
Using Lower Bounds during Dynamic BDD Minimization

Rolf Drechsler Wolfgang G�unther

Institute of Computer Science, Albert-Ludwigs-University, 79110 Freiburg im Breisgau, Germany
fdrechsle,guentherg@informatik.uni-freiburg.de

Abstract

Ordered Binary Decision Diagrams (BDDs) are a data struc-
ture for representation and manipulation of Boolean func-
tions often applied in VLSI CAD. The choice of the variable
ordering largely in
uences the size of the BDD; its size may
vary from linear to exponential. The most successful meth-
ods for �nding good orderings are based on dynamic variable
reordering, i.e. exchanging of neighboring variables. This ba-
sic operation has been used in various variants, like sifting
and window permutation.

In this paper we show that lower bounds computed during
the minimization process can speed up the computation sig-
ni�cantly. First, lower bounds are studied from a theoretical
point of view. Then these techniques are incorporated in dy-
namic minimization algorithms. By the computation of good
lower bounds large parts of the search space can be pruned
resulting in very fast computations. Experimental results are
given to demonstrate the e�ciency of our approach.

1 Introduction

Decision Diagrams (DDs) are often used in VLSI CAD sys-
tems for e�cient representation andmanipulation of Boolean
functions. The most popular data structure are ordered Bi-
nary Decision Diagrams (BDDs) [3, 5].

But, as well known BDDs are very sensitive to the vari-
able ordering, i.e. the size of a BDD (measured in the num-
ber of nodes) may vary from linear to exponential. Finding
the optimal variable ordering is an NP-hard problem [2] and

the best known algorithm has runtime O(n2 � 3n) [7], where
n denotes the number of variables.

This is the reason why many authors presented heuris-
tics for �nding good variable orderings from circuit descrip-
tions in the last few years (see e.g. [8]). The most promising
methods for BDD minimization are based on Dynamic Vari-
able Ordering (DVO) [9], i.e. improving graph size using ex-
changes of neighboring variables. The best results measured
in the number of nodes of the resulting BDD were obtained
using sifting [14, 13], but unfortunately sifting is very time
consuming for large functions. For this, recently in [12] an
algorithm has been proposed how to partition the search
space to improve sifting runtimes. But this algorithm is
largely dependent on the initial variable ordering. Another
approach based on \sampling" has been suggested in [15],
but dependent on the chosen candidates the quality of the
result varies widely, i.e. the results can be up to a factor of
two worse than \classical" sifting.

In this paper we investigate the use of lower bound tech-
niques during dynamic minimization. Lower bounds have so
far mainly be used in exact BDD minimization [10, 11, 6].
We �rst theoretically analyze how lower bounds can be com-
puted for the exchange of variables. Then it is shown how
these theoretical results can be used by integrating the tech-

niques in the sifting algorithm [14]. The method has been
incorporated in the CUDD package [16]. We give a large
set of experimental results to show the quality of our ap-
proach. Using lower bounds the number of exchanges can be
reduced by more than 50% on average resulting in a speed-
up of nearly 70%. Furthermore, we study heuristic methods
to \�netune" sifting by relaxation of lower bounds. It turns
out that the use of lower bounds gives a very robust method
to trade o� runtime versus quality.

2 Preliminaries

2.1 Binary Decision Diagrams

As well-known, each Boolean function f : Bn
! B can be

represented by a Binary Decision Diagram (BDD) [3], i.e. a
directed acyclic graph where a Shannon decomposition is
carried out in each node. In the following, only reduced,
ordered BDDs are considered and for briefness these graphs
are called BDDs. (For more details see [5].)

In the following we make use of Complement Edges (CEs)
without mentioning it further. (Note that all results shown
here directly transfer to BDDs without CEs.) We denote the
number of nodes labelled with a variable xi with label(xi).
For a subset A � fx1; : : : ; xng of variables, this de�nition is
extended to label(A) =

P

xi2A

label(xi).

2.2 Exchange of Neighboring Variables

The basic operation of dynamic variable ordering is the ex-
change of adjacent variables [9, 14]. The exchange is per-
formed very quickly since only edges must be redirected
within these levels. Thus, the size is optimized without a
complete reconstruction of the BDD. Only local transfor-
mations for the two levels are performed. This is due to the
observation that BDDs are a canonical form. The exchange
of two variable does not change the sub-BDDs of other lev-
els.

2.3 Sifting

The sifting algorithm [14] successively considers all variables
of a given BDD. When a variable is chosen, the goal is to
�nd the best position of the variable, assuming that the
relative order of all other variables remains the same. In a
�rst step, the order in which the variables are considered is
determined. This is done by sorting the levels according to
their size with largest level �rst. To �nd the best position,
the variable is moved across the whole BDD. In [14], this is
done in three steps:
1. The variable is exchanged with its successor variable until
it is the last variable in the ordering.
2. The variable is exchanged with its predecessor until it is
the topmost variable.
3. The variable is moved back to the closest position which
has led to the minimal size of the BDD.

Some improvements to the original sifting algorithm have
already been proposed:

Upper limit: As the size of the BDD can grow much dur-
ing the movement of one variable, it is possible to set
an upper limit to the growth of the BDD. If this limit
is exceeded, moving into this direction is aborted. This
avoids large intermediate BDDs.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

Closest end: The considered variable is not always moved
downwards �rst. Instead it is moved to the closest end
and then to the opposite one.

Several other techniques have been proposed, like the use
of symmetries and of interaction matrix1 [13]. We make
use of these methods in the following without mentioning it
further.

3 Lower Bounds on BDD Sizes

During sifting we want to stop moving a variable in a direc-
tion as early as possible if no further improvement can be
obtained. In our approach we make use of an e�cient lower
bound computation that gives information that further size
reduction is not possible. In this section we prove lower
bounds and show by examples that they are tight. In the
next section we explain how these bounds are incorporated
in the sifting algorithm.

If the modi�cation of the variable ordering is not re-
stricted, it is well known that an exponential di�erence is
possible [3]. However, if the kind of modi�cation is restricted
in some way (which is the case if used during sifting, since
only one variable changes its location), stricter lower bounds
can be given.

A very general lower bound technique has been proposed
in [4]. The lower bound holds if the variables of the upper
part of the BDD remain unchanged, but the variable order
of the lower part can be modi�ed arbitrarily. If used for
exact BDD minimization, signi�cant reductions in runtime
are possible [6]. However, if used for sifting, these lower
bounds are too general to give good estimates for the size of
the resulting BDD. Futhermore, the computation of these
lower bounds is much too time consuming, since a traversal
of the whole graph is needed.

3.1 Bounds for Level Exchanges

In the following, the node increase for the exchange of neigh-
boring levels is examined. In the whole section it is assumed
that the function essentially depends on all its variables.

Let f : Bn
! Bm be a Boolean function represented by

a BDD. Then the following theorem holds (see [1]):

Theorem 1 Let 1 � i < n. If the levels i and i + 1 are
exchanged, the resulting level sizes label0(�) are bounded by

1 � label
0

(xi) � 2 � label(xi)

and

1

2
� label(xi+1) � label

0

(xi+1) � label(xi) + label(xi+1):

All other levels remain unchanged.

Proof: We consider the four cases:
Case 1: 1 � label0(xi): By assumption, the function de-
pends on xi, thus there must be at least one node in that
level.
Case 2: label0(xi) � 2 � label(xi): The inequation holds be-
cause each node in level i which depends on xi+1 can lead
to at most two nodes, one for each possible value of xi+1. If
a node does not depend on xi+1, it remains unchanged.
Case 3: 1

2
�label(xi+1) � label0(xi+1): The inequation is sim-

ply the inversion of the previous inequation, i.e. exchanging
two levels twice leads to the original representation.
Case 4: label0(xi+1) � label(xi) + label(xi+1): The inequa-
tion holds because the number of cofactors which have to be
represented in level i cannot be larger than the number of
cofactors which are already represented in levels i and i+1
(see [7]). Since each node in the BDD represents a cofactor
with respect to all variables in the upper part, this number
cannot change by a local operation.

All results hold for BDDs with and without CEs. 2

1For two variables the interaction matrix gives information
whether an output of the BDD depends on both variables.

xi

xi

xjxj

xi

A B CA B C

xj

Figure 1: Result of one level exchange to the node count

The bounds proven in the theorem are tight. This can
be seen as follows:

Example 1 Consider the function with two outputs given
in Figure 1. If xi is the topmost variable the size of the �rst
two levels is 4, while the number of nodes is reduced by a
factor of two if the two topmost variables are exchanged.

Remark 1 If neighboring levels do not interact, the result-
ing level sizes remain unchanged, i.e. label0(xi) = label(xi)
and label0(xi+1) = label(xi+1). This can be checked e�-
ciently using the interaction matrix.

3.2 Lower Bounds for one Variable

In this section we give lower bounds for the BDD size if
a single variable is moved in the variable ordering and the
relative order of all other variables remains unchanged.

A trivial lower bound (also used in [16]) is the following:
Assume variable xi is in level i. Moving level i down to level
j, all nodes which are above level i (i.e. in levels 1; : : : ; i�1)
and all nodes below level j (i.e. in levels j+1; : : : ; n) do not
change. Furthermore, nodes between these levels for which
the variable does not interact with xi do not change. Thus,
the sum of these three numbers constitutes a lower bound.
But since this technique only sums up the number of nodes
which are not a�ected by moving variable it is often not
e�ective.

To give improved lower bounds, the problem is further
divided into two cases, one for the case the variable is moved
upwards and one for the other direction.

Let f : Bn
! Bm be a Boolean function represented

by a BDD and assume that the initial variable ordering is
(x1; x2; : : : ; xn). From iteratively applying Theorem 1 and
making use of the results from [1] and [6] we get the following
two corollaries:

Corollary 1 Let 1 � i < j � n. If level i is moved down to
level j, resulting in the variable ordering

(x1; x2; : : : ; xi�1; xi+1; : : : ; xj ; xi; xj+1; : : : ; xn);

for the size of the resulting BDD jG0

j holds

jG
0

j � label(A) + 1 + 1

2
� label(B) + label(C)

and
jG

0

j � label(A) + label(xi) + label(C);

with A := fx1; : : : ; xi�1g, B := fxi+1; : : : ; xjg, and C :=
fxj+1; : : : ; xng.

Corollary 2 Let 1 � j < i � n. If level i is moved up to
level j, resulting in the variable ordering

(x1; x2; : : : ; xj�1; xi; xj ; : : : ; xi�1; xi+1; : : : ; xn);

for the size jG0

j of the resulting BDD holds

jG
0

j � label(A) + (i� j) +
1

2i�j
� label(xi) + label(C);

with A := fx1; : : : ; xj�1g, B := fxj ; : : : ; xi�1g, and C :=
fxi+1; : : : ; xng.

Furthermore, levels which do not interact with xi can be
added to both lower bounds.

Table 1: Lower bound sifting

sifting lb-sifting di�erence (%)
circuit in initial �nal exch. time exch. time exch. time

bigtest 328 95224 93066 204803 332.4 101925 138.9 -50.2 -58.2
c1355 41 39648 30103 3108 17.1 1580 12.8 -49.2 -24.9
c1908 33 23158 7582 2015 6.3 1105 4.7 -45.2 -25.3
c2670 233 222404 16106 71002 216.0 26762 104.8 -62.3 -51.5
c499 41 39649 30459 3117 15.5 1579 11.2 -49.3 -28.0
c5315 178 4737 2377 52607 2.2 27875 1.2 -47.0 -46.4
c7552 207 331495 13934 79092 75.2 44911 53.4 -43.2 -28.9
c880 60 8116 4384 6462 1.6 3328 0.8 -48.5 -48.8
dalu 75 12355 1216 10520 2.4 8210 1.9 -22.0 -22.4
des 256 9413 3065 103031 1.5 73370 1.2 -28.8 -19.8
i10 257 326484 97256 121280 447.3 63998 286.5 -47.2 -36.0
i2 201 334 204 69401 3.8 29133 1.8 -58.0 -51.5
i4 192 420 246 68985 1.1 13371 0.4 -80.6 -60.6
i8 133 3869 1665 28049 1.0 18868 0.8 -32.7 -20.1
pair 173 14432 6068 56820 3.7 33710 3.0 -40.7 -18.7
rot 135 8147 6200 33690 2.4 15895 1.5 -52.8 -35.7
s13207.1 700 10432 3152 797041 7.6 426990 7.2 -46.4 -4.9
s1423 91 4117 1837 15425 1.2 9621 0.9 -37.6 -29.7
s15850.1 611 42944 14660 643009 39.3 350288 28.3 -45.5 -28.0
s38417 1664 608542 560835 5011193 3336.4 1442982 703.2 -71.2 -78.9
s38584.1 1464 62901 16245 3751859 52.6 2453578 41.5 -34.6 -21.0
s5378 199 5256 2391 71740 1.4 38904 1.2 -45.8 -18.5
s9234.1 247 25135 4267 112799 8.3 60300 6.2 -46.5 -25.6
sum 1899212 917318 11317048 4576.3 5248283 1413.4 -53.6 -69.1

SiftingDown(i : level to sift)
lb = compute lower bound();
best = size of BDD();
while (i < n and lb � best)

level exchange(i, i+ 1);
lb = compute lower bound();
if (size of BDD() < best) best = size of BDD();
i = i+ 1;

Figure 2: Sketch for the sifting down-algorithm

4 Lower Bound Sifting

During sifting, moving a variable xi can be aborted if it
cannot improve the best already known BDD size. In other
words, if it is known that the BDD size cannot be improved
by further shifting the variable, this can be stopped. To
decide whether an improvement is still possible, the lower
bounds given in the previous section are used. For the case
of moving a variable xi down, this yields

lb(xi) = min
j=1;:::;i�1

jG
0

j j

� label(A) + max(label(xi); 1 +
1

2
� label(B));

with A := fx1; : : : ; xi�1g, B := fxi+1; : : : ; xng and G0

j de-
noting the BDD after moving variable xi to position j. If
this lower bound is larger than the best previously found
BDD size, a movement in that direction cannot lead to a bet-
ter position for the variable. Analogously the lower bound
is computed for moving a variable down. The computation
of the lower bound can be done locally, and by this is much
more e�cient than the approach in [6], where a traversal of
the whole BDD is needed. A sketch of the algorithm for
sifting down is given in Figure 2. In the following this tech-
nique is denoted as lower bound sifting (lb-sifting). Notice
that the quality (measured in number of nodes) of lb-sifting
is the same as for \classical" sifting, but due to the lower
bounds the computation is speeded up, since much less ex-
changes have to be performed.

The runtime of dynamic variable reordering can be fur-
ther improved, if the lower bounds are relaxed: It is unlikely
that during sifting half of the nodes are vanishing in each
step. For this, we suggest to not only consider the bound

1

2
, but the straightforward generalization to 1

b
(b � 2). Ob-

viously, this is not a \real" lower bound, since it overesti-
mates, but by this extension sifting only consideres parts of
the search space where large improvements are possible. (In
typical BDD applications, like veri�cation, a small improve-
ment in number of nodes is not of much interest.) The 1

b

bound is used for moving variables up and down, i.e. we do
not distingiush between these cases.

It turned out in our experiments (see below) that using

the 1

b
bound is a good choice for 2 � b � 10. Within this

range, the relaxed lower bound often tremendously speeds
up the sifting algorithm without increasing the resulting
BDD sizes too much. This heuristic approach of using lower
bounds allows the user to trade o� runtime versus quality.

5 Experimental Results

In this section we describe experimental results that have
been carried out on a SUN Ultra 1 with 256 MBytes. All
times are given in CPU seconds. Our algorithm has been
integrated in the CUDD package [16].

In a �rst series of experiments, we compare the original
sifting algorithm [14] with the lower bound improvement.
Results are given in Table 1. In column circuit the name of
the benchmark circuit is given and column in refers to the
number of inputs of the circuit. We build the BDD using an
initial ordering (given in column initial). The BDD size after
application of sifting is shown in column �nal. (Obviously,
lb-sifting results in the same sizes.) For both sifting methods
we give the number of exchanges that are carried out during
sifting and the runtime needed. The improvements are given
in the last two columns. lb-sifting needs on average 53.5%
less exchanges resulting in a reduction of runtime by 69:1%.
Especially for bigger examples large reductions are achieved
(see e.g. s38417). Compared to the trivial lower bound (as
it is implemented in [16]) improvements of up to 70% can
be overserved using lb-sifting.

In a second series of experiments, we study the in
uence
of relaxing the lower bound. For increasing values of b, we
analyze the in
uence of the relaxed lower bound on �nal
node count and on runtime. (The bound is used in both
directions, i.e. for moving a variable up and down.) The
results for various values of b in comparison to sifting and

Table 2: Relaxed lower bound sifting

nodes deviation/circuit time deviation/circuit
method sum rel av. max min sum rel av. max min

sifting 929078 0.0 0.0 0.0 0.0 4582.7 0.0 0.0 0.0 0.0
lb-sifting 929081 0.0 0.0 0.0 0.0 1418.1 -69.1 -29.9 -4.9 -81.9
b = 2 931321 0.2 1.4 38.9 -7.4 1534.6 -66.5 -21.8 4.5 -76.9
b = 3 931938 0.3 3.0 40.7 -7.4 1277.5 -72.1 -30.5 -3.0 -84.3
b = 4 932552 0.4 3.8 67.1 -7.4 1073.0 -76.6 -35.6 3.0 -84.3
b = 6 934314 0.6 5.1 67.1 -7.1 841.5 -81.6 -42.4 -9.1 -88.3
b = 8 935381 0.7 5.6 67.1 -7.1 707.6 -84.6 -47.3 3.0 -90.6
b = 10 934869 0.6 6.3 67.1 -7.1 628.7 -86.3 -49.8 -3.0 -92.0
b = 12 939009 1.1 9.5 115.0 -7.1 565.8 -87.7 -53.0 -15.0 -93.0
b = 14 940209 1.2 12.1 115.1 -7.1 509.4 -88.9 -55.4 -15.0 -94.0
b = 16 939689 1.1 12.1 115.1 -7.1 467.8 -89.8 -57.5 -22.1 -94.7
b = 18 941073 1.3 13.7 115.1 -7.1 440.1 -90.4 -57.6 -7.7 -95.1
b = 20 973241 4.8 19.0 239.1 -7.1 409.6 -91.1 -58.8 -7.7 -95.6
b = 22 973553 4.8 19.8 239.1 -7.1 391.7 -91.5 -60.7 -15.2 -95.8
b = 24 974849 4.9 20.6 239.1 -7.1 374.8 -91.8 -62.2 -15.2 -96.0

0

400

800

1200

1600

5 10 15 20 25
920

940

960

980

1000

time size

Figure 3: CPU time in seconds (left) and size in 1000 nodes
(right) for relaxing bound

lb-sifting are given in Table 2. Columns 2-6 and 7-11 give
informations about the behavior of the algorithms for result-
ing BDD size and runtime, respectively. For all experiments
43 circuits have been used and we computed the average
(column av.), maximal (column max) and minimal (column
min) deviation per circuit given in %. rel gives the relative
improvement compared to \classical" sifting. To make this
data easier readable, we show the overall behavior in a dia-
gram: The runtimes and the �nal BDD sizes in 1000 nodes
for various values of b are given in Figure 3. It can be seen
that for small values of b (e.g. b = 10), the increase in num-
ber of nodes is very small, i.e. less than 1%, but the gain in
runtime is large, i.e. more then a factor of 7 over \classical"
sifting. Our results show that relaxed lb-sifting is a very
robust method to trade o� runtime versus BDD size.

6 Conclusions

In this paper we studied the use of lower bounds during dy-
namic BDD minimization. It turned out that it is possible
to speed up the original algorithm signi�cantly without in-
creasing the �nal size of the BDD. We proved tight bounds
that can be computed e�ciently during sifting. If a small
increase is allowed, i.e. the lower bounds are relaxed, the
algorithm can be further speeded up.

Experimental results have shown that an improvement
of runtime by nearly 70% becomes possible without making
the results worse. Using relaxed lb-sifting the runtime could
be further improved by more than a factor of two while
increasing the BDD size by less than 1% on average.

References

[1] B. Bollig, M. L�obbing, and I. Wegener. On the e�ect of
local changes in the variable ordering of ordered decision
diagrams. Information Processing Letters, 59:233{239, 1996.

[2] B. Bollig and I. Wegener. Improving the variable ordering of
OBDDs is NP-complete. IEEE Trans. on Comp., 45(9):993{
1002, 1996.

[3] R.E. Bryant. Graph - based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677{691, 1986.

[4] R.E. Bryant. On the complexity of VLSI implementations
and graph representations of Boolean functions with appli-
cation to integer multiplication. IEEE Trans. on Comp.,
40:205{213, 1991.

[5] R. Drechsler and B. Becker. Binary Decision Diagrams -
Theory and Implementation. Kluwer Academic Publishers,
1998.

[6] R. Drechsler, N. Drechsler, and W. G�unther. Fast exact
minimization of BDDs. In Design Automation Conf., pages
200{205, 1998.

[7] S.J. Friedman and K.J. Supowit. Finding the optimal vari-
able ordering for binary decision diagrams. In Design Au-
tomation Conf., pages 348{356, 1987.

[8] H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable
ordering methods for ordered binary decision diagrams. In
Int'l Conf. on CAD, pages 38{41, 1993.

[9] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable order-
ing of binary decision diagrams for the application of multi-
level synthesis. In European Conf. on Design Automation,
pages 50{54, 1991.

[10] N. Ishiura, H. Sawada, and S. Yajima. Minimization of bi-
nary decision diagrams based on exchange of variables. In
Int'l Conf. on CAD, pages 472{475, 1991.

[11] S.-W. Jeong, T.-S. Kim, and F. Somenzi. An e�cient method
for optimal BDD ordering computation. In International
Conference on VLSI and CAD, 1993.

[12] C. Meinel and A. Slobodov�a. Speeding up variable reordering
of OBDD. In Int'l Conf. on Comp. Design, pages 338{343,
1997.

[13] S. Panda and F. Somenzi. Who are the variables in your
neighborhood. In Int'l Conf. on CAD, pages 74{77, 1995.

[14] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In Int'l Conf. on CAD, pages 42{47, 1993.

[15] A. Slobodov�a and C. Meinel. Sample method for minimiza-
tion of OBDD. In Int'l Workshop on Logic Synth., pages
311{316, 1998.

[16] F. Somenzi. CUDD: CU Decision Diagram Package Release
2.2.0. University of Colorado at Boulder, 1998.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

