
Crosstalk Minimization using Wire Perturbations �

Prashant Saxena
Strategic CAD Labs

Intel Corporation
Hillsboro, OR 97124

psaxena@ichips.intel.com

C. L. Liu
Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan, R.O.C.
liucl@nthu.edu.tw

Abstract

We study the variation of the crosstalk in a net and its neighbors
when one of its trunks is perturbed, showing that the trunk’s per-
turbation range can be efficiently divided into subintervals having
monotonic or unimodal crosstalk variation. We can therefore de-
termine the optimum trunk location without solving any non-linear
equations. Using this, we construct and experimentally verify an
algorithm to minimize the peak net crosstalk in a gridless channel.

1 Introduction

With device geometry scaling, the crosstalk due to capacitive cou-
pling between adjacent nets is becoming an increasingly major con-
cern in high speed designs ([1]). Crosstalk minimization can be at-
tempted either while routing the nets or as a postprocessing phase.
Much of the previous work on this problem has taken the former
approach. However, since the crosstalk in a wire depends on the
relative positions of its neighbors (which may not yet have been
put in place at the time the wire is being routed), every crosstalk-
aware router is forced to use some rough estimate for the expected
crosstalk. In contrast, although a postprocessing algorithm has less
flexibility in moving the wires around, it can use accurate crosstalk
measurements to drive its respacing. Thus, there is often scope
for further crosstalk minimization even in routings produced by
crosstalk-aware routers. We present a gridless postprocessing al-
gorithm to minimize the peak crosstalk in the nets in a channel
by perturbing their horizontal segments. Crosstalk-driven postpro-
cessing algorithms for channels have also been presented in [2, 4].

In [2], the spacing between tightly coupled wires is increased
by modeling crosstalk violations between nets as repulsive forces
between the horizontal segments of those nets. This is formulated
as an Iterative Parameterized Linear Program (IPLP) to respace the
wires. However, as mentioned by the authors, this formulation can-
not directly handle the coupling between the vertical segments of
the wires. (Instead, the vertical coupled lengths are incorporated
into the objective function.) Consider the example in Figure 1 hav-
ing crosstalk violations in the two nets initially. As a result, the
IPLP increases the separation between the horizontal segments of
these nets. However, the decrease in the coupling between their
horizontal segments may be offset by the increased coupling be-
tween them due to the increase in their vertical coupled length on
the left, causing their final crosstalk to exceed their initial crosstalk.

�This research was performed while the authors were with the Department of Com-
puter Science at the University of Illinois at Urbana–Champaign, supported in part by
the National Science Foundation under grant MIP-9612184.

In contrast, our formulation keeps track of the exact crosstalk in
each net (including that contributed by vertical segments). Further-
more, we guarantee that the crosstalk characteristics of the nets in
the channel never deteriorate as a result of our perturbations.

: Region with large coupling

Figure 1: IPLP-based respacing may not always work.

The algorithm presented in [4] attempts to minimize the crosstalk
in the nets in a channel by permuting its tracks. Therefore, it is
restricted to gridded channels. It formulates the problem as an In-
teger Linear Program (ILP), with integer variables for each track.
Consequently, its running time increases dramatically as the num-
ber of tracks in the channel is increased. It is unable to handle
the shielding effect between two horizontal wires because of other
wires routed between them. As our experiments demonstrate, the
crosstalk characteristics of even the optimal track permutations pro-
duced by [4] can be improved substantially using our approach.

Even though current fabrication processes can place a wire with
an accuracy of 0.02�, the wire pitch is usually at least 1.2� ([6]).
This justifies the use of gridless routing models. Grid-based algo-
rithms are unable to place the wires optimally due to grid snap-
ping. However, the non-linearity of objective functions involving
crosstalk makes it difficult to develop efficient gridless algorithms
for their optimization ([2]). In this paper, we show that although
these functions are complicated, they are piecewise smooth and
“well-behaved”, allowing us to converge to the optimal wire loca-
tions at each step without having to solve any non-linear equations.

As in most prior works on crosstalk minimization, we assume
that the coupling capacitance between two segments with coupled
lengthl, separationd and unit couplingC is given byCl=d. How-
ever, a capacitance model with coupling given byCl=d1:34 was
presented in [8]. We note that the theorems presented in our pa-
per are also valid under the model of [8]. Furthermore, our theory
is also applicable to more general routing models such as switch-
boxes and area routing. It can be generalized to determine the opti-
mum location over the entire channel width for each critical trunk.
Further details on this paper can be found in [9, Ch. 3].

2 Problem Formulation

The crosstalk between two nets depends on the coupling capaci-
tance between them, other load capacitances, driver strengths, sig-
nal voltages, and the temporal correlation between the signals. How-
ever, at the layout stage, the only controllable parameter among
these is the coupling capacitance. Thus, the total crosstalk in a net
can be assumed proportional to the sum of the capacitive couplings

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

2 2

210

3

3

3

a

b c

d

e

4

3 5

f

Figure 2: Computing the crosstalk in trunka

of each segment of the net with its neighbors. Without loss of gen-
erality, let us set the constant of proportionality to one.

LetN1; N2; : : : ; Nn ben nets routed in a channel. The routing
of a net consists of horizontal segments, calledtrunks, connected
by vertical segments. Let the routing of netNi (i = 1; : : : ; n)
consist ofti trunks T (i)

1
; : : : ; T

(i)
ti

, connected by thevi vertical

segmentsV (i)

1
; : : : ; V

(i)
vi . Let � (i;j)k (�(i;j)k) denote the crosstalk

contribution of the trunkTk (vertical segmentVk) to the crosstalk
in trunk T

(i)

j (vertical segmentV (i)

j) of net Ni. If C(i;j)

k , l(i;j)k

and d
(i;j)

k represent the unit coupling between the two relevant
nets, the coupled length between the two segments and the distance
separating the segments respectively, then�

(i;j)

k (or �(i;j)k) equals

C
(i;j)

k l
(i;j)

k =d
(i;j)

k . Observe that althoughC(i;j)

k is largely deter-
mined by the technology, it can also be used to account for signal
correlations between different nets. In particular, it is zero between
two segments belonging to the same net. Also, if some portion of
segmentSk is not visible from segmentSj because of some other
segmentSk0 lying betweenSk andSj , then this hidden portion of
Sk does not contribute to the crosstalk inSj because of the shield-
ing effect ofSk0 . In the example of Figure 2, the portion of the
trunk d that lies above trunkb does not contribute to the crosstalk
in trunk a. Thus, the coupled length between the two segments
can arise from non-contiguous sub-segments, as occurs between
trunksa andd in our example. The total crosstalk�i in netNi

(i = 1; : : : ; n) is given by
Pti

j=1

P
k
�
(i;j)

k +
Pvi

j=1

P
k
�
(i;j)

k .

For our example, letC(i;j)

k equal 1 for each pair of nets, and the
numbers in the figure represent the coupled lengths and separations
between the segments. Then, the crosstalk in trunka due to its
upper and lower neighbors is(2+2

6
+ 3

3
+ 5

3
) and(10

4
+ 2

7
) respec-

tively, yielding a total of 6.119 units. The total crosstalk in the net
to which trunka belongs is computed by summing up the crosstalks
in each of its trunks and vertical segments similarly.

In general, the maximum crosstalk tolerable by a net is usu-
ally fixed by the designer. We assume that the maximum tolerable
crosstalk in netNi is represented by the constantBi. The differ-
ence between the maximum tolerable crosstalkBi and the actual
crosstalk�i (i.e.Bi � �i) is called theslack (say,�i) in netNi.
Thus, our problem can be stated as:maximize minni=1f�ig. The
“min” term makes this problem rather difficult. We approach it
by perturbingthe trunks of the various nets so as to maximize the
smallest of the�i ’s. Perturbing a trunk involves displacing itver-
tically while keeping the relative vertical ordering between trunks
invariant. As we perturb the trunks, we vary thed(i;j)k terms in the

�
(i;j)

k ’s (and, consequently, thel(i;j)k terms in the�(i;j)k ’s).

3 Trunk Perturbation and the Variation of Net Slacks

In this section, we first present our key theoretical result showing
that the perturbation range of a trunk can be efficiently divided
into subintervals within which the variation of the slack is “well-
behaved”. This implies that we can efficiently determine the opti-
mum location for the trunkwithout having to solve any non-linear

equations, even though the variation of its slack within its pertur-
bation range is not smooth (and is a polynomial of very high degree
even within its smooth segments). Then, in Section 3.2, we study
the effect upon neighboring nets when we perturb a trunk belong-
ing to a critical net. The results of this section allow us to struc-
ture our perturbation algorithm in a way that guarantees that no
non-critical net becomes critical during the perturbation. Finally,
in Section 3.3, we show that the perturbation of trunks belonging
to neighborsof critical nets can be used to further increase the crit-
ical slacks (beyond what is possible by trunk perturbations in only
the critical nets). Although Sections 3 and 4 have been presented
in terms of the net slacks, we would like to point out that they can
also be equivalently phrased in terms of the net crosstalks.

The range over which a trunkT (i)

j can be perturbed is bounded
by the closest neighboring trunks above and below it. This range
can be divided intoBasic Perturbation Intervals(BPIs) whose end-
points are the trunk end-points lying within the perturbation range
(to the left or right ofT (i)

j) that are visible from either of the two

vertical lines placed at the two ends ofT
(i)

j . Thus, for the example

of Figure 3, the perturbation range for trunkT (i)

j is bounded byT2
andT5 and divided into three BPIs due toT3 andT4. Observe that
the BPIs involved in a particular perturbation can be determined
a priori by examining the segments visible from the perturbation
range. Furthermore, the total number of trunks provides a (usually
conservative) upper bound on the number of BPIs.

(i)T

1V

2V

1T

j

j

j
(i)T

j
(i)V

j
(i)V N () = { , }

j

V

B
asic P

ertu
rbation

 In
tervals

3V 4V

5V

6V
7V

8V

9V2T

3T

4T

5T

6T

(i)

(i)V

x = 0

x
P

er
tu

rb
at

io
n

 R
an

ge

Figure 3: Perturbation range and BPIs for the trunkT
(i)

j

3.1 Net Slack for a Perturbed Trunk

Theorem 1 (Unimodality Theorem) When a trunkT (i)

j belong-
ing to netNi is perturbed, the variation of the slack�i in Ni with
the displacement ofT (i)

j is continuous over the entire perturbation
range, and is either monotonic or strictly unimodal (with a unique
maximum) within any BPI of the perturbation range.

Informally, this theorem states that the variation of the slack
of a net whose trunk is being perturbed is of the form depicted
in Figure 4. It provides us with a powerful tool to determine the
maximum of�i over the perturbation range without having to solve
any non-linear equations. Given a BPI (or a sub-interval of a BPI)I
within the perturbation range, we can easily determine whether the
variation of�i within I is monotonic or unimodal, by comparing
the signs of its slope at the end-points ofI. If the slope has the
same sign at both end-points,�i attains its maximum overI at one
of the two end-points. If the signs are different, we use binary or
golden section search. In this case, this search will indeed converge
to the optimum since we are guaranteed that there is auniquelocal
maximum of�i within I. Finally, we compare the optima obtained
for each BPI to determine the optimum over the entire perturbation
range. Observe that both the determination of the sign of the slope

of �i and the search process involve the computation of�i(x) at
somespecific value ofx, as opposed to the solution of some non-
linear equation with avariablex.

x
=

0

σi

Perturbation

xx

Range of

: position of neighbor

: BPI end-point

Figure 4: Variation of the net slack�i over the perturbation range

3.2 Trunk Perturbation and Neighboring Slacks

The Unimodality Theorem can be used to perturb the trunks be-
longing to a net in order to improve its slack. However, we would
like to guarantee that these perturbations do not cause the crosstalk
characteristics of other nets to deteriorate to an extent that they be-
come more critical than the current net. In other words, we would
like to perturb trunkT (i)

j (of netNi) to a location that maximizes
the slack�i in Ni subject to the constraint that the slacks in nets
influenced by the perturbation ofT (i)

j do not get any worse than

the new value of�i. LetN (T
(i)

j) denote the set of all the vertical

segments ofNi that are adjacent to the trunkT (i)

j . (See Figure 3).
Then, if some segment of netNi0 is visible from some segment in
fT (i)

j g [N (T
(i)

j), we must ensure that�i0 � �i � 0.
Although�i0 and�i are individually well-behaved in the sense

of Theorem 1, the difference of two such unimodal functions is
not well-behaved in general (due to terms of the form�=(� � x)
appearing with both positive and negative polarities). However, in
the case of the difference of slacks in two neighboring nets, we can
make a stronger claim, stated as the following theorem.

Theorem 2 The variation of the difference of the slacks in netsNi

andNi0 when some trunkT (i)

j belonging toNi is perturbed is con-
tinuous over the entire perturbation range, and is either monotonic
or strictly unimodal within any BPI of the perturbation range.

As a corollary, note that the equation�i � �i0 = 0 has at most
two roots in any BPII. Therefore, there are at most two disjoint
sub-intervals ofI over which�i0 � �i. These sub-intervals can
be determined easily by binary search using the sign of�i � �i0
and its slope. We repeat this process for all the neighboring nets of
fT (i)

j g [N (T
(i)

j), and then focus on the intersection of all these
sub-interval sets. For any neighboring netNi0 , �i0 is no smaller
than�i at any point within this intersection. Furthermore, the Uni-
modality Theorem tells us that the variation of�i over any sub-
interval of this intersection is also either monotonic or strictly uni-
modal with a maximum. This enables us to efficiently converge to
the maximum of�i over I while guaranteeing that the slacks of
neighboring nets do not get any worse than the new value of�i.
We finally select the best of these BPI-specific maxima over all the
BPIs in the perturbation range.

3.3 Perturbation of a Neighboring Trunk

Another perturbation-based method to decrease the crosstalk in any
particular trunkT (i)

j is to perturb its neighboring trunks. The per-
turbation of neighboring trunks can yield further improvement in
the crosstalk in a neteven afterits own trunks have been perturbed
to their best positions. Consider the example in Figure 5. Let trunk
T1 belong to the most critical net, andT3 to the least critical net.
Let T1 andT2 be in their locally optimal positions. Thus, Theo-
rem 2 cannot help decrease the crosstalk inT1 any further (since

movingT3 away fromT1 will increase the crosstalk inT2, a trunk
that is more critical thanT3). However, since our primary objective
is the minimization of thepeakcrosstalk, we should allow such a
perturbation, providedT2 does not become more critical thanT1.

T

2T

T

3

1

Figure 5: Perturbing the neighbor (T3) of a critical trunk (T1)

While perturbing a neighboring trunkT (i0)

j0
in order to decrease

the crosstalk inT (i)

j , we must ensure that the slack�i in the candi-
date netNi does not exceed(i) the slack�i0 in the netNi0 whose
trunk is being perturbed, and(ii) the slack�i00 in any netNi00 that
has some segment visible either from the neighboring trunk being
perturbed, or from one of its adjacent vertical segments. If we can
enforce these two conditions, we will ensure that the improvement
in the slack in the candidate net is not negated by excessive deteri-
oration in the slack in some other net affected by the perturbation.
As before, we can then determine the subinterval(s) of each BPI
in which both our conditions are satisfied, and then determine the
optimum location ofT (i0)

j0
(that maximizes�i) within that region.

This would allow us to compare the optima for each BPI to select

their maximum, and then perturbT (i0)

j0
to that location.

From Theorem 2, the variation of the difference between the
slacks in the candidate netNi and the neighboring netNi0 whose
trunk is being perturbed is either monotonic or strictly unimodal
over each BPI in the perturbation range. The relation between the

slacks inNi and a neighboring netNi00 of the trunkT (i0)

j0
being

perturbed is more complicated. However, in most cases, each ofNi

andNi00 has at most one trunk visible fromT (i0)

j0
. Therefore,�i00�

�i has at most two terms of the form�C(i0;j0)

k0
l
(i0;j0)

k0
=(d

(i0;j0)

k0
�x).

As a consequence,�i00 � �i = 0 reduces to a cubic equation. We
can then use the closed-form Cardan formulas ([5, sec. 573-577])
to determine its roots analytically and thus directly determine the
sub-intervals of our BPI over which�i00 � �i.

In the remaining cases, we must resort to search using the sign
of �i00 ��i. However, we can simplify the search by using “specu-
lative perturbation” as follows. In practice, the variation of�i00��i
is either unimodal or monotonic over most BPIs. Assume that it is
so for all BPIs, use binary search to determine the safe sub-intervals
accordingly, andthencheck whether�i00��i � 0 (for each neigh-
boring netNi00) at the optimum location. If it is negative for any
Ni00 , ignore this optimum. This procedure does not introduce any
error into our algorithm; in the worst case, we merely miss out on
some perturbations that could have improved the crosstalk charac-
teristics of the channel yet further.

4 The Trunk Perturbation Algorithm

In this section, we use the theoretical results of Section 3 to con-
struct a simple trunk perturbation algorithm (TRUPER) to maxi-
mize the minimum of the slacks (or to minimize the maximum of
the crosstalks) in the nets in a channel. Our approach is iterative,
terminating when an an iteration yields no lexicographic improve-
ment in the crosstalk characteristics of the nets in the channel. In
other words, if(�i1 ; �i2 ; : : : ; �in) is a list of the slacks in the nets
in the channel at the beginning of an iteration arranged in increas-
ing order, and(�i0

1

; �i0
2

; : : : ; �i0n) is the corresponding list at the
end of the iteration arranged in increasing order, our iterations ter-
minate when�ij = �i0

j
for everyj = 1; 2; : : : ; n. Furthermore,

we guarantee that no iteration causes the crosstalk characteristics
of the nets in the channel to deteriorate in a lexicographic sense.

We start each iteration with all the trunks of all the nets being
in an “unlocked” state. A trunk is perturbed only if it is unlocked.
Within an iteration, we process the nets in increasing order of slack,
starting with the most critical net. Given a net, we process its trunks
in decreasing order of crosstalk contribution; thus, the most expen-
sive trunks are processed first. While processing any trunkT

(i)

j

(of netNi), we first perturbT (i)

j (if it is unlocked) to its optimal
position. Next, we perturb each of the currently unlocked trunks
visible from it to its position that maximizes the slack inNi. This
is followed by the perturbation of the currently unlocked trunks that
determine the end-points of the BPIs forT

(i)

j . Finally, we lock the

current trunkT (i)

j and all its neighboring trunks. (See Figure 6.)

repeat
Unlock all trunks.
for each netNi, taken in order of increasing slack�i ,

for each trunkT (i)

j
ofNi taken in order of decreasing�(T (i)

j
),

if T (i)

j
is unlocked,

perturbT (i)

j
to maximize�i while obeying constraints.

for each trunkTk neighboringT (i)

j

if Tk is unlocked,
perturbTk to maximize�i while obeying constraints.

LockT (i)

j
and all its neighboring trunks.

until
no lexicographic improvement in net slacks (or acceptable min slack)

Figure 6: Pseudocode for TRUPER

While perturbing any particular trunk, we first identify the BPIs
of the perturbation range. Then, we determine the best location
for the trunk over each BPI (and thus over the entire perturbation
range). All trunk perturbations obey the constraints described in
sections 3.2 and 3.3, ensuring that no neighboring net becomes
more critical than the one that is currently being optimized.

If we were to attempt the perturbation of a locked trunk, we
would usually be unable to displace it from its current location
without worsening the slack in the (more critical) net during whose
processing it was locked. Thus, the locking mechanism improves
the efficiency of TRUPERby allowing us to often avoid the compu-
tations involved in perturbations that would yield no improvement.
Observe that a trunk is movedonly if its perturbation improves
the slack in either its own net or some other net with equal or less
slack, and does not worsen the slack in any other net with slack less
than that of the current net. This ensures that no trunk perturbation
causes the crosstalk characteristics of the nets to deteriorate lexico-
graphically. TRUPERcan be extended further by allowing trunks to
be broken up so that each sub-trunk may be perturbed to its locally
optimal location. A natural choice for the break-points of a trunk is
the visible end-points of its neighboring trunks.

5 Experimental Results

We tested TRUPERwith ten benchmark layouts on a Sparc/20 com-
puter. Among these, GL4.opt and Deutsch.opt are the two chan-
nel routings published in [4] that have already been optimized for
crosstalk by track permutation, the latter being Deutsch’s Difficult
Example ([3]). De.GTE.* are the channels of the GTE layout pub-
lished in [3]. YK1, YK4b and YK5 are from [11], while WL16a
and LL18 are from [10] and [7], respectively. For our experiments,
we minimized the maximum of the net crosstalks. We assumed
C
(i;j)

k to be 0.3fF=� (a value typical of 0.5� technologies ([1,
Fig. 4.4])), the wire pitch (�) and manufacturing increment to be
1.2� and 0.04�, respectively ([6]), and the track and column widths
(�) of the initial configurations to range from 1.5� to 2.0�.

Table 1 presents the initial and final peak crosstalks (�max) for
the layouts for� = 1.5�, 1.8� and 2.0�. The parenthesized fig-
ures represent the percentage reduction in the peak crosstalk. We
obtained substantial improvement in the peak crosstalk characteris-
tics for all the layouts. As expected, the reductions went up in each
case as� increased. The average reductions for the three sets of ex-
periments were 14%, 17.6% and 18.5%, respectively. Most of the
reduction in the peak crosstalk occurred in the first one or two iter-
ations. The runtimes for each iteration ranged from a few seconds
for the smaller layouts to about 50 minutes for Deutsch.opt.

Initial Final �max (% improvement)
Benchmark �max �=1.5� �=1.8� �=2.0�

GL4.opt 8.50 7.38 (13.2) 7.11 (16.4) 7.00 (17.6)
Deutsch.opt 138.73 127.22 (8.3) 124.18 (10.5) 123.33 (11.1)
WL16a 7.94 6.81 (14.2) 6.49 (18.2) 6.38 (19.6)
LL18 34.60 23.92 (30.9) 21.26 (38.6) 20.43 (41.0)
YK1 33.08 29.09 (12.0) 28.10 (15.0) 27.53 (16.8)
YK4b 86.94 75.28 (13.4) 70.35 (19.1) 69.56 (20.0)
YK5 53.12 44.78 (15.7) 42.00 (20.9) 41.67 (21.6)
De.GTE.d1 84.52 71.04 (16.0) 68.37 (19.1) 67.61 (20.0)
De.GTE.d3 67.12 57.26 (14.7) 56.66 (15.6) 56.34 (16.1)
De.GTE.d5 106.47 91.31 (14.2) 87.22 (18.1) 86.61 (18.7)
TOTAL 621.02 534.09 (14.0) 511.74 (17.6) 506.46 (18.5)

Table 1: Reduction in maximum crosstalk (� = 1.2�, �max in fF)

6 Conclusions

In this paper, we have presented a novel approach to minimize the
peak crosstalk in the nets in a gridless channel. We have shown
that although the variation of net slacks when a trunk is perturbed
is complicated, the perturbation range can be efficiently divided
into subintervals within which it is well-behaved. This allows us
to determine the optimum location for the perturbed trunk without
having to solve any non-linear equations. Our experiments verify
that this approach works very well. In particular, the tremendous
gains we obtained on each of the layouts that had already been
optimally track permuted for crosstalk suggest a two phase post-
processing strategy to optimize peak crosstalk in channels – first
perform a track permutation ([4]) using a gridded routing model,
and then improve the resulting routing further using TRUPER.

References

[1] Bakoglu, H. B.,Circuits, Interconnections and Packaging for VLSI,
Addison-Wesley Publishing Company, 1990.

[2] Chaudhary, K., A. Onazawa and E. S. Kuh, “A Spacing Algorithm
for Performance Enhancement and Crosstalk Reduction”,Proc. Intl.
Conf. Computer-Aided Design, 697–702, 1993.

[3] Deutsch, D. N., “A Dogleg Channel Router”,Proc. Design Automa-
tion Conf., 425–433, 1976.

[4] Gao, T. and C. L. Liu, “Minimum Crosstalk Channel Routing”,IEEE
Trans. Computer-Aided Design15 (5), 465–474, 1996.

[5] Hall, H. S. and S. R. Knight,Higher Algebra, Macmillan & Co. Ltd.,
London,4th ed., 1891. Reprinted, 1960.

[6] Karnik, T., Intel Corp., Hillsboro, OR, Private communication, 1997.
[7] Leong, H. W. and C. L. Liu, “A New Channel Router”,Proc. Design

Automation Conf., 584–590, 1983.
[8] Sakurai, T. and K. Tamaru, “Simple Formulas for Two- and Three-

Dimensional Capacitances”,IEEE Trans. Electron DevicesED-30
(2), 183–185, 1983.

[9] Saxena, P.,The Retiming and Routing of VLSI Circuits, Ph.D. Thesis,
Tech. Rep. UIUCDCS-R-98-2059, Dept. of Computer Science, Univ.
of Illinois at Urbana-Champaign, 1998.

[10] Wong, D. F. and C. L. Liu, “Compacted Channel Routing with Via
Placement Restriction”,Integration4 (4), 267–307, 1986.

[11] Yoshimura, T. and E. S. Kuh, “Efficient Algorithms for Channel Rout-
ing”, IEEE Trans. Computer-Aided DesignCAD-1 (1), 25–35, 1982.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

