11], the length of the next idle peri
is predicted based on a history of processor usage. The prec
value becomes the metric to determine whether it is benefici
enter power-down modes or not. This method focuses on e\
driven applications such as user-interfaces because latency, \
arises when the predicted value does not match the actual v
can be tolerated. However, we need an exact value instead
predicted value for the next idle period when we are to apply
power-down modes in a hard real-time system, which is possib
the LPFPS.

2.2 Scheduling on a Variable Speed Processor

A scheduling method to reduce power consumption by adjusting
the clock speed along with the supply voltage of a processor was
first proposed in [12] and was later extended in [13]. The basic

method is that short-term processor usage is predicted from a his-

tory of processor utilization. From the predicted value, the speed

of the processor is set to the appropriate value. Because Iatenc;J
exists when the prediction fails, these methods cannot be applied to

real-time systems.

Static scheduling methods for real-time systems were propose
in [14, 15, 16]. The underlying model of their approaches is a set
of tasks with a single period. When periods of tasks are differ-
ent from each other, which is the conventional model employed in
real-time system design, we can transform a problem by taking the
LCM (Least Common Multiple) of tasks’ periods as a single pe-
riod and treating each instance of the same task occurring within
the LCM as a different task. This can cause a practical problem

because we require excessively large memory space to save a sta
ically computed schedule, whereas the size of memory is one of

the design constraints in a typical embedded system. Furthermore
LCM becomes excessively large when periods of tasks are mutu-
ally prime. Another problem is that a schedule is computed based
on the assumption that a fixed amount of execution time is required
for each task. As a result, the full potential of power saving cannot
be obtained when variations of execution time exist.

A dynamic scheduling method, called Average Rate Heuristic
(AVR), was also proposed in [14] with the same model as in the
static version. Associated with each task isiterage-rate require-
ment which is defined by dividing its required number of cycles by

In section 4, we |

Table 1: An example task set

| T | Di [G | Priority]

11| 50| 50| 10 1
2| 80| 80| 20 2
13 | 100 | 100 | 40 3

|

200

’—‘ 300

®)

Figure 2: A schedule for the example task set. (a) When tasks
always run at their WCET. (b) When the execution times of the
first three instances af, and the first instance afz are smaller
than their WCETS, respectively.

its time frame (deadline arrival time). Atany time, the AVR sets

the speed of a processor to the sum of average-rate requirements of
tasks whose time frame includes Among available tasks, AVR
resorts to the earliest deadline policy [1] to choose a task. Because
average-rate requirements are computed statically with fixed num-
bers of execution cycles, the same problem occurs when variations
of execution time exist.

2.3 Motivation

Consider the three tasks given in Table 1. Rate monotonic prior-
ity assignment is a natural choice because periddsafe equal to
deadlinesD;). Priorities are assigned in row order as shown in the
fifth column of the tablé. Assume all tasks are released simultane-
ously at time 0. A typical schedule, which assumes that tasks run
at their WCETsG;), is shown in Figure 2(a). Note that this system
just meets its schedulability. For exampletifwere to take a little
onger to completers would miss its deadline at time 100. Even
though the system is tightly constructed, there are still some idle
time intervals, as can be seen in the figure. At time 160 in Figure

d2(a), when the request fop arrives, the run-time scheduler knows

that there will be no requests for any tasks until time 200, which
is the time when requests fof andt3 will arrive. This knowl-
edge can be derived by examining run-time queues. We will elab-
orate on the details in the next section. As a consequence, we can
save power by reducing the speed of the processor by lowering the
clock frequency then lowering the supply voltage. When some task
instances are completed earlier than their WCET, we have more
chances to apply the same mechanism. For the example of Figure
(b), we can slow down the processor at time 50 because the first
instances of, andtz complete their execution before the second
request forr; arrives. Because the execution time of each task fre-
quently deviates from its WCET during the operation of the system,
we have many chances to slow down the processor as shown in the
figure.

The second possibility for power saving occurs when there are

no tasks eligible for execution. Attime 80 in Figure 2(a), we should

We assume that a priority is higher when the value of the priority is lower, a
convention usually adopted in real-time scheduling.

maintain the processor at its full speed because there will bt
quests forr; andts at time 100, which is the same time when
will complete its execution at its WCET. th completes its execu
tion earlier at time 90 as shown in Figure 2(b), the processor
enter the power-down mode with timer set to the time 100. Thi
again possible because the run-time scheduler has exact know
that the processor will be idle until time 100. Another chance
applying power-down modes occurs in a slightly different situati
At time 160 in Figure 2(a), we can reduce the speed of the pro
sor by half because the available time foris twice as large as it:
WCET. Even with the lowered speed;tif completes its executiot
earlier, meaning that it runs faster than its WCET, the processol
enter the power-down mode.

3 Low Power Fixed Priority Scheduling
3.1 Fixed Priority Preemptive Scheduling

In a typical real-time system, there are many periodic tasks
share hardware resources. To ensure that each task satisfies i
ing constraints, the execution of tasks should be coordinated
controlled manner. This is often done via fixed priority schec
ing. Fixed priority scheduling has several advantages over ¢
scheduling schemes. It is quite simple to implement in most
nels. Also, many analytical methods are available to deterr
whether the system is schedulable. Rate monotonic sched
(RMS) [1] is the first scheduling scheme that falls into this ce
gory. It assigns a higher priority to a task with a shorter perioc
with a higher execution rate. It is proved to be optimal in the se

Active task

2

Active task

T3

T3

Run queue Run queue

|

@ ®)

T2

Delay queue Delay queue

Figure 3: The status of queues for the task set example (a) at time
0 and (b) at time 50.

ecution. Figure 3(a) shows the status of the queues. At time 50,
when the second request for arrives, 13 is preempted because it
has a lower priority thart, (Figure 2(a)). It goes to the run queue
and 14 starts execution as the active task. Figure 3(b) shows the
status of the queues.

3.2 Overview

As described in the previous subsection, the fixed priority preemp-
tive scheduler in the kernel can be implemented easily using run-
time queues. Because most information about the tasks is available
through queues andRFPS depends on this information, the sched-
uler for LPFPS can be implemented with a slight modification of
the conventional scheduler.

Figure 4 shows pseudo code for the LPFPS scheduler. The code
between L5 and L11 conforms to the behavior of the conventional
scheduler explained in the previous subsection. LPFPS works when
the run queue is empty (L12). This is further divided into two cases:
one when all tasks have completed their executions in each of their

that if a given task set fails to be scheduled by RMS, it cannot be periods and are waiting for their next arrival times while residing in
scheduled by any fixed priority scheduling. Although RMS is con- the delay queue (L13) and the other when all tasteepthe active
strained by a set of assumptions [1], recent research has relaxeqask have completed their execution (L16). In the first case, we can
these constraints in several ways. For example, deadline MONO-pring the processor into a power-down mode because there are no
tonic priority assignment [4] can be used when the deadlines areasks that need it. Furthermore, we know how long the processor
dlfferer_lt fr_om the p_erlods. Ear!lest_de_adllne fII’S'[_(EDF) scheduling will be idle because the task at the head of the delay queue is the
[1], which is an optimal dynamic priority scheduling, has an appar- first one that will require the processor (recall that the delay queue
ent dominance over RMS because it can schedule a task set if andg grgered by the tasks’ release times). This is the key ingredient
only if the processor utilization is lower than or equal to 1, meaning of | PEPS. Thus, we set a timer to expire at the next release time of
that a schedule with zero slack time is possible. However, RMS by the head of the delay queue and then put the processor into power-
itself is of great practical importance [2]. down mode. Because, there is a delay overhead to wake up from
Once the priorities are assigned to each task, the scheduler €Npower-down mode, the timer actually should be set to expire earlier
sures that higher priority tasks always take the processor over Iowerby that amount of delay (L14).
priority ones. This_is maintained by preempting lower prio_rity tasks In the second case, we can control the speed of the processor
when higher priority ones request the processor, which is called apecayse there is just one task (the active task) to execute and the
context switch.)] processor will be available solely for that task until the release time
_ The basic mechanism of the scheduler in the kernel proposed of the task at the head of the delay queue. Note that instead of
in this paper is based on the implementation model in [17, 18]. The changing the speed of the processor to adopt to the computational
scheduler maintains two queues, one caliguqueueand the other yaquirements imposed on the processor, we can keep the proceesor
calleddelay queue _The run queue holds tasks that_ar_e waiting to 4t the maximum speed and then bring it into a power-down mode.
run and the tasks in the queue are ordered by priority. The task yoever, it can be shown that the former method obtains a more
that is running on the processor is called_Mvg tasl_<The delay _ power saving because the dynamic power of a CMOS circuit is
queue hoIds tasks that have already run in their period and are Wa't'quadratically dependent on the supply voltage. The amount of time
ing for their next period to start again. They are ordered by the time 4t will be needed by the active task equals its WCET less its al-
their release is due. When the scheduler is invoked, it searches the‘ready executed tinfe Note that we assume that the execution of
delay queue to see if any tasks should be moved to the run queuetne whole task takes its WCET because at the time of scheduling
If some of the tasks in the delay queue are moved to the run queue e have no information whether it will take less than WCET or not.
the scheduler compares the active task to the head of the run queueyyhen the active task completes its execution, the processor should
If the priority of the active task is lower, a context switch occurs. retyrn to the full speed to prepare for the next arrival of tasks (L1
Thg process is illustrated in the following example using the task through L4). This involves a delay for raising the supply voltage
setin Table 1. and subsequently the clock frequency. Thus, the active task actu-
ally should complete its execution ahead by an amount equal to

Example 1At time 0, when the requests for all tasks arrive, tasks this delay. Considering all these factors, we obtain the ratio of the

are put in the run queue in priority order. Becausghas the high-
est priority, it becomes the active task and immediately starts ex-

3In preemptive scheduling, a task is preempted when a request for a task with
higher priority arrives during its execution (L8). When this occurs, we get the executed

2At this moment, we ignore the delay to vary the speed of the processor for time of the task from the timer (L9), which is supplied by most processors used in real-
simplicity. time systems.

L1 if currentfrequency< maximumfrequencythen CmE

L2: increase the clock frequency and the supply voltage 5

to the maximum value; [4 time
L3: exit; @

. ratio of speed
L4: end if A > sovep
L5: while delay.queue.head.releasiene < currenttime do o 1\—/[
L6: move delayqueue.head to the rugueue; t 4 time
L7: end do ®)

. L . L ratio of speed

L8: if run.queue.head.priority activetask.prioritythen
L9: set the activeask.executedime; Trey l—l
L1o: context switch; © . time
L11: endif ©
L12: if runqueue is emptshen Figure 6: Computation of the speed ratio. (a) An instance when
L13: if activetask is nullthen

the processor’s speed can be changed, (b) Optimal solution, and (c)

L14: set timer to (delayjueue.head.releasiene — wakeupdelay); Heuristic solution.
L15: enter power down mode; . .
L16: else 3.3 Computation of the Ratio of Processor’'s Speed
L17: speedratio = Computespeedratio(); . .
L18: find a minimum allowable Because it takes time to change the clock frequency and the_ supply
clock frequency> speedratio - maxirequency: voltage, we should take this delay into account when computing the
L19: adjust the clock frequency along with the supply voltage; prqcessors ;peed ratio. We prese_nt two methOds t_O Comp_Ute the
L20: end if ratio, an optimal but complex solution and a heuristic but simple
121 endif solution, and show that the latter one is always safe and is accurate
_ enough for many practical situations. Figure 6(a) shows an instance
Figure 4: Pseudo code of the LPFPS scheduler. when we can change the processor’s speed, that is, the active task
alone is eligible for execution. Before we explain the solutions in
o | actve tesk D“‘“’e“’sk detail, we introduce the notations we use in the solutions.
T, [® Run queve T, [® Run queve e The active task is denoted lny. C; is its WCET andE; de-
S m: S m: notes the time for which it has already executed.
Priority | 2 i3y queve Priority | 2 Sy queve
Breated | Next arival 540 e t5 is the next arrival time of the task at the head of the delay
— / — / gueue and is the current time.
T 100 T 50 T 100 T 50 . . .
b, [0 o |50 b, [100 b |50 e pisthe rate of changing the speed ratio of the processor. For
rro s e T rro s w1 example, if the clock frequency can be raised from 30 MHz
Nextarrivel | | Nextarmiall Nextarvll pop| [Netamival o to 100 MHz (full speed) in 1@s (including the delay to raise

the supply voltage)p = 0.07/ps.

@ ®)

.) . . . The optimal (or exact) desired ratio of speeds, denoted hy
Figure 5: The status of queues and the information associated with.5p pe computed with the help of Figure 6(b) and with the knowl-
each task (@) at time 160 and (b) at time 180. edge that the processor can still execute operations while its speed
is being changed. Because the area under the curve should be equal

processor speed needed for the active task to the full speed (L17)’to the required execution time; — E;, we have
(R B

which we will elaborate in detail in the next subsection. From the
computed ratio, we find an appropriate clock frequency (L18). In (1 rop)?
practice, only discrete levels of frequency are available, and among (ta—te)ropt+ opt
them we should select a frequency larger than or equal to the com-

puted one to guarantee the timing constraints. All these processe
are illustrated in the following example with the same task set as in
Example 1.

=G —E. (1)

SSolving forropt gives

P _p(ta—tc)+2‘|‘\/pz(ta—tc)2—4p(ta—tc—ci+Ei)
Example 2 At time 160 in Figure 2(a), when a request for ar- opt = 2)

rives, the status of queues and the information associated with each @ .
task are as shown in Figure 5(a). For simplicity of illustration, as- 1 h€ €quation (2) gives an accurate ratio provided that the speed is
sume that the delay required to wake up from the power-down modechanged linearly with time. However, it has some practical prob-
and that required to change the speed of a processor are all 0. Be- lems. It is computationally expensive (compared to the execution

cause the run gueue is empty with the active ta: e sched- time of the conventional scheduler, see L5 through L11 of Figure
d Pty S’“’f‘& 4), which adds a burden to the run-time scheduler. Note that the

uler computes the desired ratio of speed that yi 160 = 0.5 overhead of the scheduler should be kept as small as possible so

see L17 of Figure 4). Thus, we can slow down the processor b . -
Elalf. Now, ass%me tk)lat the instancetgfstarted at timep160 exe- g as not to ylolate thg schedulablll_ty Of. the system [17, 18]. Further-
’ ore, an increase in the execution time of the scheduler translates

cutes at the lowered speed, but completes its execution at time 18 - :

instead of 200, meaning that it executes in half its WCET. At this Into increased power consumption. . .
time, the status of queues becomes that of Figure 5(b). Because all . To overcome the problems, we resort to a straightforward heuris-
tasks reside in the delay queue, the scheduler brings the processortIC solution, given by

into a power-down mode (see L14 and L15 of Figure 4) with the Ci—E

timer set to the next arrival time af (200). fheu= T —
a— 'C

©)

10 Table 2: Task sets for experiments

g [Applications | # tasks| Range of WCETSs|) |
08 Avionics 17 1,000 ~ 9,000

e Nl INS 6 1,180 ~ 100,280
o8 [e Flight control 6 10,000 ~ 60,000
. | CNC 8 35 ~ 720

Figure 7: Optimal ratio versus heuristic ratio over time interva

% reduction

which is simply the solution built upon the assumption that the
lay is negligible (see Figure 6(c)). To uggin practice, it should
be guaranteed that it hassafenesproperty in the sense thate,

Average power (W)

00000 22w
ohhomomaD®o

e
FPS T—a 10
—— %redudtion R

01 02 03 04 05 06 07 08 0.9 1.0 01 02 03 04 0.5 06 07 08 09 1.0

is always larger than or equal tgpt, SO that the active task;j can BOETAVCET BoETAVCET
complete its execution befotg. It should also havaccuracyin @ ®
that it should be close gyt in practical situatiorfs The safenest 20 o
is guaranteed by the following theorem. The proof can be foun g -
the Appendix. %113 R - wg
. . oo . X3
Theorem 1 rpe is always larger than or equal togp; provided Fos e IS LA S s B
thatty >tc and 4 —tc > G — E;. o2 |2 02 e eten]]
0.0 o

01 02 03 04 05 06 0.7 08 0.9 1.0 01 02 03 04 05 06 07 08 08 10
BCET/WCET BCETAVCET

© @
Figure 8: Simulation results of (a) Avionics, (b) INS, (c) Flight
control, and (d) CNC.

We computerpt with p = 0.07/ps while we varyta —tc from
50 ps to 3000us for each ofe, from 0.1 to 0.9. As can be seen
Figure 7 ,rpey closely matchesqpt except for small values of —tc
and for lowrpe,. Thus, we can obtain a sufficient power reducti
while guaranteeing real-time constraints using equation (3) ins

I he clock f h I I
of equation (2) in a broad range of situations. delay to vary the clock frequency and the supply voltaged)

is negligible compared to the WCETSs except for CNC. We use the

heuristic solution (equation (3)) to compute the ratio of processor’s

. speed. Because the statistics of the actual execution times of in-
4 Experlmental Results stances of the tasks comprising each application are not available,
To evaluate the LPFPS, we simulate several examples and cor we assume that the execution time of each instance of a task is
the average power consumed with LPFPS against that consi drawn from a random Gaussian distribution with mean, denoted by
with fixed priority scheduling (FPS). In FPS, we assume that m, and standard deviation, denoteddyygiven by

processor executes a busy wait loop, which consists of NOF

structions, when it is not being occupied by any tasks. The average m= BCET+WCET (4)
power consumed by a NOP instruction is assumed to be 20% of that 2 ’

consumed by a typical instruction [19]. The delay overhead to vary _ WCET-BCET 5
the clock frequency and the supply voltage is assumed to follow 0= 6) ®)

the model in [20], where the clock is generated by a ring oscillator . .)
driven by the operating voltage resulting in the worst-case delay of _ Figure 8 shows the simulation results when we vary the BCET
10 ps. The maximum clock frequency and the supply voltage of from 10% to 100% of the WCET_for _each application. Even when
the processor, which is based on the ARM8 microprocessor core, isth€ BCET equals the WCET, which is the case when tasks always
100 MHz and 3.3 V, respectively. The clock frequency can be var- execute in the_lr_WCET, LPFPS obtgalns a hlg_her power reduction
ied from 100 MHz down to 8 MHz with a step size of 1 MHz. We than FPS. This is the result diynamically varying the clock fre--
assume that the average power consumed by the processor when fUency and the supply voltage when the active task alone is eligible
is in power-down mode is 5% of the full power mode and that it for execution. We can observe from the figure that the power gain
takes 10 clock cycles to return from the power-down mode to the NCreases as the BCET gets smaller. This matches the motivation
full power mode [19]. We make all these assumptions in order to of th!s paper |II_ustrated in section 1 and 2: the chance both for dy-
reflect implementation issues thereby enabling a fair comparison N@mically varying the clock frequency and the supply voltage and
between FPS and LPFPS. for bringing the processor into a power-down mode increases as the
We collected four applications for experiments: an Avionics Variation of execution times increases. .
task set [21], an INS (Inertial Navigation System) [18], a flight ~ Among the applications, the LPFPS obtains the most power
control system [22], and a CNC (Computerized Numerical Con- 92in (up to 62% power reduction) for INS, as shown in Figure 8.
trol) machine controller [23]. The first three examples are mission 1hiS is another interesting fact observed with LPFPS. For FPS, the
critical applications and the last one is a digital controller for a CNC averag%power consumption is proportional to processor utilization,
machine, which is an automatic machining tool that is used to pro- U = 3 5. However, itis not true for LPFPS. This is evident from
duce user-defined workpieces. All the examples are summarized—; — B]
in Table 2 where we show the number of tasks in each application In a random Gaussian distribution, the probability that a random vanictalees

. . on a value in the intervdin— 30,m+ 30] is approximately 99.7%. Thus, if we set
and the range of WCETSs in the unit p§. Note that the worst-case \wcgT (o be equal ton+ 3o, almost all generated values fall between BCET and

2 - o) . WCET. Letm+ 30 = WCET and solving foio with the help of equation (4), we get
Safeness is a mandatory condition in a hard-real time system whereas accuracy iSequation (5). After the generation of execution times, we apply clamping operation so
not. We simply obtain a smaller power reduction with a lamggr. that the generated value does not exceed WCET.

Figure 8 where INS with the second largest processor utilization [2]
consumes relatively low average power when LPFPS is used. In-
vestigation of the application reveals the reason. In INS, the proces-
sor utilization (0.736) is occupied mostly by one task (0.472) and
the remaining utilization is spread over other tasks (in the range be-
tween 0.02 and 0.1). Furthermore, the period of that task (2500) is
the shortest and much shorter than those of other tasks (in the range
between 40000 and 1250000), meaning that it has the highest rate [5]
and thus has the highest priority under rate monotonic priority as-
signment. Therefore, in INS, the run queue is empty for most of the [6]
time and the processor has many chances to run at lowered clock
frequency and supply voltage for a heavily loaded task thereby ob-
taining a larger power gain with LPFPS than other applications,
where the utilization is more equally distributed.

3]

(4]

(7]

[8

5 Conclusion

In this paper, we propose a power-efficient version of fixed priority
scheduling, which is widely used in hard real-time system design. [10]
Our method obtains a power reduction for a processor by exploiting
the slack times inherent in the system and those arising from vari-
ations of execution times of task instances. We present a run-time4
mechanism to use these slack times efficiently for power reduction
for a processor that supports a power-down mode and can changg;
the clock frequency and the supply voltage dynamically. For com-
putation of the ratio of the processor’s speed, two solutions are pro-
posed and compared. The heuristic solution, which is simple and [13]
amenable to implementation issues, is shown to be always safe and
accurate enough to be used in a broad range of applications. Ex- 14]
perimental results show that the proposed method obtains a powerI
reduction across several applications.

The heuristic solution to compute the processor’s speed ratio [15]
may fail to obtain the full potential of power saving when the tim-
ing parameters associated with the system are comparable to the
delay exhibited when the processor’s speed is changed (see Figurém]
7), though it still guarantees safeness. In this case, we can use the
optimal solution at the cost of increased execution time and power ;7]
consumption of the scheduler; this approach needs a trade-off anal-
ysis, which is included in our future work.

[9

[18]
Appendix (19]
Here we present the proof to Theorem 1. Get- Ej = R, and
ta —tc =1t;. Forrpye > ropt, we need to prove [20]
R _ —Pti+2+,/pH?—4p(ti —R) [21]
1 2 22]
provided thatgpt > 0. It follows that
[23]
- P27 —dp(t —Ry)
Re g V2 , @)
1] 2 2
and squaring both sides gives
(R—1)2
2 >0, 8
e ®)
which is true. O
References

[1] C.L.LiuandJ.W. Layland, “Scheduling algorithms for multiprogramming in a
hard real time environment]. ACM vol. 20, pp. 46—61, Jan. 1973.

J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm:
exact characterization and average case behavidpfdan. IEEE Real-Time Sys-
tems Symposiurpp. 166-171, Dec. 1989.

M. Joseph and P. Pandya, “Finding response times in a real-time system,”
Computer J.vol. 29, pp. 390-395, Oct. 1986.

N. Audsley, A. Burns, M. Richardson, and A. Wellings, “Hard real-time schedul-
ing: The deadline-monotonic approach,”Rnoc. IEEE Workshop on Real-Time
Operating Systems and Softwape. 133-137, May 1991.

C. Park and A. C. Shaw, “Experiments with a program timing tool based on
source-level timing schemdEEE Computerpp. 48-57, May 1991.

S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park, and C. Kim,
“An accurate worst case timing analysis for RISC processorsProt. IEEE
Real-Time Systems Symposijpmp. 97-108, Dec. 1994.

Y. S. Li, S. Malik, and A. Wolfe, “Performance estimation of embedded soft-
ware with instruction cache modeling,” Proc. Int'l Conf. on Computer Aided
Design pp. 380-387, Nov. 1995.

R. Ernst and W. Ye, “Embedded program timing analysis based on path clus-
tering and architecture classification,” Rroc. Int'l Conf. on Computer Aided
Design pp. 598-604, Nov. 1997.

] S. Gary, “PowerPC: A microprocessor for portable computéEEE Design &

Test of Computergpp. 14-23, Dec. 1994.

M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive system
shutdown and other architectural techniques for energy efficient programmable
computation,""EEE Trans. on VLSI Systenwl. 4, pp. 42-55, Mar. 1996.

C. Hwang and A. Wu, “A predictive system shutdown method for energy saving
of event-driven computation,” iProc. Int'l Conf. on Computer Aided Design
pp. 28-32, Nov. 1997.

M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced CPU
energy,” inProc. USENIX Symposium on Operating Systems Design and Imple-
mentation pp. 13-23, 1994.

K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for dynamic
speed-setting of a low-power CPU,” Rroc. ACM Int'| Conf. on Mobile Com-
puting and Networkingpp. 13-25, Nov. 1995.

F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU en-
ergy,” in Proc. IEEE Annual Foundations of Computer Sciengme. 374-382,
1995.

I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power op-
timization of variable voltage core-based systems,Pioc. Design Automat.
Conf, pp. 176-181, June 1998.

T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically vari-
able voltage processors,” iaroc. Int'l Symposium on Low Power Electronics
and Designpp. 197-202, Aug. 1998.

D. Katcher, H. Arakawa, and J. Strosnider, “Engineering and analysis of fixed
priority schedulers,1EEE Trans. on Software Engeol. 19, pp. 920-934, Sept.
1993.

A. Burns, K. Tindell, and A. Wellings, “Effective analysis for engineering real-
time fixed priority schedulers|EEE Trans. on Software Engrol. 21, pp. 475—
480, May 1995.

T. Burd and R. Brodersen, “Processor design for portable systdms;hal of
VLSI Signal Processingol. 13, pp. 203-222, Aug. 1996.

T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of dynamic
voltage scaling algorithms,” iRroc. Int'| Symposium on Low Power Electronics
and Designpp. 76-81, Aug. 1998.

C. Locke, D. Vogel, and T. Mesler, “Building a predictable avionics platform in
Ada: a case study,” iRroc. IEEE Real-Time Systems SymposiDet. 1991.

J. Liu, J. Redondo, Z. Deng, T. Tia, R. Bettati, A. Silberman, M. Storch, R. Ha,
and W. Shih, “PERTS: A prototyping environment for real-time systems,” Tech.
Rep. UIUCDCS-R-93-1802, University of lllinois, 1993.

N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, “Visual assessment
of a real-time system design: a case study on a CNC controlleRton. IEEE
Real-Time Systems Symposjec. 1996.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

