
Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems

Youngsoo Shin and Kiyoung Choi
School of Electrical Engineering

Seoul National University
Seoul 151-742, Korea

Abstract
Power efficient design of real-time systems based on programmable
processors becomes more important as system functionality is in-
creasingly realized through software. This paper presents a power-
efficient version of a widely used fixed priority scheduling method.
The method yields a power reduction by exploiting slack times,
both those inherent in the system schedule and those arising from
variations of execution times. The proposed run-time mechanism
is simple enough to be implemented in most kernels. Experimental
results show that the proposed scheduling method obtains a signif-
icant power reduction across several kinds of applications.

1 Introduction
Recently, power consumption has been a critical design constraint
in the design of digital systems due to widely used portable sys-
tems such as cellular phones and PDAs, which require low power
consumption with high speed and complex functionality. The de-
sign of such systems often involves reprogrammable processors
such as microprocessors, microcontrollers, and DSPs in the form
of off-the-shelf components or cores. Furthermore, an increasing
amount of system functionality tends to be realized through soft-
ware, which is leveraged by the high performance of modern pro-
cessors. As a consequence, reduction of the power consumption
of processors is important for the power-efficient design of such
systems.

Broadly, there are two kinds of methods to reduce power con-
sumption of processors. The first is to bring a processor into a
power-down mode, where only certain parts of the processor such
as the clock generation and timer circuits are kept running when the
processor is in an idle state. Most power-down modes have a trade-
off between the amount of power saving and the latency incurred
during mode change. Therefore, for an application where latency
cannot be tolerated, such as for a real-time system, the applicability
of power-down may be restricted.

Another method is to dynamically change the speed of a pro-
cessor by varying the clock frequency along with the supply volt-
age when the required performance on the processor is lower than
the maximum performance. A significant power reduction can be
obtained by this method because the dynamic power of a CMOS
circuit, which is a dominant source of power dissipation in a digi-
tal CMOS circuit, is quadratically dependent on the supply voltage.
Since there is a delay overhead along with an area requirement on
the processor and a power overhead in dynamically changing the

Figure 1: The ratio between BCET and WCET for a number of
applications.

speed of the processor, great care must be taken when employing
this method in the design of a real-time system.

In this paper, we investigate power-conscious scheduling of
hard real-time systems. In particular, we focus our attention on
fixed priority scheduling and propose its power-efficient version,
which we callLow Power Fixed Priority Scheduling(LPFPS). Our
approach is built upon two observations regarding the behavior of a
real-time system. The first is that the dynamics of a hard real-time
system vary from time to time. Specifically, we need a handful of
timing parameters for each of the tasks making up the system, to
analyze the system for its schedulability [1, 2, 3, 4]. One of those
parameters is theworst-case execution time(WCET), which can be
obtained through static analysis [5, 6, 7], profiling, or direct mea-
surement. However, during operation of the system, the execution
time of each task frequently deviates from its WCET, sometimes
by a large amount. This is because the possibility of a task running
at its WCET is usually very low, even though a real-time system
designer must use WCET to guarantee the temporal requirements.
As examples of this variation in execution time, Figure 1 shows
the ratio between the best-case execution time (BCET) and WCET
obtained from [8] for a number of applications.

The second observation is that, in fixed priority scheduling,
there are usually some idle time intervals even when the system
just meets the schedulability and tasks run at their WCETs [1, 2, 3].
The actual number and length of these idle time intervals increase
when some of the tasks run faster than their WCET, which was our
first observation.

In LPFPS, we exploit both execution time variation and idle
time intervals to obtain a power saving for a processor while en-
suring that all tasks adhere to their timing constraints. To obtain
the maximum power saving, we dynamically vary the speed of the
processor whenever possible, and bring the processor to a power-
down mode when it is predicted to be idle for a sufficiently long
interval. Specifically, if there is only one task eligible for execu-
tion and its required execution time is less than its allowable time
frame, the clock frequency of the processor along with the supply
voltage is lowered. If it is detected that there is no task eligible
for execution until the next arrival of a task, the processor enters
power-down mode. Both these mechanisms are made possible by a
slight modification of the conventional fixed priority scheduler.

The remainder of the paper is organized as follows. In the next
section, we briefly review related work, which focuses on the re-

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

duction of power consumption of processors, and then discuss the
motivation of LPFPS. In section 3, we introduce LPFPS and ex-
plain the advantages of the proposed scheme. In section 4, we
present experimental results for a number of real-time system ex-
amples, and draw conclusions in section 5.

2 Related Work and Motivation
2.1 Power Down Modes

In most embedded systems, a processor often waits for some events
from its environment, wasting its power. To reduce the waste, mod-
ern processors are often equipped with various levels of power
modes. In the case of the PowerPC 603 processor [9], there are
four power modes, which can be selected by setting the appropri-
ate control bits in a register. Each mode is associated with a level
of power saving and delay overhead. For example, insleep mode,
where only the PLL and clock are kept running, power consump-
tion drops to 5% of full power mode with about 10 clock cycles
delay to return to full power mode.

In the conventional approach employed in most portable com-
puters, a processor enters power-down mode after it stays in an idle
state for a predefined time interval. Since the processor still wastes
its energy while in the idle state, this approach fails to obtain a large
reduction in energy when the idle interval occurs intermittently and
its length is short. In [10, 11], the length of the next idle period
is predicted based on a history of processor usage. The predicted
value becomes the metric to determine whether it is beneficial to
enter power-down modes or not. This method focuses on event-
driven applications such as user-interfaces because latency, which
arises when the predicted value does not match the actual value,
can be tolerated. However, we need an exact value instead of a
predicted value for the next idle period when we are to apply the
power-down modes in a hard real-time system, which is possible in
the LPFPS.

2.2 Scheduling on a Variable Speed Processor

A scheduling method to reduce power consumption by adjusting
the clock speed along with the supply voltage of a processor was
first proposed in [12] and was later extended in [13]. The basic
method is that short-term processor usage is predicted from a his-
tory of processor utilization. From the predicted value, the speed
of the processor is set to the appropriate value. Because latency
exists when the prediction fails, these methods cannot be applied to
real-time systems.

Static scheduling methods for real-time systems were proposed
in [14, 15, 16]. The underlying model of their approaches is a set
of tasks with a single period. When periods of tasks are differ-
ent from each other, which is the conventional model employed in
real-time system design, we can transform a problem by taking the
LCM (Least Common Multiple) of tasks’ periods as a single pe-
riod and treating each instance of the same task occurring within
the LCM as a different task. This can cause a practical problem
because we require excessively large memory space to save a stat-
ically computed schedule, whereas the size of memory is one of
the design constraints in a typical embedded system. Furthermore,
LCM becomes excessively large when periods of tasks are mutu-
ally prime. Another problem is that a schedule is computed based
on the assumption that a fixed amount of execution time is required
for each task. As a result, the full potential of power saving cannot
be obtained when variations of execution time exist.

A dynamic scheduling method, called Average Rate Heuristic
(AVR), was also proposed in [14] with the same model as in the
static version. Associated with each task is itsaverage-rate require-
ment, which is defined by dividing its required number of cycles by

Table 1: An example task set

Ti Di Ci Priority
τ1 50 50 10 1
τ2 80 80 20 2
τ3 100 100 40 3

Figure 2: A schedule for the example task set. (a) When tasks
always run at their WCET. (b) When the execution times of the
first three instances ofτ2 and the first instance ofτ3 are smaller
than their WCETs, respectively.

its time frame (deadline� arrival time). At any timet, the AVR sets
the speed of a processor to the sum of average-rate requirements of
tasks whose time frame includest. Among available tasks, AVR
resorts to the earliest deadline policy [1] to choose a task. Because
average-rate requirements are computed statically with fixed num-
bers of execution cycles, the same problem occurs when variations
of execution time exist.

2.3 Motivation

Consider the three tasks given in Table 1. Rate monotonic prior-
ity assignment is a natural choice because periods (Ti) are equal to
deadlines (Di). Priorities are assigned in row order as shown in the
fifth column of the table1. Assume all tasks are released simultane-
ously at time 0. A typical schedule, which assumes that tasks run
at their WCETs (Ci), is shown in Figure 2(a). Note that this system
just meets its schedulability. For example, ifτ2 were to take a little
longer to complete,τ3 would miss its deadline at time 100. Even
though the system is tightly constructed, there are still some idle
time intervals, as can be seen in the figure. At time 160 in Figure
2(a), when the request forτ2 arrives, the run-time scheduler knows
that there will be no requests for any tasks until time 200, which
is the time when requests forτ1 and τ3 will arrive. This knowl-
edge can be derived by examining run-time queues. We will elab-
orate on the details in the next section. As a consequence, we can
save power by reducing the speed of the processor by lowering the
clock frequency then lowering the supply voltage. When some task
instances are completed earlier than their WCET, we have more
chances to apply the same mechanism. For the example of Figure
2(b), we can slow down the processor at time 50 because the first
instances ofτ2 andτ3 complete their execution before the second
request forτ1 arrives. Because the execution time of each task fre-
quently deviates from its WCET during the operation of the system,
we have many chances to slow down the processor as shown in the
figure.

The second possibility for power saving occurs when there are
no tasks eligible for execution. At time 80 in Figure 2(a), we should

1We assume that a priority is higher when the value of the priority is lower, a
convention usually adopted in real-time scheduling.

maintain the processor at its full speed because there will be re-
quests forτ1 andτ3 at time 100, which is the same time whenτ2
will complete its execution at its WCET. Ifτ2 completes its execu-
tion earlier at time 90 as shown in Figure 2(b), the processor can
enter the power-down mode with timer set to the time 100. This is
again possible because the run-time scheduler has exact knowledge
that the processor will be idle until time 100. Another chance for
applying power-down modes occurs in a slightly different situation.
At time 160 in Figure 2(a), we can reduce the speed of the proces-
sor by half2 because the available time forτ2 is twice as large as its
WCET. Even with the lowered speed, ifτ2 completes its execution
earlier, meaning that it runs faster than its WCET, the processor can
enter the power-down mode.

3 Low Power Fixed Priority Scheduling
3.1 Fixed Priority Preemptive Scheduling

In a typical real-time system, there are many periodic tasks that
share hardware resources. To ensure that each task satisfies its tim-
ing constraints, the execution of tasks should be coordinated in a
controlled manner. This is often done via fixed priority schedul-
ing. Fixed priority scheduling has several advantages over other
scheduling schemes. It is quite simple to implement in most ker-
nels. Also, many analytical methods are available to determine
whether the system is schedulable. Rate monotonic scheduling
(RMS) [1] is the first scheduling scheme that falls into this cate-
gory. It assigns a higher priority to a task with a shorter period or
with a higher execution rate. It is proved to be optimal in the sense
that if a given task set fails to be scheduled by RMS, it cannot be
scheduled by any fixed priority scheduling. Although RMS is con-
strained by a set of assumptions [1], recent research has relaxed
these constraints in several ways. For example, deadline mono-
tonic priority assignment [4] can be used when the deadlines are
different from the periods. Earliest deadline first (EDF) scheduling
[1], which is an optimal dynamic priority scheduling, has an appar-
ent dominance over RMS because it can schedule a task set if and
only if the processor utilization is lower than or equal to 1, meaning
that a schedule with zero slack time is possible. However, RMS by
itself is of great practical importance [2].

Once the priorities are assigned to each task, the scheduler en-
sures that higher priority tasks always take the processor over lower
priority ones. This is maintained by preempting lower priority tasks
when higher priority ones request the processor, which is called a
context switch.

The basic mechanism of the scheduler in the kernel proposed
in this paper is based on the implementation model in [17, 18]. The
scheduler maintains two queues, one calledrun queueand the other
calleddelay queue. The run queue holds tasks that are waiting to
run and the tasks in the queue are ordered by priority. The task
that is running on the processor is called theactive task. The delay
queue holds tasks that have already run in their period and are wait-
ing for their next period to start again. They are ordered by the time
their release is due. When the scheduler is invoked, it searches the
delay queue to see if any tasks should be moved to the run queue.
If some of the tasks in the delay queue are moved to the run queue,
the scheduler compares the active task to the head of the run queue.
If the priority of the active task is lower, a context switch occurs.
The process is illustrated in the following example using the task
set in Table 1.

Example 1At time 0, when the requests for all tasks arrive, tasks
are put in the run queue in priority order. Becauseτ1 has the high-
est priority, it becomes the active task and immediately starts ex-

2At this moment, we ignore the delay to vary the speed of the processor for
simplicity.

Figure 3: The status of queues for the task set example (a) at time
0 and (b) at time 50.

ecution. Figure 3(a) shows the status of the queues. At time 50,
when the second request forτ1 arrives,τ3 is preempted because it
has a lower priority thanτ1 (Figure 2(a)). It goes to the run queue
and τ1 starts execution as the active task. Figure 3(b) shows the
status of the queues.

3.2 Overview

As described in the previous subsection, the fixed priority preemp-
tive scheduler in the kernel can be implemented easily using run-
time queues. Because most information about the tasks is available
through queues and LPFPS depends on this information, the sched-
uler for LPFPS can be implemented with a slight modification of
the conventional scheduler.

Figure 4 shows pseudo code for the LPFPS scheduler. The code
between L5 and L11 conforms to the behavior of the conventional
scheduler explained in the previous subsection. LPFPS works when
the run queue is empty (L12). This is further divided into two cases:
one when all tasks have completed their executions in each of their
periods and are waiting for their next arrival times while residing in
the delay queue (L13) and the other when all tasksexceptthe active
task have completed their execution (L16). In the first case, we can
bring the processor into a power-down mode because there are no
tasks that need it. Furthermore, we know how long the processor
will be idle because the task at the head of the delay queue is the
first one that will require the processor (recall that the delay queue
is ordered by the tasks’ release times). This is the key ingredient
of LPFPS. Thus, we set a timer to expire at the next release time of
the head of the delay queue and then put the processor into power-
down mode. Because, there is a delay overhead to wake up from
power-down mode, the timer actually should be set to expire earlier
by that amount of delay (L14).

In the second case, we can control the speed of the processor
because there is just one task (the active task) to execute and the
processor will be available solely for that task until the release time
of the task at the head of the delay queue. Note that instead of
changing the speed of the processor to adopt to the computational
requirements imposed on the processor, we can keep the proceesor
at the maximum speed and then bring it into a power-down mode.
However, it can be shown that the former method obtains a more
power saving because the dynamic power of a CMOS circuit is
quadratically dependent on the supply voltage. The amount of time
that will be needed by the active task equals its WCET less its al-
ready executed time3. Note that we assume that the execution of
the whole task takes its WCET because at the time of scheduling
we have no information whether it will take less than WCET or not.
When the active task completes its execution, the processor should
return to the full speed to prepare for the next arrival of tasks (L1
through L4). This involves a delay for raising the supply voltage
and subsequently the clock frequency. Thus, the active task actu-
ally should complete its execution ahead by an amount equal to
this delay. Considering all these factors, we obtain the ratio of the

3In preemptive scheduling, a task is preempted when a request for a task with
higher priority arrives during its execution (L8). When this occurs, we get the executed
time of the task from the timer (L9), which is supplied by most processors used in real-
time systems.

L1: if currentfrequency< maximumfrequencythen
L2: increase the clock frequency and the supply voltage

to the maximum value;

L3: exit;

L4: end if
L5: while delayqueue.head.releasetime� currenttime do
L6: move delayqueue.head to the runqueue;

L7: end do
L8: if run queue.head.priority> active task.prioritythen
L9: set the activetask.executedtime;

L10: context switch;

L11: end if
L12: if run queue is emptythen
L13: if active task is nullthen
L14: set timer to (delayqueue.head.releasetime� wakeupdelay);

L15: enter power down mode;

L16: else
L17: speedratio =Computespeedratio();

L18: find a minimum allowable

clock frequency� speedratio � max frequency;

L19: adjust the clock frequency along with the supply voltage;

L20: end if
L21: end if

Figure 4: Pseudo code of the LPFPS scheduler.

Figure 5: The status of queues and the information associated with
each task (a) at time 160 and (b) at time 180.

processor speed needed for the active task to the full speed (L17),
which we will elaborate in detail in the next subsection. From the
computed ratio, we find an appropriate clock frequency (L18). In
practice, only discrete levels of frequency are available, and among
them we should select a frequency larger than or equal to the com-
puted one to guarantee the timing constraints. All these processes
are illustrated in the following example with the same task set as in
Example 1.

Example 2 At time 160 in Figure 2(a), when a request forτ2 ar-
rives, the status of queues and the information associated with each
task are as shown in Figure 5(a). For simplicity of illustration, as-
sume that the delay required to wake up from the power-down mode
and that required to change the speed of a processor are all 0. Be-
cause the run queue is empty with the active task ofτ2, the sched-
uler computes the desired ratio of speed that yields20�0

200�160 = 0:5
(see L17 of Figure 4). Thus, we can slow down the processor by
half. Now, assume that the instance ofτ2 started at time 160 exe-
cutes at the lowered speed, but completes its execution at time 180
instead of 200, meaning that it executes in half its WCET. At this
time, the status of queues becomes that of Figure 5(b). Because all
tasks reside in the delay queue, the scheduler brings the processor
into a power-down mode (see L14 and L15 of Figure 4) with the
timer set to the next arrival time ofτ1 (200).

Figure 6: Computation of the speed ratio. (a) An instance when
the processor’s speed can be changed, (b) Optimal solution, and (c)
Heuristic solution.

3.3 Computation of the Ratio of Processor’s Speed

Because it takes time to change the clock frequency and the supply
voltage, we should take this delay into account when computing the
processor’s speed ratio. We present two methods to compute the
ratio, an optimal but complex solution and a heuristic but simple
solution, and show that the latter one is always safe and is accurate
enough for many practical situations. Figure 6(a) shows an instance
when we can change the processor’s speed, that is, the active task
alone is eligible for execution. Before we explain the solutions in
detail, we introduce the notations we use in the solutions.

� The active task is denoted byτi . Ci is its WCET andEi de-
notes the time for which it has already executed.

� ta is the next arrival time of the task at the head of the delay
queue andtc is the current time.

� ρ is the rate of changing the speed ratio of the processor. For
example, if the clock frequency can be raised from 30 MHz
to 100 MHz (full speed) in 10µs (including the delay to raise
the supply voltage),ρ = 0:07=µs.

The optimal (or exact) desired ratio of speeds, denoted byropt,
can be computed with the help of Figure 6(b) and with the knowl-
edge that the processor can still execute operations while its speed
is being changed. Because the area under the curve should be equal
to the required execution time,Ci �Ei , we have

(ta� tc)ropt+
(1� ropt)

2

ρ
=Ci �Ei : (1)

Solving forropt gives

ropt =
�ρ(ta� tc)+2+

p
ρ2(ta� tc)2�4ρ(ta� tc�Ci +Ei)

2
:

(2)
The equation (2) gives an accurate ratio provided that the speed is
changed linearly with time. However, it has some practical prob-
lems. It is computationally expensive (compared to the execution
time of the conventional scheduler, see L5 through L11 of Figure
4), which adds a burden to the run-time scheduler. Note that the
overhead of the scheduler should be kept as small as possible so
as not to violate the schedulability of the system [17, 18]. Further-
more, an increase in the execution time of the scheduler translates
into increased power consumption.

To overcome the problems, we resort to a straightforward heuris-
tic solution, given by

rheu=
Ci�Ei

ta� tc
; (3)

Figure 7: Optimal ratio versus heuristic ratio over time intervals.

which is simply the solution built upon the assumption that the de-
lay is negligible (see Figure 6(c)). To userheu in practice, it should
be guaranteed that it has asafenessproperty in the sense thatrheu
is always larger than or equal toropt, so that the active task (τi) can
complete its execution beforeta. It should also haveaccuracyin
that it should be close toropt in practical situations4. The safeness
is guaranteed by the following theorem. The proof can be found in
the Appendix.

Theorem 1 rheu is always larger than or equal to ropt provided
that ta > tc and ta� tc >Ci �Ei.

We computeropt with ρ = 0:07=µs while we varyta� tc from
50µs to 3000µs for each ofrheu from 0.1 to 0.9. As can be seen in
Figure 7,rheuclosely matchesropt except for small values ofta�tc
and for lowrheu. Thus, we can obtain a sufficient power reduction
while guaranteeing real-time constraints using equation (3) instead
of equation (2) in a broad range of situations.

4 Experimental Results
To evaluate the LPFPS, we simulate several examples and compare
the average power consumed with LPFPS against that consumed
with fixed priority scheduling (FPS). In FPS, we assume that the
processor executes a busy wait loop, which consists of NOP in-
structions, when it is not being occupied by any tasks. The average
power consumed by a NOP instruction is assumed to be 20% of that
consumed by a typical instruction [19]. The delay overhead to vary
the clock frequency and the supply voltage is assumed to follow
the model in [20], where the clock is generated by a ring oscillator
driven by the operating voltage resulting in the worst-case delay of
10 µs. The maximum clock frequency and the supply voltage of
the processor, which is based on the ARM8 microprocessor core, is
100 MHz and 3.3 V, respectively. The clock frequency can be var-
ied from 100 MHz down to 8 MHz with a step size of 1 MHz. We
assume that the average power consumed by the processor when it
is in power-down mode is 5% of the full power mode and that it
takes 10 clock cycles to return from the power-down mode to the
full power mode [19]. We make all these assumptions in order to
reflect implementation issues thereby enabling a fair comparison
between FPS and LPFPS.

We collected four applications for experiments: an Avionics
task set [21], an INS (Inertial Navigation System) [18], a flight
control system [22], and a CNC (Computerized Numerical Con-
trol) machine controller [23]. The first three examples are mission
critical applications and the last one is a digital controller for a CNC
machine, which is an automatic machining tool that is used to pro-
duce user-defined workpieces. All the examples are summarized
in Table 2 where we show the number of tasks in each application
and the range of WCETs in the unit ofµs. Note that the worst-case

4Safeness is a mandatory condition in a hard-real time system whereas accuracy is
not. We simply obtain a smaller power reduction with a largerrheu.

Table 2: Task sets for experiments

Applications # tasks Range of WCETs (µs)
Avionics 17 1,000 � 9,000

INS 6 1,180 � 100,280
Flight control 6 10,000 � 60,000

CNC 8 35 � 720

Figure 8: Simulation results of (a) Avionics, (b) INS, (c) Flight
control, and (d) CNC.

delay to vary the clock frequency and the supply voltage (10µs)
is negligible compared to the WCETs except for CNC. We use the
heuristic solution (equation (3)) to compute the ratio of processor’s
speed. Because the statistics of the actual execution times of in-
stances of the tasks comprising each application are not available,
we assume that the execution time of each instance of a task is
drawn from a random Gaussian distribution with mean, denoted by
m, and standard deviation, denoted byσ, given by5

m=
BCET+WCET

2
; (4)

σ =
WCET�BCET

6
: (5)

Figure 8 shows the simulation results when we vary the BCET
from 10% to 100% of the WCET for each application. Even when
the BCET equals the WCET, which is the case when tasks always
execute in their WCET, LPFPS obtains a higher power reduction
than FPS. This is the result ofdynamically varying the clock fre-
quency and the supply voltage when the active task alone is eligible
for execution. We can observe from the figure that the power gain
increases as the BCET gets smaller. This matches the motivation
of this paper illustrated in section 1 and 2: the chance both for dy-
namically varying the clock frequency and the supply voltage and
for bringing the processor into a power-down mode increases as the
variation of execution times increases.

Among the applications, the LPFPS obtains the most power
gain (up to 62% power reduction) for INS, as shown in Figure 8.
This is another interesting fact observed with LPFPS. For FPS, the
average power consumption is proportional to processor utilization,
U = ∑i

Ci
Ti

. However, it is not true for LPFPS. This is evident from

5In a random Gaussian distribution, the probability that a random variablex takes
on a value in the interval[m� 3σ;m+ 3σ] is approximately 99.7%. Thus, if we set
WCET to be equal tom+ 3σ, almost all generated values fall between BCET and
WCET. Letm+3σ = WCET and solving forσ with the help of equation (4), we get
equation (5). After the generation of execution times, we apply clamping operation so
that the generated value does not exceed WCET.

Figure 8 where INS with the second largest processor utilization
consumes relatively low average power when LPFPS is used. In-
vestigation of the application reveals the reason. In INS, the proces-
sor utilization (0.736) is occupied mostly by one task (0.472) and
the remaining utilization is spread over other tasks (in the range be-
tween 0.02 and 0.1). Furthermore, the period of that task (2500) is
the shortest and much shorter than those of other tasks (in the range
between 40000 and 1250000), meaning that it has the highest rate
and thus has the highest priority under rate monotonic priority as-
signment. Therefore, in INS, the run queue is empty for most of the
time and the processor has many chances to run at lowered clock
frequency and supply voltage for a heavily loaded task thereby ob-
taining a larger power gain with LPFPS than other applications,
where the utilization is more equally distributed.

5 Conclusion
In this paper, we propose a power-efficient version of fixed priority
scheduling, which is widely used in hard real-time system design.
Our method obtains a power reduction for a processor by exploiting
the slack times inherent in the system and those arising from vari-
ations of execution times of task instances. We present a run-time
mechanism to use these slack times efficiently for power reduction
for a processor that supports a power-down mode and can change
the clock frequency and the supply voltage dynamically. For com-
putation of the ratio of the processor’s speed, two solutions are pro-
posed and compared. The heuristic solution, which is simple and
amenable to implementation issues, is shown to be always safe and
accurate enough to be used in a broad range of applications. Ex-
perimental results show that the proposed method obtains a power
reduction across several applications.

The heuristic solution to compute the processor’s speed ratio
may fail to obtain the full potential of power saving when the tim-
ing parameters associated with the system are comparable to the
delay exhibited when the processor’s speed is changed (see Figure
7), though it still guarantees safeness. In this case, we can use the
optimal solution at the cost of increased execution time and power
consumption of the scheduler; this approach needs a trade-off anal-
ysis, which is included in our future work.

Appendix
Here we present the proof to Theorem 1. LetCi �Ei = Ri and
ta� tc = tI . For rhue� ropt, we need to prove

Ri

tI
�
�ρtI +2+

q
ρ2t2

I �4ρ(tI �Ri)

2
; (6)

provided thatropt > 0. It follows that

Ri

tI
+

ρtI
2
�1�

q
ρ2t2

I �4ρ(tI �Ri)

2
; (7)

and squaring both sides gives

(Ri � tI)2

t2
I

� 0; (8)

which is true. 2

References

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard real time environment,”J. ACM, vol. 20, pp. 46–61, Jan. 1973.

[2] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm:
exact characterization and average case behavior,” inProc. IEEE Real-Time Sys-
tems Symposium, pp. 166–171, Dec. 1989.

[3] M. Joseph and P. Pandya, “Finding response times in a real-time system,”The
Computer J., vol. 29, pp. 390–395, Oct. 1986.

[4] N. Audsley, A. Burns, M. Richardson, and A. Wellings, “Hard real-time schedul-
ing: The deadline-monotonic approach,” inProc. IEEE Workshop on Real-Time
Operating Systems and Software, pp. 133–137, May 1991.

[5] C. Park and A. C. Shaw, “Experiments with a program timing tool based on
source-level timing schema,”IEEE Computer, pp. 48–57, May 1991.

[6] S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park, and C. Kim,
“An accurate worst case timing analysis for RISC processors,” inProc. IEEE
Real-Time Systems Symposium, pp. 97–108, Dec. 1994.

[7] Y. S. Li, S. Malik, and A. Wolfe, “Performance estimation of embedded soft-
ware with instruction cache modeling,” inProc. Int’l Conf. on Computer Aided
Design, pp. 380–387, Nov. 1995.

[8] R. Ernst and W. Ye, “Embedded program timing analysis based on path clus-
tering and architecture classification,” inProc. Int’l Conf. on Computer Aided
Design, pp. 598–604, Nov. 1997.

[9] S. Gary, “PowerPC: A microprocessor for portable computers,”IEEE Design &
Test of Computers, pp. 14–23, Dec. 1994.

[10] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive system
shutdown and other architectural techniques for energy efficient programmable
computation,”IEEE Trans. on VLSI Systems, vol. 4, pp. 42–55, Mar. 1996.

[11] C. Hwang and A. Wu, “A predictive system shutdown method for energy saving
of event-driven computation,” inProc. Int’l Conf. on Computer Aided Design,
pp. 28–32, Nov. 1997.

[12] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced CPU
energy,” inProc. USENIX Symposium on Operating Systems Design and Imple-
mentation, pp. 13–23, 1994.

[13] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for dynamic
speed-setting of a low-power CPU,” inProc. ACM Int’l Conf. on Mobile Com-
puting and Networking, pp. 13–25, Nov. 1995.

[14] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU en-
ergy,” in Proc. IEEE Annual Foundations of Computer Science, pp. 374–382,
1995.

[15] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power op-
timization of variable voltage core-based systems,” inProc. Design Automat.
Conf., pp. 176–181, June 1998.

[16] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically vari-
able voltage processors,” inProc. Int’l Symposium on Low Power Electronics
and Design, pp. 197–202, Aug. 1998.

[17] D. Katcher, H. Arakawa, and J. Strosnider, “Engineering and analysis of fixed
priority schedulers,”IEEE Trans. on Software Eng., vol. 19, pp. 920–934, Sept.
1993.

[18] A. Burns, K. Tindell, and A. Wellings, “Effective analysis for engineering real-
time fixed priority schedulers,”IEEE Trans. on Software Eng., vol. 21, pp. 475–
480, May 1995.

[19] T. Burd and R. Brodersen, “Processor design for portable systems,”Journal of
VLSI Signal Processing, vol. 13, pp. 203–222, Aug. 1996.

[20] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of dynamic
voltage scaling algorithms,” inProc. Int’l Symposium on Low Power Electronics
and Design, pp. 76–81, Aug. 1998.

[21] C. Locke, D. Vogel, and T. Mesler, “Building a predictable avionics platform in
Ada: a case study,” inProc. IEEE Real-Time Systems Symposium, Dec. 1991.

[22] J. Liu, J. Redondo, Z. Deng, T. Tia, R. Bettati, A. Silberman, M. Storch, R. Ha,
and W. Shih, “PERTS: A prototyping environment for real-time systems,” Tech.
Rep. UIUCDCS-R-93-1802, University of Illinois, 1993.

[23] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin, “Visual assessment
of a real-time system design: a case study on a CNC controller,” inProc. IEEE
Real-Time Systems Symposium, Dec. 1996.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

