
Common-CaseComputation: A High-Level Techniquefor Power and
PerformanceOptimization�

Ganesh Lakshminarayana†, Anand Raghunathan †,
Kamal S. Khouri ‡, Niraj K. Jha‡, and Sujit Dey§

† CCRL-NEC USA, ‡ Dept. of Electrical Engg., Princeton University
§ Dept. of Electrical Engg., Univ. of California, San Diego

Abstract
Thispaper presentsadesign methodology, called common-casecom-
putation (CCC), and new design automation algorithms for optimiz-
ing power consumption or performance. The proposed techniques
are applicable in conjunction with any high-level design methodol-
ogy where a structural register-transfer level (RTL) description and
its corresponding scheduled behavioral (cycle-accurate functional
RTL) description are available. It is a well-known fact that in be-
havioral descriptions of hardware (also in software), a small set of
computations (CCCs) often accounts for most of the computational
complexity. However, in hardware implementations (structural RTL
or lower level), CCCs and the remaining computations are typi-
cally treated alike. This paper shows that identifying and exploit-
ing CCCsduring thedesign process can lead to implementations that
are much more efficient in terms of power consumption or perfor-
mance. We propose a CCC-based high-level design methodology
with the following steps: extraction of common-case behaviors and
execution conditions from the scheduled description, simplification
of the common-case behaviors in a stand-alone manner, synthesis
of common-case detection and execution circuits from the common-
casebehaviors, and composing theoriginal design with thecommon-
case circuits, resulting in a CCC-optimized design. We demonstrate
that CCC-optimized designs reduce power consumption by up to
91.5%, or improveperformance by up to 76.6% compared to designs
derived without special regard for CCCs.

1 Int roduction
In this paper, we present a design methodology and new

computer-aided design algorithms for optimizing power consump-
tion or performance. Our techniques can be applied to pre-designed
RTL circuits, or in conjunction with traditional high-level synthe-
sis optimizations. They exploit the well-known fact that in several
applications, a small part of the behavior is likely to dominate the
overall computational effort. This paper shows that identifying such
frequently occurring, or common-case computations (CCC), and ex-
ploiting them appropriately, can lead to large improvements in per-
formance or average power (energy) consumption.

Starting with a cycle-accurate functional RTL or scheduled be-
havioral description, along with its structural RTL implementation,
we present techniques to identify CCCs from the schedule. In an
implementation derived without particular attention to the common
case, the delay and power expended in executing the CCCs may be
significantly higher than necessary due to one or more of the follow-
ing factors:

� Various synthesis optimizations, which may not be applicable
in thecontext of thecomplete design, areapplicable when only
the CCCs are considered. For example, a CCC typically con-
sists of only one or a few (conditional) threads of execution

�Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06 ..$5.00

from the original behavior. Thus, a lot of control-flow con-
structs, which are known to be bottlenecks for various high-
level optimizations [1, 2], are eliminated by considering the
CCC alone.

� In conventional implementations, sharing of CCC operations
with non-CCC operations may result in asignificant amount of
additional circuitry and parasiticsbeing associated with the ex-
ecution of CCCs (e.g., additional multiplexers and control cir-
cuitry, and larger clock networks and global buses). A sepa-
rate implementation of theCCC alonewould avoid theseabove
problems.

� Since the CCCs result in a much smaller sub-circuit than
the complete circuit, sub-optimal (heuristic) synthesis algo-
rithms often tend to perform better on them than when they
are given large monolithic designs. Conversely, more aggres-
sive and computationally intensive synthesis/optimization al-
gorithms may be used to optimize CCCs.

CCCs have been exploited in various related areas of research. The
observation that often under 10% of a program’s instructions ac-
counts for over 90% of its execution time has been exploited in the
context of high-performance processor and compiler design [3, 4].
As a popular example, one of the arguments driving the evolution
of reduced instruction set computer (RISC) architectures was that
they allowed for simplified implementations of frequently occur-
ring instructions [3]. Trace scheduling [4] exploits CCCs by com-
pacting frequently occurring program threads using code motion.
Another related logic-level power reduction technique, called pre-
computation [5], optimizesan embedded combinational circuit block
by adding significantly simpler circuits (called predictor circuits),
which compute theoutput and disable theoriginal circuit for asubset
of input conditions. In thecontext of logic synthesis, theprinciple of
optimizing for the common case has been exploited for performance
optimization in [6, 7]. Past work in theareaof high-level power opti-
mization has addressed scheduling, allocation, binding, power man-
agement, and behavioral transformations [8], but has not paid atten-
tion to analyzing, detecting, and simplifying common cases.

2 Common-CaseComputation based Design
In this section, we present the basic ideas, as well as detailed

tradeoffs involved in optimizing circuits for CCCs using illustrative
examples. Section 2.1 illustrates the basic steps involved in CCC-
based design. Section 2.2 illustratesthecomplex issuesand tradeoffs
involved in someof thesesteps. Theseideasare later formalized into
algorithms for power or performance optimization in Section 3.
2.1 Fundamentals

We now illustrate the CCC idea using the greatest common divi-
sor (GCD) example, whose structure and schedule are shown in Fig-
ures1(a) and 1(b), respectively 1. Thefirst step involved in theCCC-
based design methodology is to identify one or a few candidate state
sequence patterns from the original design’s simulation traces, using
which we later derive CCC circuits. From the STG of Figure 1(b), it

1Theschedule is represented in the form of astate transition graph (STG)
whose edges are annotated with state transition probabilities and nodes with
state probabilities. The probabilities are recorded during simulation with a
typical testbench.

1

(a)

>

!=

xin yin

x y

− >, != Controller

CLK

(b)

STOP
0.02

c2 = (x > y)
c1 = (x != y)

x := x − y; y := y − x;

c1.c2 c1.c2

S0 0.49

0.04

0.04
0.45

S1 S2

0.92 0.04

Figure 1: (a) Structural RTL implementation, and (b) sched-
uled description for theGCDcircuit

!=1

>1

-1

!=1

>1

-1

!=1

>1

-1

!=1

>1

-1

y

X
(a)

x

>

common-case
exec. condition

(b)

-

<<

x

x

y 2

0

Figure 2: (a) The extracted common-caseGCDbehavior, and
(b) a simplified common-case behavior

is clear that the state probabilities of statesS0 andS1 are high, as is
the probability of a transition between them. Upon performing a fur-
ther automatic analysis of theGCDdesign and its execution traces
during simulation, we found thatS0;S1;S0;S1;S0;S1;S0;S1 was a
promising state sequence pattern to derive a CCC circuit.

Given a candidate state sequence pattern, the next step in our
CCC-based design flow is to extract the behavior induced by it
and its execution condition, as explained below. We define thebe-
havior induced by a state sequence patternin a schedule (STG)
as the set of operations that are executed when the given pat-
tern is traversed in the STG. The behavior induced by the pattern
S0;S1;S0;S1;S0;S1;S0;S1 in the schedule of Figure 1(b) is shown
as a control-data flow graph in Figure 2(a). Similarly, we define the
execution condition of a state sequence patternin a schedule as the
set of conditions that need to be satisfied in order to traverse the

xin yin

Original circuit

x y

<< 2

−
> 0

Common case detection
and execution circuitry

Functionality of common case:
if (x − 4y > 0) then

 x = x − 4y;

Figure 3: OptimizedGCDdesign including CCC circuitry

given sequence of states, given that the STG is first initialized to
the first state of the sequence. The execution condition of the state
sequence patternS0;S1;S0;S1;S0;S1;S0;S1 in the schedule of Fig-
ure 1(b) is the conjunction of the outputs of all eight conditional op-
erations shown in Figure 2(a).

As mentioned in Section 1, several optimizations that are not ap-
plicable in the context of the original design may be applicable in the
limited context of CCCs. Thus, an important step in the CCC-based
design methodology is to further optimize the (relatively small)
common-case behavior aggressively using known power and perfor-
mance optimization techniques. Since the common-case operations
extracted from the schedule are represented at the behavior level, a
natural choice is to use behavioral transformations [9, 10, 13, 14] to
simplify them. We use a powerful transformation framework to ap-
ply various transformations aimed at minimizing the number of op-
erations, and the critical path, of the common-case behavior.

For theGCDexample, the initial common-case behavior shown
in Figure 2(a) is automatically transformed into the simplified be-
havior shown in Figure 2(b). The sequence of four(�) operations
has been reduced to one left shift (<<) operation and one (-) oper-
ation. In addition, the common-case execution condition has been
simplified from a sequence of four (>) and four (!=) operations to
a single(>) operation. Note that this optimization is not valid in the
context of the original design, but only in the scenarios under which
the common-case behavior is executed. Algorithms used for auto-
matically optimizing the common-case behavior in our CCC-based
design methodology are described in Section 3.

The final, optimizedGCDRTL design that contains an implemen-
tation of the common-case circuitry is shown in Figure 3. The cir-
cuitry added or modified for implementation of the CCC circuitry is
indicated using the darker shade of grey. In this example, the CCC
and execution condition are both implemented using a singlesub-
tracter (the conditionx�4y> 0 has been implemented using the bor-
row and the zero-detect output of the subtracter).

Upon synthesis, the average energy per input for the original de-
sign was found to be 11:05nJ, and for the CCC-optimized design
was found to be 4:46nJ, representing an energy savings factor of
2:48X. In addition, the average amount of execution time (number of
clock cycles� clock period) per input was found to be 4;285nsand
1;003ns, respectively, for the original and CCC-optimized design, a
performance improvement of 4:27X. The energy savings factor be-
comes 12:08X if the performance improvement is traded off through
supply voltage scaling. Section 4 details our experimental methodol-
ogy.

2.2 Tradeoffs involved in selecting CCCs
This subsection shows that the selection of the common-case be-

havior has a significant bearing on the quality of results obtained.
It also demonstrates that it is important to take data statistics (since

they influence the probability of executing the common-case behav-
ior) into account during CCC selection.

In general, the following tradeoffs are involved when performing
common-case behavior selection:

� Coverage.The coverage of a state sequence pattern represents
the expected fraction of the original design’s total processing
time that will be spent in executing instances of the pattern.
Very small state sequence patterns (that involve very few dis-
tinct states) may not be desirable since they may not exploit
enough of the state space to result in a large coverage. On the
other hand, state sequence patterns that are larger than neces-
sary may have poor coverage since they may be too special-
ized, i.e., not occur frequently enough. For example, consider
the patternS0 in theGCDschedule of Figure 1(b). The cover-
age of this pattern is equal to the state probability ofS0, i.e.,
0:49.2

The next example shows that the problem of selecting a state
sequence pattern to maximize coverage is a non-trivial one.

Example 1: Consider the schedule shown in Figure 4. We

i < 500

m = a[i]

m < 25

x = x + 3

y = y + 7

x = x − y

z = z + x

x = x + z

x = x * y

y = y * z

i++

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

p = 0.5
p = 0.5

Figure 4: Schedule for example circuittest1

computed the optimal coverage achievable by state sequence
patterns of length less than or equal to 150. The results are pre-
sented as a plot of coveragevs. pattern length in Figure 5. The
achievable coverage initially increases with pattern length, but
starts decreasing after a point. Note that the pattern length 13
in Figure 5 is only a local optimum, since it is always possible
to have the entire simulation state trace as a trivial pattern of
coverage 1:0. However, then the common-case behavior cho-
sen will correspond to the entire design, which will not lead to
any power or execution time savings. Thus, it is typically nec-
essary to have an upper bound on the length of state sequence
patterns.
The following factors also need to be considered.

� Scope for optimization. Once the common-case behavior is
derived from the chosen state sequence pattern, it is further op-
timized in order to minimize power consumption or execution
time. Longer state sequence patterns typically lead to behav-
iors that offer more opportunities for optimization. However, if
the state sequence pattern is too long, the coverage suffers.

2Note that the coverage of state sequence patterns of length greater than 2
cannot be computed directly from the state and state transition probabilities,
which only indicate first order statistics and ignore higher order statistics such
as the self and mutual correlations of state transition conditions [11].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160

C
ov

er
ag

e

State sequence pattern length

Figure 5: Plot of coveragevs.state sequence pattern length

� Compactness of common-case circuitry.One of the advan-
tages of CCC-based design, as mentioned in Section 1, is that
it eliminates a lot of the additional circuitry and parasitics (mul-
tiplexer and control circuitry, and clock network and global bus
capacitance) activated during the execution of the common-
case behavior in a non-CCC-based design. These effects rely
on the requirement that the common-case circuitry is much
smaller than the complete design. Due to the difficulty of es-
timating such low-level parasitics as the clock and interconnect
capacitance at the behavior level, we do not directly model or
target this factor in choosing a state sequence pattern for deriv-
ing the common-case behavior. Instead, our algorithms accept
constraints on the number of resources of each type (functional
units and registers) that are allowed in the implementation of
the common-case behavior. This parameter provides a handle
to effectively limit the size of the common-case circuitry.

15

20

25

30

35

40

45

1 4 16 64 256 1024 4096

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

in
pu

t (
nJ

)

Value of parameter k

Trace1
Trace2
Trace3
Trace4
Trace5

Figure 6: Energy consumption of CCC-based designs vs.
state sequence pattern length for different input traces

Example 2: Consider again theGCDexample shown in Figure 1.
In order to show the tradeoffs involved in choosing an appropriate
state sequence pattern, we obtained CCC-based designs for several
candidate state sequence patterns of different lengths, and evaluated
them for performance and energy consumption for different simula-
tion testbenches having different input distributions. Since the loop
involving statesS0 andS1 accounts for most of the simulation time,
we considered CCC-based designs that usek copies of the loop,i.e.,

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 4 16 64 256 1024 4096

E
xp

ec
te

d
nu

m
be

r
of

 c
yc

le
s

pe
r

G
C

D
 c

om
pu

ta
tio

n

Value of parameter k

Trace1
Trace2
Trace3
Trace4
Trace5

Figure 7: Expected execution time of CCC-based designs vs.
state sequence pattern length for different input traces

(S0;S1)k as the chosen state sequence pattern, for various values of
k ranging from 1 (representing the original design itself) to 4;096.
Each of these designs was evaluated for energy consumed per GCD
computation and performance (time consumed per GCD computa-
tion) for five different input traces labeledTrace1; : : :;Trace5. The
input traces were generated as follows. Each input trace corresponds
to a fixed number (500) of GCD computations, where each GCD
computation may take a different number of cycles depending on the
values of inputsx andy. The values ofx for all five traces were gen-
erated using a uniform distribution between 0 and 220�1. The val-
ues ofy for Trace1; : : :;Trace5 were generated using uniform distri-
butions between 0 and 216�1;217�1; : : :;220�1, respectively.

The energy results from the above experiments are plotted in Fig-
ure 6. The results indicate whether energy savings can be obtained
using the CCC-based design, and if so, which value ofk leads to the
best energy design. This depends in a complex manner on the input
traces. Note that, on the one hand, forTrace5, k= 1 leads to the least
energy consumption,i.e., CCC-based design with other values ofk
do not result in any energy savings. On the other hand, forTrace1,
a large energy savings (about 2:3X) is possible compared to the orig-
inal design. Also, note that for the curves which attain least energy
at k > 1 (i.e., at least one CCC-based design is better than the origi-
nal design), the following observations hold: (i) the best value ofk
varies depending on the input trace, and (ii) the smallest and largest
considered values ofk never lead to the best design.

Figure 7 shows results for performance (number of clock cycles)
for the same experiments. Again, it is clear that judicious selection
of the value ofk is necessary to realize the full potential of CCC-
based design, and the best value ofk varies depending on the input
data statistics. Another important point illustrated by Figures 6 and 7
is that energy and performance optimization are sometimes diver-
gent goals. For example, CCC-based designs derived for all values
of parameterk result in performance improvements over the origi-
nal (non-CCC-based) designs. However, some values ofk and input
distributions result in CCC-based designs that consume more energy
than the original designs.

The above example illustrates two key concepts:

� There are several (possibly conflicting) factors involved in
choosing a common-case behavior that leads to maximal en-
ergy (or power) and execution time savings.

� Input data statistics play an important role in determining the
best common-case behavior.

The algorithms presented in Section 3 quantitatively explore these
factors in choosing the best common-case behavior.

3 The Algorithm for CCC-based Design
In this section, we present the algorithmic details of our power

or performance optimization technique. The inputs to the algorithm

Original
circuit

I

O

Original
circuit

O

I

sleep2Common-case
detection

circuit

sleep3

 CCC
controller

sleep1

execution
circuit

Common-case

common case
 detected

common case
 completed

Figure 8: Original and CCC-optimized circuits

are an STG representing the schedule, a complete RTL description
of the circuit to be optimized, and a set of typical input traces. The
output is the RTL circuit augmented with hardware that detects and
executes some common cases in a power- or performance-efficient
manner. Another way to employ our technique is to use it as a plug-
in to an existing high-level synthesis tool (note that we do not assume
anything about the algorithms employed in high-level synthesis). In
such a scenario, the high-level synthesis tool would be used to sepa-
rately generate the RTL circuitry to implement the common-case be-
havior and the remaining parts of the behavior. The resulting circuits
would be composed into a CCC-optimized implementation.

Figure 8 shows the structures of the original and CCC-optimized
circuits. The optimized circuit has three major components: the orig-
inal circuit, acommon-case detectioncircuit, and acommon-case ex-
ecutioncircuit. The common-case detection circuit accepts as inputs,
the primary inputs of the circuit, and the values of some internal vari-
ables in the original circuit. It detects the occurrence of a specific
condition, referred to in the sequel as thecommon case. The inputs
of the common case execution circuit could be any subset of the pri-
mary inputs and internal variables in the original circuit. When acti-
vated, it computes a subset of the primary outputs and the values of
some internal variables in the original circuit. Each of the three com-
ponents of the CCC-optimized circuits is designed to support power
management (sleepmode) using a combination of clock gating and
operand isolation [8, 12]. Clock gating ensures that the registers do
not load new values and that the clock network does not dissipate
power. Operand isolation uses transparent latches to freeze the non-
registered primary inputs. When the sleep input to a circuit is as-
serted high, it does not dissipate any dynamic power. A circuit in the
sleep mode can be restored to active mode in the next clock cycle by
asserting the sleep input low. The sleep inputs to the various circuits
are generated by a small global controller, using the controller state
from the original RTL circuit, the common-case detection signal, and
a completion signal generated by the common-case execution circuit.

Figure 9 illustrates the chronology of related events. Rectangles
(a), (b), and (c) represent, respectively, the activity of the original
circuit, the common-case detection circuit, and the common-case ex-
ecution circuit over time. The shaded regions of the rectangles cor-
respond to activity in the circuit, and the clear regions correspond to
inactive or idle time slots. During the idle slots, the component is
sent into sleep mode by the control circuitry. Initially, only the origi-
nal circuit is active. At timetp, the original circuit enters into a state
which activates the common-case detection circuit. The common-
case detection circuit uses the primary inputs and the values of in-
ternal variables in the original circuit to test for the occurrence of
the common case. This process continues until timetc. Note that,
to avoid performance degradation, the original circuit continues its
computation between timestp andtc. At time tc, the common-case
detection circuit confirms the occurrence of the common case, and
activates the common-case execution circuit. The original circuit

Original circuit

Common-case detection circuit

Common-case execution circuit

time

t p ct et

(a)

(b)

(c)

Figure 9: Activity of CCC-optimized circuit over time

and the common-case detection circuit are then de-activated. The
common-case execution circuit completes at timete, and writes the
appropriate values into the original circuit, which then resumes nor-
mal computation.

Inputs:
1. RTL design
2. Schedule (STG)
3. Typical input traces

Simulate STG
with input
traces

Identify
promising state
sequence
patterns1 2

Derive compact
behavior to
justify state
sequence

Optimize
computation
performed in
state sequence

Evaluate power

obtained by
choosing this
pattern

4

5

6

Output:

Original design
 +
CCC circuitry

Extract behavior
corresponding
to state
sequence

Choose best
pattern obtained
so far

Synthesize
common case
circuitry, combine
with original
circuit

3
7 8

For all promising state sequences

pattern pattern

and execution

pattern

time savings

Figure 10: The CCC optimization algorithm

Figure 10 outlines our algorithm. We first simulate the STG with
the input traces to obtain a sequence,ρ, of states. We then traverse
the state sequence to identify frequently-encountered sub-sequences
of states, which potentially constitute good common cases. The out-
put of step2 in the algorithm is a set of state sequence patterns
which can potentially be synthesized into an efficient common-case
circuitry. It is important to note that steps1 and2 cannot identify
thebeststate sequence pattern, but only obtain some promising ones.
This is because these steps do not use detailed synthesis information,
which is needed to assess the ease of detection, and the simplicity
of the common case. Therefore, these steps cannot rank closely-
matched state sequence patterns. Rather, they serve as a filter that
protect later stages from having to focus synthesis effort on obvi-
ously undesirable state sequence patterns.Gain(σ) (Equation (1))
measures the desirability of the state sequence patternσ as a CCC.

Gain(σ) = Coverage(σ)�jσj (1)

= N(σ)�jσj2 (2)

Coveragehas been defined in Section 2,jσj is the length ofσ, and
N(σ) represents the number of non-overlapping instances ofσ in ρ.
Note thatGain(σ) can be easily computed without any knowledge of
the behavior represented by the common case. We now justify our
choice of this measure. Of two state sequence patterns with equal
length, the one which occurs more often would clearly constitute a
better choice, if behavioral information is unavailable. TheGain
function is, therefore, proportional toN(σ). Consider two different
state sequence patterns,σ1 and σ2, which occur 10 and 50 times,
respectively. Supposeσ1 has a length of 5, andσ2 has a length of

1. If we choseGain(σ) to be proportional toCoverage(σ), then these
two state sequence patterns would be considered equally good. How-
ever, a common case that consists of a longer state sequence pattern
is likely to be easier to optimize. A behavior extracted from a single
state would be extremely difficult to optimize because it has a very
short critical path (of one cycle). MultiplyingCoverage(σ) by jσj
takes into account the increased ability to optimize larger behaviors.
Extremely long state sequences are, however, undesirable because
they add to the complexity of the common-case detection and exe-
cution circuits, thus increasing the overall power consumption of the
design. We, therefore, upper-bound the length of the common case
state sequence pattern by a small, user-defined constant. For our ex-
periments, a bound of 32 on the length of the common case yielded
good results.

Steps3-6 are performed for all promising state sequence patterns.
Step3 extracts the behavior corresponding to a state sequence pat-
tern. Step4 derives a compactjustification behaviorfor the common
case implied by the state sequence pattern,i.e., it derives a set of con-
ditions, which, if satisfied, guarantees the occurrence of the chosen
state sequence pattern. This is done as follows: consider a state se-
quence pattern,σ = fS1;S2; : : :;Sng, whose occurrence needs to be
detected. Letci represent the condition for a transition from stateSi
to Si+1. x is a Boolean variable which istrue if and only if σ occurs.
Clearly, x =

Vn�1
i=1 ci : When an instance of the common case is de-

tected, the common case execution hardware is activated. Therefore,
it is critical that the simplified behavior does not incorrectly report
the occurrence of a common case. However, in the interest of ease of
detection, the detection process might choose toignore some hard-
to-detect, infrequent, occurrences of the common case. Therefore,
the output,x0, of the detection process is required to betrue only if
x is true. It is hard to find a general simplifying procedure, which
works for all behaviors. From our experiments, we identified some
promising directions for simplification. Specifically, we noted the
existence of implications between theci ’s for many of our bench-
marks,i.e., a true value onci1 often guarantees atrue value onci2
(i1 6= i2). In this case, we can removeci2 from the detection pro-
cess, and, therefore, also remove the operations which are responsi-
ble only for its generation, thus simplifying the behavior.

Step5 derives the common-case execution circuit. In this step,
optimizing transformations are applied to simplify the common-case
behavior, prior to synthesis. Power-optimizing transformations have
been extensively studied in the literature [10, 13, 14]. Performance-
optimizing transformations can also be used at this point [9]. At the
end of this step, the simplicity of the common-case circuit can be
assessed. We also have sufficient information to estimate the power
and execution time savings obtainable from the chosen pattern. Step
6 performs this estimate.

The process described in the previous paragraph is repeated for
every state sequence pattern identified in steps1 and2, and the most
promising pattern is chosen as the common case. The common-case
detection and execution circuits for this pattern are then combined
with the original circuit in step8 to produce a CCC-optimized cir-
cuit.

4 Experimental Results
While CCC optimization can target power or performance, we

next present experimental results for several circuits where power
optimization was performed. Scheduling and binding information
was available for all circuits. The STGs representing the schedules
of the example circuits were analyzed to detect common cases, and
the most promising common case was chosen for synthesis. The
original circuits were modified by adding common-case detection
and execution circuitry. The original and power-optimized RTL de-
scriptions were mapped to gate-level netlists using synthesis tools
from the NEC CAD tool suite, OpenCAD [15]. The resulting gate-
level circuits were compared with respect to the following metrics:
area, performance, and power. The area, delay, and power consump-
tion were extracted from technology-mapped gate-level circuits us-
ing static timing analysis tools and power estimation tools from the
NEC OpenCAD suite [15]. The results obtained are summarized in
Tables 1 and 2.

The power consumption of the original and the optimized designs
are computed in the following manner whenVdd-scaling is not per-
formed. For the original design, the energy,Eorig, consumed while

Table 1: Area and performance results

Circuit Area (# transistor pairs) # cycles
original optimized A.O.(%) original optimized P.I. (%)

GCD 3,647 4,706 29.0 428,460 100,310 76.6
Poly 16,801 19,232 14.5 1,760,000 1,445,000 17.9
Test1 10,163 12,386 21.9 338,300 194,600 42.5
Linegen 3,340 4,126 23.5 718,000 406,800 43.3
Graphics 5,894 7,644 29.7 159,800 116,000 27.4

Table 2: Power results

Circuit Power (mW)(non-Vdd-scaled) Power (mW)(Vdd-scaled)
original optimized P.S.(%) optimized P.S.(%)

GCD 2.59 1.04 59.8 0.22 91.5
Poly 55.57 23.23 58.2 17.98 67.6
Test1 23.74 12.20 48.6 6.17 74.0
Linegen 8.96 5.40 39.7 2.69 70.0
Graphics 18.48 16.19 12.4 10.77 41.7

executing the input trace is divided by the time,Torig, in cycles, taken
for executing the trace, to determine the power consumption. The
power-optimized design is assumed to consumeEopt units of energy
and operate forTopt cycles, whereTopt is less thanTorig. In this case,
the optimized design is assumed to operate forTorig cycles, while
being in an inactive (zero energy) state forTorig�Topt cycles. There-
fore, the power consumption is given byEopt=Torig. If Vdd-scaling is
performed, the optimized design is assumed to take the same time as
the original design. This enables us to use the following equation to
scale the supply voltage [10]

Vddinitial

(Vddinitial �Vt)2
�Torig =

Vddnew

(Vddnew�Vt)2
�Topt

whereVddinitial is the initial supply voltage,Vddnewis the new sup-
ply voltage, andVt is the threshold voltage of the implementation.
The power consumption is obtained using the new supply voltage.

In Table 1, major columnscircuit, area and # cyclesrepresent
the name of the design, the area, and the expected number of clock
cycles to process one input, respectively. Minor columnsoriginal
andoptimizedrepresent, respectively, the original design and opti-
mized design. ColumnA.O.represents the area overhead incurred by
our technique, and columnP.I. represents the improvement in perfor-
mance. Similarly in Table 2, major columnscircuit, power(non-Vdd-
scaled), andpower(Vdd-scaled) represent, respectively, the name of
the design and the power consumption, without and withVdd-scaling.
ColumnP.S.represents the savings in power consumption.

Of our examples,GCDis a well-known benchmark.Poly rep-
resents the computation of a polynomial, andTest1 represents the
behavior shown in Figure 4.Linegen andGraphics are parts of
an in-house graphics controller ASIC.

The results indicate that our power optimization procedure pro-
duces circuits which perform significantly faster or consume signif-
icantly lower power than the original designs. On an average, the
circuits produced from our technique consumed 69.0% (43.7%) less
power than the original circuits whenVdd-scaling was (was not) per-
formed, at an average area overhead of 23.7%. These power reduc-
tions are only achieved when the performance of the original and op-
timized designs is made equal. The optimized circuits performed, on
an average, 41.5% faster than the original circuits. However, note
that for the faster circuits, we do not get the above power reductions.
Thus, our technique can either optimize power or performance, but
not necessarily both.

5 Conclusions
In this paper, we presented a technique that performs power or

performance optimization by identifying and specially synthesizing
frequently-encountered behavioral fragments, or common cases. We
introduced a technique to identify promising common cases, and

simplify the detection and execution of the chosen common case
by using targeted behavioral transformations. We also proposed an
architecture to implement our optimization technique. Experimen-
tal results, performed on several benchmarks, demonstrate signifi-
cant power savings or performance improvements at reasonable area
overheads.

References
[1] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin,High-level

Synthesis: Introduction to Chip and System Design, Kluwer Academic
Publishers, Norwell, MA, 1992.

[2] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, New York, NY, 1994.

[3] D. A. Patterson and J. L. Hennessy,Computer Architecture: A Quanti-
tative Approach, Morgan Kaufman Publishers, San Mateo, CA, 1989.

[4] J. A. Fisher, “Trace scheduling: A technique for global microcode com-
paction,” IEEE Trans. Computers, vol. C-30, pp. 478–490, July 1981.

[5] M. Aldina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,”
IEEE Trans. VLSI Systems, vol. 2, pp. 426–436, Dec. 1994.

[6] L. Benini, E. Macii, M. Poncino, and G. De Micheli, “Telescopic units:
A new paradigm for performance optimization of VLSI designs,”IEEE
Trans. Computer-Aided Design, vol. 17, pp. 220–232, Mar. 1998.

[7] S. K. Bommu, N. O’Neill, and M. Ciesielski, “Retiming based factor-
ization for sequential logic optimization,”ACM Trans. Design Automa-
tion Electronic Systems, to appear, 1998.

[8] A. Raghunathan, N. K. Jha, and S. Dey,High-level Power Analysis and
Optimization, Kluwer Academic Publishers, Norwell, MA, 1998.

[9] H. Trickey, “Flamel: A high-level hardware compiler,”IEEE Trans.
Computer-Aided Design, vol. 6, pp. 259–269, Mar. 1987.

[10] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. Brodersen, “Optimizing power using transformations,”IEEE Trans.
Computer-Aided Design, vol. 14, pp. 12–31, Jan. 1995.

[11] G. Casella and R. L. Berger,Statistical Inference, Duxbury Press, Bel-
mont, CA, 1990.

[12] L. Benini and G. De Micheli,Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, Norwell,
MA, 1997.

[13] A. Chatterjee and R. K. Roy, “Synthesis of low power DSP circuits us-
ing activity metrics,” inProc. Intl. Conf. VLSI Design, pp. 255–270,
Jan. 1994.

[14] G. Lakshminarayana and N. K. Jha, “FACT: A framework for the appli-
cation of throughput and power optimizing transformations to control-
flow intensive behavioral descriptions,” inProc. Design Automation
Conf., pp. 102–107, June 1998.

[15] OpenCAD V 5 Users Manual, NEC Electronics, Inc., Sept. 1997.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

