Common-CasComputation A High-Level Techniquwe for Power and
Performane Optimization®

Ganeé Lakshminarayaat, Anand Raghunathat,
Kamd S. Khouii %, Niraj K. Jhaf and Sujit Dey§

T CCRL-NEC USA, 1 Dept of Electricd Engg, Princeta University
8 Dept of Electricd Engg, Univ. of California, San Diego

Abstract

This pape presers adesigh methodolog, called common-cascom-
putation (CCC), and new design automatia algorithns for optimiz-
Ing power consumptio or performance The propose techniques
are applicabé in conjunctian with any high-level desigh methodol-
ogy wher a structura registe-transfe level (RTL) description and
its correspondig scheduld behavioral (cycle-accurag functional
RTL) description are available It is a well-known fad tha in be-
havioral descriptiors of hardwae (als in software) a smal sd of
computatios (CCC9 often accouns for mog of the computational
compkxity. However, in hardvare implementatios (structurd RTL
or lower level), CCCs ard the remainirg computatios are typi-
cally treatel alike. This pape shows tha identifying and exploit-
ing CCGCsduring the desig proces can lead to implementatios that
are much more efficient in terms of power consumptia or perfor-
mance We propo® a CCC-basd high-level desiqm methodology
with the following steps extraction of common-cas belaviors and
executian conditiors from the scheduld description simplification
of the common-cas behaviors in a stand-aloe manne, synthesis
of common-cas detectim ard executian circuits from the common-
ca behaviors, and composiig the origind desig with the common-
ca® circuits resultirg in a CCC-optimize design We demonstrate
that CCC-optimizel desigrs redu@ power consumptio by up to
91.5% or improve performane by up to 76.6% compare to designs
deiived without specidregard for CCCs.

1 Introduction

In this pape, we preseh a desiqy methodolog and new
computer-aidd desiq algoriths for optimizing er consump-
tion or performance Our techniqus can be applied to pre-designed
RTL circuits, or in conjunction with traditiond high-level synthe-
sis optimizations They exploit the well-known fact tha in several
applications a smal patt of the belavior is likely to dominae the
overal computationbeffort. This pape shows that identifying such
frequenty occurring or common-cas computatios (CCC), ard ex-
ploiting them appropriatef, can lead to large improvemens in per-
formane or average power (energy consumption.

Startirg with a cycle-accurae functiond RTL or scheduld be-
havioral description along with its structurd RTL implementation,
we preseh technique to identify CCGCs from the schedule In an
implementatio denved without particula attentiay to the common
case the delay and power expendel in executirg the CCCs may be
significanty highe than necessardue to one or more of the foll ow-
ing factors:

e Variows synthess optimizations which may not be applicable
in the context of the complet design are applicabé when only
the CCGCs are considered For example a CCC typically con-
sists of only one or a few (conditiona) thread of execution

*Permissio to make digital/had copy of all or pat of this work
for personh or classrom use is grante&l without fee provided that
copies are not mace or distributed for profit or commercia advan-
tage the copyright notice the title of the publicatin ard its date
appea,__and notice is given tha co[;)ylng is by permissim of ACM,
Inc. To c otherwise to republish to pod on sewers or to re-
distribute to lists, requires prior specift permissim and/ad a fee.
DAC 99, New Orleans Louisiana
(c) 199 ACM 1-58113-109-7/99/..$5.00

from the origind behavior. Thus a lot of control-flow con-
structs which are known to be bottleneck for various high-
level optimizatiors [1, 2], are eliminated by considerig the
CCC alone.

e |n conventiond implementationssharirg of CCC operations
with non-CGCC operatiors may resut in asignificart amour of
additiona circuitry ard parasitis being associate with the ex-
ecution of CCGs (e.g., additiona multiplexers ard contrd cir-
cuitry, ard large clock neworks and globd buses) A sepa-
rate implementatio of the CCC alore would avoid thes above
problems.

e Sinee the CCGCs resut in a mudch smalle sub-circut than
the complee circuit, sub-optimé (heuristi) synthess algo-
rithms often tend to perform better on them than when they
are given large monolithic designs Conversey, more aggres-
sive ard computationall intensve synthesis/optimizatio al-
gorithms may be used to optimize CCCs.

CCGs have been exploited in various related area of research The
obsewation tha often unde 10% of a programs instructiors ac-

couns for over 90% of its executian time has bee exploited in the
conext of high-performane processp ard compile desig [3, 4].

As a popula examplg ore of the argumeng driving the evolution

of reduce instruction s¢ compute (RISC) architecturs was that
they allowed for simplified implementatios of frequenty occu-

ring instructiors [3]. Trace schedulig [4] exploits CCCs by com-

pactirg frequenty occurrirg progran threas using code motion.

Anothe related logic-level power reduction technique called pre-
computatia [5], optimizes an embeddd combination&circuit block

by addirg significanty simple circuits (called predicta circuits),

which compue the outpu and disabk the origind circuit for asubset
of input conditions In the conext of logic synthesisthe principle of

optimizing for the comman cas has been exploited for performance
optimizatianin[6, 7]. Pas work in the area of high-level power opti-

mization has addresse scheduling allocation binding power man-

agementard belavioral transformatios [8], but has nat paid atten-
tion to analyzing detecting ard simplifying comman cases.

2 Common-Cas Computation basel Design

In this section we presem the bast ideas as well as detailed
tradedfs involved in optimizing circuits for CCGCs usirg illustrative
examples Section 2.1 illustrates the bast steys involved in CCC-
basel design Sectin 2.2 illustrates the compkex issues ard tradedfs
involved in sone of the steps Thes ideas are later formalized into
algorithirs for power or performane optimization in Sectio 3.
2.1 Fundamentals

We now illustrate the CCC idea usirg the greatescomman divi-
sa (GCD example who structue ard schedu are shown in Fig-
ures 1(a) and 1(b), respedvely 1. Thefirst step involved in the CCC-
basel desigh methodolog isto identify one or afew candidag state
sequene patterrs from the origind designs simulatian traces using
which we later delive CCC circuits From the STG of Figure 1(b), it

1The schedut is represente in the form of a stae transitimrgram (STG)
whos edges are annotatd with stae transition probabilities and nodes with
stae probabilities The probabilities are recorde during simulation with a
typicd testbench.

xin yin

Functionality of common case:
if (x — 4y >0) then
X =X — 4y,

S ETE)
=X =P o

Controller 045

Figure 1: (a) Structural RTL implementation, and (b) sched-
uled description for th6&CDcircuit

X

_______________________ ‘\\ . v
Y Common c;;e detection
and execution circuitry
B Figure 3: OptimizedsCDdesign including CCC circuitry

e given sequence of states, given that the STG is first initialized to
the first state of the sequence. The execution condition of the state
sequence patterfi), S1, 0, S1, 0, S1, 0, S1 in the schedule of Fig-

y 2 ure 1(b) is the conjunction of the outputs of all eight conditional op-

e erations shown in Figure 2(a).
As mentioned in Section 1, several optimizations that are not ap-

X @ plicable in the context of the original design may be applicable in the

limited context of CCCs. Thus, an important step in the CCC-based
design methodology is to further optimize the (relatively small)
common-case behavior aggressively using known power and perfor-
0 mance (zftimization techniques. Since the common-case operations
extracted from the schedule are represented at the behavior level, a
natural choice is to use behavioral transformations [9, 10, 13, 14] to
' simplify them. We use a powerful transformation framework to ap-
g ply various transformations aimed at minimizing the number of op-
erations, and the critical path, of the common-case behavior.

X For the GCDexample, the initial common-case behavior shown
in Figure 2(a) is automatically transformed into the simplified be-
common-case havior shown in Figure 2(b). The sequence of fou) operations
exec. condition has been reduced to one left shit<) operation and one (-) oper-
(b) ation. In addition, the common-case execution condition has been

simplified from a sequence of four-§ and four (!=) operations to

a single(>) operation. Note that this optimization is not valid in the
context of the original design, but only in the scenarios under which
the common-case behavior is executed. Algorithms used for auto-
matically optimizing the common-case behavior in our CCC-based
design methodology are described in Section 3.

The final, optimized5CDRTL design that contains an implemen-
tation of the common-case circuitry is shown in Figure 3. The cir-
Figure 2: (a) The extracted common-c&EDbehavior, and cuitry added or modified for implementation of the CCC circuitry is
(b) a simplified common-case behavior indicated using the darker shade of grey. In this example, the CCC

and execution condition are both implemented using a sisgte
tracter (the conditionx— 4y > 0 has been implemented using the bor-
row and the zero-detect output of the subtracter).
is clear that the state probabilities of staBsandSl are high, as is Upon synthesis, the average energy per input for the original de-
the probability of a transition between them. Upon performing a fusign was found to be 1@5nJ, and for the CCC-optimized design
ther automatic analysis of th@CDdesign and its execution traceswas found to be 46nJ, representing an energy savings factor of
during simulation, we found the®0,S1,S0,S1,90,S1,90,S1 was a 2.48X. In addition, the average amount of execution time (number of
promising state sequence pattern to derive a CCC circuit. clock cyclesx clock period) per input was found to be285nsand

Given a candidate state sequence pattern, the next step in @003ns respectively, for the original and CCC-optimized design, a
CCC-based design flow is to extract the behavior induced by ferformance improvement of27X. The energy savings factor be-
and its execution condition, as explained below. We definebtie comes 108X if the performance improvement is traded off through
havior induced by a state sequence pattéma schedule (STG) supply voltage scaling. Section 4 details our experimental methodol-
as the set of operations that are executed when the given pady.
tern is traversed in the STG. The behavior induced by the Pattﬁéﬂ . . .

0, S, 0, SL, 0, S1, 0, SL in the schedule of Figure 1(b) is showr2-2 Tradeoffs involved in selecting CCCs

as a control-data flow graph in Figure 2(a). Similarly, we define the This subsection shows that the selection of the common-case be-
execution condition of a state sequence patiara schedule as the havior has a significant bearing on the quality of results obtained.

set of conditions that need to be satisfied in order to traverse thelso demonstrates that it is important to take data statistics (since

they influence the probability of executing the common-case behav-
ior) into account during CCC selection.

In general, the following tradeoffs are involved when performing
common-case behavior selection: 07

0.8

e Coverage.The coverage of a state sequence pattern represents
the expected fraction of the original design’s total processing ~ °°
time that will be spent in executing instances of the pattern.g
Very small state sequence patterns (that involve very few dis<
tinct states) may not be desirable since they may not exploit
enough of the state space to result in a large coverage. On the
other hand, state sequence patterns that are larger than neces-
sary may have poor coverage since they may be too special- 4
ized,i.e.,, not occur frequently enough. For example, consider 02
the patterrS0 in the GCDschedule of Figure 1(b). The cover- '
age of this pattern is equal to the state probabilityS0fi.e., oall

0.49.2 ,
O 1 1 1 1

The next example shows that the problem of selecting a state 0 20 40 60 80 100 120
sequence pattern to maximize coverage is a non-trivial one. State sequence pattern length

os|| [

0.41¢l¢

140 160

Example 1: Consider the schedule shown in Figure 4. We Figure 5: Plot of coverages. state sequence pattern length

e Compactness of common-case circuitryOne of the advan-
tages of CCC-based design, as mentioned in Section 1, is that
it eliminates a lot of the additional circuitry and parasitics (mul-
tiplexer and control circuitry, and clock network and global bus
capacitance) activated during the execution of the common-
case behavior in a non-CCC-based design. These effects rely
on the requirement that the common-case circuitry is much
smaller than the complete design. Due to the difficulty of es-
timating such low-level parasitics as the clock and interconnect
capacitance at the behavior level, we do not directly model or
target this factor in choosing a state sequence pattern for deriv-
ing the common-case behavior. Instead, our algorithms accept
constraints on the number of resources of each type (functional
units and registers) that are allowed in the implementation of
the common-case behavior. This parameter provides a handle
to effectively limit the size of the common-case circuitry.

45 T T T T T

Tracel<—
Trace2—+-
Trace3-=-
Trace4 -
Trace5--

N
o

Figure 4: Schedule for example circtatstl

on per input (nJ)
w
al

w
(=]

computed the 0ﬁtimal coverage achievable by state sequencg
patterns of length less than or equal to 150. The results are pres
sented as a plot of coverags. pattern length in Figure 5. The £ \
achievable coverage initially increases with pattern length, but2 2
starts decreasing after a point. Note that the pattern length 1§
in Figure 5 is only a local optimum, since it is always possible & _ 4
to have the entire simulation state trace as a trivial pattern of 2°

coverage 0. However, then the common-case behavior cho-
sen will correspond to the entire design, which will not lead to

any power or execution time savings. Thus, it is typically nec- %1 1 1 64 256 1024 4096
essary to have an upper bound on the length of state sequence Value of parameter k

patterns. _]

The following factors also need to be considered. Figure 6: Energy consumption of CCC-based designs vs.

¢ Scope for optimization. Once the common-case behavior isstate sequence pattern length for different input traces
derived from the chosen state sequence pattern, it is further op-
timized in order to minimize power consumption or execution) . .
time. Longer state sequence patterns typically lead to behdwxample 2: Consider again th&CDexample shown in Figure 1.
iors that offer more opportunities for optimization. However, ifin order to show the tradeoffs involved in choosing an appropriate
the state sequence pattern is too long, the coverage suffers. state sequence pattern, we obtained CCC-based designs for several
candidate state sequence patterns of different lengths, and evaluated

2Note that the coverage of state sequence patterns of length greater théﬁei“ for performance. and_ energy consumption for dlff_erent simula
cannot be computed directly from the state and state transition probabilitié©N testbenches having different input distributions. Since the loop
which onle/ indicate first order statistics and ignore higher order statistics sutivolving states30 andSlL accounts for most of the simulation time,
as the self and mutual correlations of state transition conditions [11]. we considered CCC-based designs thatkusepies of the loopi.e.,

200000 T |
Tracel—<—

g Tt
g 180000 Trace4-=- |
a Trace5=- o
£
S 160000 I l
Q common case
] detected Common-case | sleep2
© 140000 v detection
2 circuit
(%] [\
;§ 1200008, . i
5 Original sleepl Or_'gln_ét“ v
& 100000 circuit = ciredl »Common-case | _
2 - execution | <S€EP
2 80000 | circuit
o
L
o
€ 60000 io ccc
5 controller
40000 ‘ s ‘ L w o)
1 4 16 64 256 1024 4096 common case
Value of parameter k completed

Figure 7: Expected execution time of CCC-based designs vs. Figure 8: Original and CCC-optimized circuits
state sequence pattern length for different input traces

(D, S]_)k as the chosen state sequence pattern, for various value&; an STG representing the schedule, a complete RTL description

; e i i of the circuit to be optimized, and a set of typical input traces. The
lé;%ﬂgé?%hggg dts(irger?sfevsgg tg\],%htgete%”%rn glngregsggoggﬁmgg g[?ér ut is the RTL circuit augmented with hardware that detects and

computation and performance (time consumed per GCD compufgrecutes some common cases in a power- or performance-efficient
tion) for five different input traces labelefracel, ..., Traces. The Mmanner. Another way to employ our technique is to use it as a plug-
input traces were generated as follows. Each input trace correspoff @n existing high-level synthesis tool (note that we do not assume
to a fixed number (500) of GCD computations, where each Gegything about the algorithms employed in high-level synthesis). In

computation may take a different number of cycles depending on tRECh @ scenario, the high-level synthesis tool would be used to sepa-
values of inputs andy. The values ok for all five traces were gen- 'aiely generate the RTL circuitry to implement the common-case be-
havior and the remaining parts of the behavior. The resulting circuits

erated using a uniform distribution between 0 as8l-21. The val- \would be composed into a CCC-optimized implementation.

ues ofyfor Tracel, . .,Téaces vlv7ere generéaoted using un|_form distri _ Figure 8 shows the structures of the original and CCC-optimized
butions between 0 and2—1,217—1,...,220_1, respectively. cjrcuits. The optimized circuit has three major components: the orig-
The energy results from the above experiments are plotted in Figa| circuit, acommon-case detectiircuit, and a&ommon-case ex-
ure 6. The results indicate whether energy savings can be obtain@itioncircuit. The common-case detection circuit accepts as inputs,
using the CCC-based design, and if so, which valulelefds to the ~ the primary inputs of the circuit, and the values of some internal vari-
best energy design. This depends in a complex manner on the ingdfes in the original circuit. It detects the occurrence of a specific
traces. Note that, on the one hand, Teaces, k= 1 leads to the least condition, referred to in the sequel as tt@mmon caseThe inputs
energy consumptiori,e, CCC-based design with other valueskof of the common case execution circuit could be any subset of the pri-
do not result in any energy savings. On the other handTfacel, mary inputs and internal variables in the original circuit. When acti-
a large energy savings (abouBX) is possible compared to the orig- vated, it computes a subset of the primary outputs and the values of
inal design. Also, note that for the curves which attain least energyme internal variables in the original circuit. Each of the three com-
atk > 1 (i.e, at least one CCC-based design is better than the origbnents of the CCC-optimized circuits is designed to support power
nal design), the following observations hold: (i) the best valu& of managements{eepmode) using a combination of clock gating and
varies depending on the input trace, and (i) the smallest and larggglerand isolation [8, 12]. Clock gating ensures that the registers do
considered values d&fnever lead to the best design. not load new values and that the clock network does not dissipate
Figure 7 shows results for performance (number of clock cyclephwer. Operand isolation uses transparent latches to freeze the non-
for the same experiments. Again, it is clear that judicious selectiq@gistered primary inputs. When the sleep input to a circuit is as-
of the value ofk is necessary to realize the full potential of CCCerted high, it does not dissipate any dynamic power. A circuit in the
based design, and the best valuekofaries depending on the input sleep mode can be restored to active mode in the next clock cycle by
data statistics. Another important point illustrated by Figures 6 anda&serting the sleep input low. The sleep inputs to the various Circuits
is that energy and performance optimization are sometimes divgre generated by a small global controller, using the controller state
gent goals. For example, CCC-based designs derived for all valugsm the original RTL circuit, the common-case detection signal, and
g;lp&rgrf]nce:tgc'k: rbe;gétdl)ﬂdggiré%gm%ngﬁé\cg?rg\éfnfge\?élsugggﬁt?ﬁpg?g'a completion signal generated by the common-case execution circuit.
P T . . : Ay Figure 9 illustrates the chronology of related events. Rectangles
?AS”'?#“‘)”.S r eslucljt in CCC-based designs that consume more.enetg)/’ (b), and (c) represent, respectively, the activity of the original
an the original designs. circuit, the common-case detection circuit, and the common-case ex-
The above example illustrates two key concepts: ecution circuit over time. The shaded regions of the rectangles cor-

e There are several (possibly conflicting) factors involved iespond to activity in the circuit, and the clear regions correspond to

' active or idle time slots. During the idle slots, the component is
gp;)??(l)?gp(?w%?)mamngneggggtigm%g rsethﬁltglse ads to maximal ésﬁent into sleep mode by the control circuitry. Initially, only the origi-
a) y » nal circuit is active. At timey, the original circuit enters into a state
e Input data statistics play an important role in determining th@hich activates the common-case detection circuit. The common-
best common-case behavior. case detection circuit uses the primary inputs and the values of in-
The algorithms presented in Section 3 quantitatively explore thes}‘l@is{'nal variables in the original circuit to test for the occurrence of
factors in choosing the best common-case behavior. the common case. This process continues until imeNote that,
N . to avoid performance degradation, the original circuit continues its
3 The Algorithm for CCC-based Design computation between timég andtc. At timetc, the common-case
In this section, we present the algorithmic details of our powetetection circuit confirms the occurrence of the common case, and
or performance optimization technique. The inputs to the algorithactivates the common-case execution circuit. The original circuit

Original circuit 1. If we choseGain(o) to be proportional t€overagéo), then these
two state sequence patterns would be considered equally good. How-
ever, a common case that consists of a longer state sequence pattern
is likely to be easier to optimize. A behavior extracted from a single
state would be extremely difficult to optimize because it has a very
short critical path (of one cycle). Multiplyin@overagéo) by EJ\
takes into account the increased ability to optimize larger behaviors.
Extremely long state sequences are, however, undesirable because
they add to the complexity of the common-case detection and exe-
cution circuits, thus increasing the overall power consumption of the
design. We, therefore, upper-bound the length of the common case
Common-case execution circuit state sequence pattern by a small, user-defined constant. For our ex-
periments, a bound of 32 on the length of the common case yielded
good results.
Steps3-6 are performed for all promising state sequence patterns.
t t e Step3 extracts the behavior correspondin%to a state sequence pat-
LPe tern. Step! derives a compagtistification behaviofor the common
case implied by the state sequence patieznjt derives a set of con-
ditions, which, if satisfied, guarantees the occurrence of the chosen
] o o o . state sequence pattern. This is done as follows: consider a state se-
Figure 9: Activity of CCC-optimized circuit over time quence patterng = {S,S,...,S}, whose occurrence needs to be
detected. Let; represent the condition for a transition from st§te
to § 1. Xis a Boolean variable which tsue if and only if o occurs.
; P ; Thiearly, x = AM'-Lci. When an instance of the common case is de-
and the common-case detection circuit are then de-activated. ' i=1" ; . .
common-case execution circuit completes at timyand writes the tected, the common case execution hardware is activated. Therefore,
appropriate values into the original circuit, which then resumes ndf-is critical that the simplified behavior does not incorrectly report
mal computation. the occurrence of a common case. However, in the interest of ease of
detection, the detection process might choosignore some hard-
to-detect, infrequent, occurrences of the common case. Therefore,

@

Common-case detection circuit

(b)

©

time

nputs: __ [SIECRE e the outputX, of the detection process is required tothee only if
1. RTL design WInines sequence p k " b o .
2. Schedule (STG) races T g Baflorl X is true. It is hard to find a general simplifying procedure, which
8 Typical input traces For all promising state sequences works for all behaviors. From our experiments, we identified some
S e : promising directions for simplification. Specifically, we noted the
corresponding - Choose best Synnesze e | output: existence of implications between thgs for many of our bench-
——|Sgience 3 patiern obtained |—jcreuity.combine | o marks, i.e., atrue value onciy often guarantees tue value onc;
pattern ! circuit 8 + (i1 #i2). In this case, we can remowy from the detection pro-
t CCC circuitry cess, and, therefore, also remove the operations which are responsi-
Derive compact Optimze 5 Evaluate power J ble only for its generation, thus simplifying the behavior.
behavior to computation and execution
justify siaie || performed n [~ time savings Step5 derives the common-case execution circuit. In this step,
e o State sequence ?pr;}g}igﬁgt is 6 optimizing transformations are applied to simplify the common-case

behavior, prior to synthesis. Power-optimizing transformations have
been extensively studied in the literature [10, 13, 14]. Performance-
Figure 10: The CCC optimization algorithm optimizing transformations can also be used at this point [9]. At the
end of this step, the simplicity of the common-case circuit can be

. . . ' . ; d. We also have sufficient information to estimate the power
Figure 10 outlines our algorithm. We first simulate the STG wit SSessed. We ¢ ; :
the input traces to obtain a sequenpepf states. We then traverse%%%%?&%“&?;gg:}g\t’éngs obtainable from the chosen pattern. Step

the state sequence to identify frequently-encountered sub-sequen : . . .
of states, which potentially constitute good common cases. The oy, 1he Process described in the previous paragraph is repeated for

put of step2 in the algorithm is a set of state sequence patter ery state sequence pattern identified in sie@sd2, and the most

which can potentially be synthesized into an efficient common-caSE2MiSing patter is chosen as the common case. The common-case
circuitry. It is important to note that stefisand 2 cannot identify gétectlon and execution circuits for this pattern are then combined

thebeststate sequence pattern, but only obtain some promising onﬁéﬁh the original circuit in stef to produce a CCC-optimized cir-

Trp]i's ;]s.becau(?e dthese steps dho not use]ggtailed_ synthedsishinfqrmzla. on,

which is needed to assess the ease of detection, and the simpli :

of the common case. Therefore, these steps cannot rank clc?sg;[/)-/ Experimental Results

matched state sequence patterns. Rather, they serve as a filter thatvhile CCC optimization can target power or performance, we

protect later stages from having to focus synthesis effort on obuiext present experimental results for several circuits where power

ously undesirable state sequence pattei@sin(o) (Equation (1)) optimization was performed. Scheduling and binding information

measures the desirability of the state sequence pattasa CCC. was available for all circuits. The STGs representing the schedules
of the example circuits were analyzed to detect common cases, and

Gain(o) = Coveragéo) x |a| (1) the most promising common case was chosen for synthesis. The
5 original circuits were modified by adding common-case detection
= N(o) x |o] (2) and execution circuitry. The original and power-optimized RTL de-

scriptions were mapped to gate-level netlists using synthesis tools
Coveragehas been defined in Section] is the length ofo, and from the NEC CAD tool suite, OpenCAD [15]. The resulting gate-
N(o) represents the number of non-overlapping instancesinfp. level circuits were compared with respect to the following metrics:
Note thatGain(o) can be easily computed without any knowledge ofirea, performance, and power. The area, delay, and power consump-
the behavior represented by the common case. We now justify dign were extracted from technology-mapped gate-level circuits us-
choice of this measure. Of two state sequence patterns with equg static timing analysis tools and power estimation tools from the
length, the one which occurs more often would clearly constituteEC OpenCAD suite [15]. The results obtained are summarized in
better choice, if behavioral information is unavailable. Thain Tables 1 and 2.
function is, therefore, proportional f8(c). Consider two different The power consumption of the original and the optimized designs
state sequence patterrs, and o,, which occur 10 and 50 times, are computed in the following manner whégy-scaling is not per-
respectively. Suppose; has a length of 5, and, has a length of formed. For the original design, the ener@yyig, consumed while

Table 1: Area and performance results

Circuit Area (# transistor pairs) # cycles

original [optimized [A.O(%) original | optimized | P.I. (%)
GCD 3,647 4,706 29.0 428,460 100,310 76.6
Poly 16,801 19,232 145 1,760,000| 1,445,000 17.9
Testl 10,163 12,386 21.9 338,300 194,600 42.5
Linegen 3,340 4,126 235 718,000 | 406,800 43.3
Graphics 5,894 7,644 29.7 159,800 116,000 27.4

Table 2: Power results

Circuit Power (mW)nonVyq-scaled) Power (mW)Vyg-scaled)
original | optimized| P.S.(%) |[optimized[P.S.(%)
GCD 2.59 1.04 59.8 0.22 915
Poly 55.57 23.23 58.2 17.98 67.6
Testl 23.74 12.20 48.6 6.17 74.0
Linegen 8.96 5.40 39.7 2.69 70.0
Graphics 18.48 16.19 12.4 10.77 41.7

executing the input trace is divided by the tirfigyg, in cycles, taken simplify the detection and execution of the chosen common case
for executing the trace, to determine the power consumption. Th¥ using targeted behavioral transformations. We also proposed an
power-op’[imized design is assumed to Consﬁm units of energy architecture to Implement our optimization technlque. Experlmen_-_
and operate fofopt Cycles, wherdopt is less tharyyig. In this case, tal results, performed on several benchmarks, demonstrate signifi-
the optimized design is assumed to operateTigg, cycles, while cant power savings or performance improvements at reasonable area

- oF ; i overheads.
being in an inactive (zero energy) state Tgfig — Topt Cycles. There- References
fore, the power consumption is given Byp/ Torig. If Vag-scaling is (31 D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Linkligh-level
perfor_m_ed, the _optlmlzed design is assumed to take t.he same time Synthesis: Introduction to Chip and System Desigluwer Academic
the original design. This enables us to use the following equation to p/jpjishers. Norwell, MA, 1992.

scale the supply voltage [10] [2] G. De Micheli, Synthesis and Optimization of Digital Circuits

McGraw-Hill, New York, NY, 1994.

—_———5 org= "7 o X Topt [3] D. A. Patterson and J. L. Hennes§pmputer Architecture: A Quanti-
(Vgainitial —Vt)? (Vggnew—\t)2 tative Approach Morgan Kaufman Publishers, San Mateo, CA, 1989.

whereVyginitial is the initial supply voltageyyqnewis the new sup- [4] J. A._Fis‘her, “Trace scheduling: A technique for global microcode com-

ply voltage, andv is the threshold voltage of the implementation. ~ Paction,"IEEE Trans. Computersiol. C-30, pp. 478-490, July 1981.

The power consumption is obtained using the new supply voltage. [5] M. Aldina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
In Table 1, major columnsircuit, area and # cyclesrepresent “Precomputation-based sequential logic optimization for low power,”

the name of the design, the area, and the expected number of clock IEEE Trans. VLSI Systemeol. 2, pp. 426-436, Dec. 1994.

cycles to process one input, respectively. Minor colurariginal [6] L. Benini, E. Macii, M. Poncino, and G. De Micheli, “Telescopic units:

and optimizedrepresent, respectively, the original deSiéJU and opti-"" A" ey paradigm for performance optimization of VLS designEEE
mized design. ColumA.O.represents the area overhead incurred by 135, computer-Aided Desiguol. 17, pp. 220-232, Mar. 1998.

our technigue, and colundl. represents the improvement in perfor-

Vyginitial Vgghew

mance. Similarly in Table 2, major columnicuit, power(nonVyg- [71 S: K. Bommu, N. O'Neill, and M. Ciesielski, “Retiming based factor-

scaled), angbower (Vy4-scaled) represent, respectively, the name of ization for sequential logic optimizationACM Trans. Design Automa-

the design and the power consumption, without and Wjgascaling. tion Electronic Systemso appear, 1998.

ColumnP.S.represents the savings in power consumption. [8] A.Raghunathan, N. K. Jha, and S. Deljgh-level Power Analysis and
Of our examplesGCDis a well-known benchmarkPoly rep- Optimization Kluwer Academic Publishers, Norwell, MA, 1998.

resents the computation of a polynomial, arestl represents the [9] H. Trickey, “Flamel: A high-level hardware compiler/EEE Trans.

behavior shown in Figure 4.inegen andGraphics are parts of Computer-Aided Desigivol. 6, pp. 259269, Mar. 1987.
an in-house graphics controller ASIC. i

The results indicate that our power optimization procedure prél0] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
duces circuits which perform significantly faster or consume signif- ~ R. Brodersen, “Optimizing power using transformation&EE Trans.
icantly lower power than the original designs. On an average, the Computer-Aided Desigivol. 14, pp. 12-31, Jan. 1995.
circuits produced from our technique consumed 69.0% (43.7%) le@3] G. Casella and R. L. BergeStatistical InferenceDuxbury Press, Bel-
power than the original circuits whafyy-scaling was (was not) per- mont, CA, 1990.
formed, at an average area overhead of 23.7%. These power reggﬁ] L. Benini and G. De MicheliDynamic Power Management: Design
tions are only achieved when the performance of the original and 0p-" techniques and CAD ToolsKluwer Academic Publishers, Norwell,
timized designs is made equal. The optimized circuits performed, on A 1997.
an average, 41.5% faster than the original circuits. However, n '
that for the faster circuits, we do not get the above power reductio
Thus, our technique can either optimize power or performance, but

] A. Chatterjee and R. K. Roy, “Synthesis of low power DSP circuits us-
. ing activity metrics,” inProc. Intl. Conf. VLSI Designpp. 255-270,

not necessarily both. Jan. 1994'_)
. [14] G.Lakshminarayana and N. K. Jha, “FACT: A framework for the appli-
5 Conclusions cation of throughput and power optimizing transformations to control-

In this paper, we presented a technique that performs power or flow intensive behavioral descriptions,” iAroc. Design Automation
performance optimization by identifying and specially synthesizing ~ Conf. pp. 102-107, June 1998.

frequently-encountered behavioral fragments, or common cases. {M§] OpenCAD V 5 Users ManuaNEC Electronics, Inc., Sept. 1997.
introduced a technique to identify promising common cases, and

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

